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This paper addresses a scheduling problem with parallel identical machines and sequence-dependent setup

times in which the setup and the processing times are random parameters. The model aims at minimizing the
total completion time while the total revenue gained by the processed jobs satisfies the manufacturer’s thres-
hold. To handle the uncertainty of random parameters, we adopt a risk-averse distributionally robust approach
developed based on the Conditional Value-at-Risk measure hedging against the worst-case performance. The
proposed model is tested via extensive experimental results performed on a set of benchmark instances. We
also show the efficiency of the deterministic counterpart of our model, in comparison with the state-of-the-art
model proposed for a similar problem in a deterministic context.

1 INTRODUCTION

Machine scheduling (MS) is categorized as an out-
standing combinatorial problem whose applications
are far beyond the traditional problems arising in the
manufacturing sector and includes other fields such
as healthcare, logistics, computer science, and com-
munications (Blazewicz et al., 1991; Chang et al.,
2019). A typical parallel machine scheduling pro-
blem deals with the sequencing and scheduling of a
set of jobs to be processed on a set of identical ma-
chines where each job is processed by only one ma-
chine and each machine can process only one job at
a time. A processing time is assigned to each job.
Switching from one processed job to the next one in
the schedule might require setup times, which, gene-
rally, are sequence-dependent. The aim is, in gene-
ral, to find a feasible scheduling decision optimizing
a time-related performance criterion such as the total
completion time. In classical scheduling contexts, it
is explicitly assumed that all existing jobs have to be
processed. In the last years, the MS literature focu-
sed on a different aspect, considering the contributi-
ons of researchers and practitioners who recognized
that there is a trade-off between the revenue gained
by processing a job and the increase in the total time
completion and that, in practice, it is impossible to
accept all customer orders (jobs) due to the firm limi-
tations in terms of resource and/or time. This led to
a new class of problems considering the order accep-
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tance or rejection, called order acceptance and sche-
duling problems. (Oguz et al., 2010). Most contribu-
tions in the MS literature focus on deterministic mo-
dels in which the uncertainty is completely ignored or,
in the best case, is handled by replacing the random
parameter with an estimated value, such as the mat-
hematical expectation, as followed in the risk-neutral
approaches. On the contrary, in practice, the time-
dependent performance measures, such as the total
completion times, are affected by the fluctuations in
the processing times and/or the sequence-dependent
setup times due to unexpected events such as the una-
vailability of raw materials and tools, machine fai-
lure, the variations in the worker skills or the chan-
ges in the working environment (Suwa and Sandoh,
2012; Bougeret et al., 2018). Clearly, the optimal
scheduling decisions obtained from the deterministic
models might be near-optimal or even not valid for
real-world applications with high uncertainty. This
motivated us to consider both the setup times and the
processing times uncertain. Since very often it is not
possible to have complete information on the distribu-
tion functions of these stochastic parameters, we as-
sume that only the first and the second moments of
the probability distributions are known (Chang et al.,
2019). We apply a risk-averse approach based on the
idea of robust CVaR (RCVaR) to hedge against un-
certainty. Even in the deterministic context, the se-
lective structure makes the scheduling decisions chal-
lenging. If the decision-maker adopts a risk-averse
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approach, the trade-off between the job profits, the
expected processing and setup times, and their va-
riations make the problem even more involved and
less tractable. Differently from the existing literature
which is more manufacturer-oriented and often max-
imizes the total revenue of the processed jobs, in the
present paper, we introduce a new selective schedu-
ling problem with profits and sequence-dependent se-
tup times in the multi-machine environment with the
objective of minimizing the sum of the total comple-
tion times. The model prioritizes the customers sa-
tisfaction by minimizing a time-related performance
measure and accounts for the manufacturer’s interests
by enforcing the total revenue to be above a minimum
threshold. This study contributes to the machine sche-
duling context since, to the best of our knowledge,
this is the first multi-machine scheduling model with
a selective structure in which the uncertainty of both
the setup and processing times are taken into account.
The new risk-averse model is very efficient and al-
lows us to solve reasonable sized problem to optima-
lity. The rest of the paper is organized as follows.
Section 2 presents a review on the most related rese-
arch for machine scheduling problems under uncer-
tainty. In Section 2, the problem statement as well as
the proposed mathematical formulation are provided.
In Section 3, we present the extensive computational
results on a set of benchmark problems.

2 LITERATURE REVIEW

There are only a few contributions on scheduling pro-
blems under uncertainty (Bruni et al., 2017; Bruni
et al., 2018a; Bruni et al., 2018b), and in particular
on selective problems in which the profits and/or the
processing times are usually treated as random para-
meters (Emami et al., 2017; Xu et al., 2015). Emami
et al. (Emami et al., 2017) presented a robust appro-
ach for the order acceptance scheduling problem with
non-identical parallel machines, regarded as an exten-
sion of the model presented in (Oguz et al., 2010) to
the multi-machine case, in which the job profits and
the processing times are random parameters specified
by interval data. They developed an equivalent deter-
ministic MIP model based on the work of Bertsimas
and Sim (Bertsimas and Sim, 2004) that was solved
using a Benders decomposition method enhanced by
valid cuts as well as a heuristic. In (Xu et al., 2015),
Xu et al. addressed the dynamic order acceptance
scheduling problem with sequence-dependent setup
times and uncertain demands where the arrival of or-
ders follows a Poisson distribution and the size and
the type of the product required by each order is not

196

known in advance. The objective is to maximize the
expected profits of accepted orders respecting the cu-
stomer’s due date limitations. The authors develop an
order acceptance rule approach based on the system
capacity and opportunity cost where a heuristic is ap-
plied to estimate the capacity of system at the current
state. Almost all the aforementioned contributions on
selective scheduling problem share the same objective
of maximizing the total revenue gained, which is usu-
ally a decreasing function of tardiness while the de-
adline and the due date constraints are met. In (Ata-
kan et al., 2017), Atakan et al. proposed a risk-averse
approach to tackle the uncertainty of processing ti-
mes in a single-machine scheduling problem where a
probabilistic constraint is imposed on traditional per-
formance measures such as the total weighted com-
pletion time or the total weighted tardiness. The mo-
del is solved using a scenario decomposition appro-
ach providing promising results. Chang et al. (Chang
et al., 2017) adopted the distributionally robust appro-
ach to sequence a set of jobs with uncertain proces-
sing times on a single machine where no information
about the distribution function of the random parame-
ters is available, except their moments. The model
seeks to minimize the worst-case Conditional Value-
at-Risk (Robust CVaR) assigned to the total comple-
tion times. They formulate the problem as an inte-
ger second-order cone programming (I-SOCP) which
is solved using some approximation algorithms. In
(Niu et al., 2019), Niu et al. proposed a robust distri-
butionally approach to tackle the uncertainty of pro-
cessing times in the single-machine scheduling con-
text where the objective is expressed as the minimiza-
tion of the expected worst-case total tardiness. This
contribution is enhanced by a branch-and-bound al-
gorithm as well as a beam search heuristic to solve
large size instances. In (Pereira, 2016), Pereira pre-
sented a robust approach for a single-machine sche-
duling problem with uncertain processing times ca-
tegorized by closed intervals to minimize the worst
case total weighted completion time. They proposed
an exact branch-and-bound methodology to solve the
model. Following the risk-averse framework, Sarin et
al. presented a conditional value-at-risk (CVaR) ap-
proach to tackle the uncertainty of processing times in
a parallel multi-machine scheduling problem with the
objective function of the total weighted tardiness (Sa-
rin et al., 2014). They developed an integer L-shaped
algorithm as well as a dynamic programming-based
heuristic approach. Xu et al. proposed a min-max re-
gret robust approach to deal with the uncertainty of
the processing times for an identical parallel machine
scheduling where the uncertain parameters are cate-
gorized as closed intervals and the objective function
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is expressed in terms of the makespan (the completion
time of the last processed job) (Xu et al., 2013). As
the solution approach, they designed some exact and
heuristic algorithms.

3 MATHEMATICAL
FORMULATION

Let G = (V,E) be a directed graph defined over the
set of potential jobs in V = {0,1,...,i,...,J,...,,n},
to be processed on k identical machines, and the set of
arcs E ={(i,j) eV xV]i# j} (V =V —{0}) repre-
sents the precedence relationships among the jobs. To
each arc (i, j) € E, we assign a setup time s;; which
is equivalent to the minimum required time to setup
the machine after processing job i and before starting
job j. Each potential job i requires a processing time
pi and benefits a profit value y;. Note that 0 € V is
a dummy node representing the start of action over
each machine, obviously, p; = y; = 0. We need to
select a sub set of jobs in V such that the total bene-
fit gained by the chosen jobs, in percentage, is above
a minimum required level I' determined by the ma-
nufacturer and the total completion time, including
the setup times and the processing times is minimi-
zed. To complete the notation, we define a level set
L={l,....r,...,N}, (N = |V| —k+ 1) where each
level r denotes the order of processing a job over each
machine. Since all machines are required to be used,
each machine can process up to N jobs. Considering
the above discussion, we define two binary decisions
variables as follows. Variable x! takes value 1 iff job
i is processed at level r and otherwise is set to 0; va-
riable y! ; takes value 1 iff job j is processed at level
r after job i (which was processed at level r+ 1) and
otherwise is set to 0.

min Y, ey 7 (s0j+ pj) yo,; +

Y Tier X i< r(sij+pj)yij M
J71

N oxi<1iev 2

er\/:l Zjef/)’(r)j =k 3)

Liev X =k “)

Y=t eV =12 N1 ()

jev .
VoA Y V=X jeEV, r=12....N-1 (6
icV

7 W=x jev )

Yiep T wixl > T Yicp s (®)
xef{0,1} ieV,r=12,....N (9

V>0 i€V, jeV, r=12,..,N (10)

The objective function (1) minimizes the total com-
pletion times for all the processed jobs, including the
setup and the processing times. The set of constraints
(2) ensures that each each job is processed at most
once. Constraints (3) and (4) require the process of
exactly k jobs at the start and at the end of process,
respectively. The set of constraints in (5)-(7) are re-
lated to the connectivity of the problem. Constraints
(5) require that any job i processed at the upper level
r+ 1 should be followed by exactly one task (let say
J) by traversing edge (i, j) at the lower level r. The
set of constraints in (6) impose that any job j proces-
sed at level r should be linked to exactly one recently
processed task (let say i) by traversing edge (i, j) or
linked directly to the dummy job by traversing edge
(0, ) at the same level. Constraints (7) guarantee that
the first processed job, at the highest level N, should
be the processed just after the dummy task by traver-
sing edge (0,j). Constraint (8) states that the total
profit gained from processing the selected jobs should
be above a predefined threshold. Constraints (9)-(10)
define the binary nature of variables.

3.1 Distributional Robust Formulation

In this Section, we first present some preliminaries on
robust optimization (RO). The RO models do not re-
quire specification of the exact distribution of the exo-
genous uncertainties of the model. This is the general
distinction between the approaches of robust optimi-
zation and stochastic programming toward modeling
problems with uncertainties. In the framework of ro-
bust optimization, uncertainties are usually modeled
as random variables with true distributions that are
unknown to the modeler, but are constrained to lie
within a known support. The uncertainty set can be
selected as a continuous interval or a finite set of dif-
ferent values. In this latter setting, the problem of
interest is in general the optimization of the perfor-
mance in the worst case scenario. Three criteria have
been introduced in the literature: absolute robustness,
robust deviation and relative robust deviation. Ab-
solute robustness considers minimizing the objective
value of the worst case directly. Robust deviation (or
absolute regret) minimizes the largest possible diffe-
rence between the observed objective value and the
optimal one, while relative robust deviation (or rela-
tive regret) deals with the ratio of the largest possible
observed value to the optimal value. In the continu-
ous case, the uncertainty sets are selected as conti-
nuous intervals. Under this assumption, the expected
solution performance is typically optimized. Howe-
ver, this criterion assumes that the decision maker is
risk-neutral and leads to solutions that may be ques-
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tionable. In this case, the decision maker attitude to-
wards a risk should be taken into account. A criterion
called Conditional Value-at-Risk (CVaR), early app-
lied to a stochastic portfolio selection problem, can be
used. Using this criterion, the decision maker provi-
des a parameter o which reflects his attitude towards
a risk. When o = 0, then CVaR becomes the expec-
tation but for greater values, more attention is paid to
the worst outcomes, which fits into the robust opti-
mization framework. In this Section, we consider the
worst-case CVaR in situation where the information
on the underlying probability distribution is not ex-
actly known. In fact, typically, the first- and second-
order moments of the uncertain parameters may be
known, but it is unlikely to have complete informa-
tion about their distributions.

Let assume that the uncertain setup times s7; and
processing times p; are defined by random vectors
s and p, respectively, We investigate a specific case
where the ambiguity set is determined by the mean
and covariance and the distributional set is a semi-
infinite support set. Let Ps and P, be the ambiguous
distribution of random vectors s and p, respectively,
which are described by their first and second moments
as follows:

Py = {IP*| Sup(si;) = [0,0
E(sij) = us;, Var(sij) = o .
P, = {IP|Sup(p;) = [0,00),Vi € V,
E(pi) p

Following the risk-averse approach, we apply the
CVaR risk measure at a given confidence level o €
(0,1), denoted by CVaR,. This risk measure quanti-

fies the expected loss of the random variable 7 in the
worst 0% of cases described as follows:

CVaRy = E[T|T > inf{t|P(T >1) < 1—a}] (13)

Vi, j) €V xV,
}

2

(11

= up,, Var(pi) = © (12)

where T is a vector of random variables like s or p in
(11) or (12).

Therefore, considering the above definitions, we
define the robust risk measure CVaRy(T'), denoted by,
RCVaRy(T), as follows:

RCVaRy(T) = suppr .prCVaRo(T)  (14)

It is easy to see that the worst-case CVaRy(T) is no-
thing but the robust RCVaRy(T) which can be equi-
valently expressed as
min RCVaRy(T)= min su CVaRy(T
iy REVeRalT) = fin, suppr cpr CVaRa(T)

15)

where X is the solution space describing the set of
constraints in (2)-(10).
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As proposed in (Chang et al., 2017), it can be pro-

ved that the solution of the robust selective parallel
scheduling model (1)- (10) can be found by applying
the following Theorem.
Theorem 1. For any random variable T € R, with
a distribution function PT belonging to the distri-
butional set Py = {IPT|Sup(T) = [0,0),E(T) =
ur, Var(T) = 62}, the RCVaRy(T) is calculated as
follows:

S zf0<oc<

‘UT—F\/*\/;, lfz

Proof: See (Chang et al., 2017). D
Theorem 1 provides a baseline to present an equi-
valent mixed integer mathematical model for the ro-
bust model that we are going to present. In fact,
for any feasible solution (x,y) € X described by
the set of constraints in (2)-(10) with the distri-
butional loss function Z;, Z; subject to a distribu-
tion in P* = {IPZ|SMP(Z(X"),)) = [0,00>7E(Z(x7y)) =
p=(x,y), Var(Z, ) = 62(x,y)}, the following result
holds (Chang et al., 2017).

min RCVaRG(Z(xy) = (Xr}yl)lgx(ZT,ZE), (16)
where 7] is the optimal objective function value of the
following integer linear problem

min 15 (XN ¥ ey 7 u(st;) + (7)) 5, +

7
ST +r“T

<oc<1

+Zr lzzevzjiv rlu(sij) +u(p )]y”)
JFi
s.2.(2) = (10) a7

and z; is the optimal objective function value of the
following nonlinear integer problem

N
min( )" Y r[u(s;) +u(p;)] yo;+

r=1jeV
N
+ Y XX rlulsip) +ulp)) ) TV
r=1ieV jev
J#
(18)
st (2)—(10)

=
-
i
~.
m
<4

+X Y Y Pl @) 19)
r=1ieV jev j#i

hence, the optimal solution of the distributionally ro-

bust model is obtained by solving one linear and one

non-linear mixed integer mathematical model. Then,

we should take the minimum between the optimal va-

lues of z} and z5.
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4 COMPUTATIONAL
EXPERIMENTS

To test the model, we have chosen some instances
from the benchmark on order acceptance in single
scheduling context (Oguz et al., 2010). The se-
tup times, processing times, and the profits are the
same as those reported in the benchmark and the se-
tup time variance Gz(s}j) as well as the processing
time variances 6%(§;) were set to 6%(f;;) = [(?] and
c2(5;) = [Cﬂ where {; and {; are random numbers
uniformly distributed in intervals [1, %<'€r‘1/]i2‘_/ u(tij) +
i€V,

max_u(;))] and [1, 4 (minu(s) + maxu(s))], re-
i€V, jev icv 5%
spectively. The value of I" is set to 0.6 and the number
of machines (k) varies from one to six depending on
the size of instance. The proposed model was imple-
mented in C++. The experiments were executed on
an Intel® Core™ i7 2.90 GHz, with 8.0 GB of RAM
memory.

To show the efficiency of the proposed model, we
perform a set of experiments on 20 instances selected
from the benchmark and compare the deterministic
counterpart of our model with the order acceptance
scheduling model presented in (Oguz et al., 2010),
which shares the same idea of job acceptance or re-
jection with our model. For more information on the
deterministic order acceptance scheduling problems,
see for example (Geramipour et al., 2017; Nguyen,
2016).

To make the comparison in a fair way, we replace
those constraints related to the tardiness and deadlines
in the order acceptance model with the service level
constraint (8) and set the objective function equal to
the total completion time. Since the order acceptance
model in (Oguz et al., 2010) is, indeed, designed for
the single machine case, we set k = 1 in our proposed
model. Both models were solved by CPLEX conside-
ring a time limit of 1000 seconds. Table 1 summarizes
the obtained results where Column 1 and 2 represent
the instance name and the number of jobs, respecti-
vely; Columns 3 and 4 exhibit, the best objective va-
lue and the computational time (in seconds) for the
proposed model followed by its relative gap (in per-
centage) with respect to the CPLEX linear relaxation
lower bound. In a similar way, Columns 6-8 present
the same information exhibited in Columns 3-5 for
the other model. Column 9 shows the optimality gap
for the order acceptance model and, finally, Column
10 indicates the speed up in solution time calculated

CPU;
asA= Proposed Model__ 1)), In terms of the solu-
CPUorder acceptance Model

tion quality, the proposed model was able to find the
optimal solution, verified by the zero gap values in

Table 1: Comparing the results of two models.

Instance #Jobs Proposed Model Traditional Model

Obj Val.CPU(s)Gapy3(%)Obj Val.CPU()Gapyp(%)Gapop (%)A(%)

10Tao-R1-1 10 131  0.15 0 131 4.1 0 0 3.66
10Tao-R3-1 10 150  0.05 150 9.36 0 0 0.53
10Tao-R5-1 10 106  0.05 106 1.46 0 0 342
10Tao-R7-1 10 155  0.09 155 594 0 0 1.52
10Tao-R9-1 10 192 0.09 192 11.85 0 0 0.76
15Tao-R1-1 15 175 0.1 175 1000  29.7 0 0.01
15Tao-R3-1 15 287 04 287 1000 449 0 0.04
15Tao-R5-1 15 311  0.24 311 1000 463 0 0.02
15Tao-R7-1 15 244 0.23 282 1000 74 13.48 0.01
15Tao-R9-1 15 269  0.13 269 1000 40 0 0.01
25Tao-R1-1 25 646 224 648 1000 793 0.31 0.21

25Tao-R3-1 25 566 1.56
25Tao-R5-1 25 772 224
25Tao-R7-1 25 555 143
25Tao-R9-1 25 620 243

569 1000  77.9 053  0.16
843 1000 822 842 022
557 1000 789 036  0.14
649 1000 772 447 024

cCoOCOoOoCOoOCOO0O0OO0O0CcOoCOoCOOO

50Tao-R1-1 50 1501 43.7 1720 1000  91.2 1273 4.34
50Tao-R3-1 50 1977 24.24 - 1000 oo oo 2.33
50Tao-R5-1 50 2300 131.24 1000 oo oo 13.12
50Tao-R7-1 50 1854 23.01 1000 oo oo 2.3
50Tao-R9-1 50 2216 49.39 - 1000 oo oo 4.94
Avg 14.15 1.9

Column 5, in a solution time limited to 132 seconds.
For the order acceptance model, CPLEX found the
optimal solutions only in 9 instances, including 4
cases for which the optimality did not proved (ve-
rified by the non-zero gaps in Column 8). In 7
cases, CPLEX provided only near-optimal solutions
with different optimality gap varying from 0.31% to
12.73% and for the 4 last instances with the largest
size, CPLEX did not find any feasible solution (spe-
cified by ”-””). Also, with respect to the solution time,
the time limit for all cases but those with 10 jobs
was reached. Apart from that, the considerable dif-
ference between Gapop; and Gapyp in Columns 8
and 9 is an informative insight showing that the lower
bound resulted from the linear relaxation of the order
acceptance model is not tight at all even for mode-
rate instances with 25 jobs. In summary, the proposed
model outperforms the other model in terms of both
the solution quality and the computational time. In
terms of the solution quality, the proposed model was
able to find the optimal solution, verified by the zero
gap values in Column 5, in a solution time limited to
132 seconds. Regarding the order acceptance model,
CPLEX was able to find the optimal solutions only
in 9 cases including 5 cases for which the optimality
was not verified. For 7 cases, CPLEX provided only
near-optimal solutions with different optimality gaps
varying from 0.31% to 12.73% and for the 4 last in-
stances with the largest size, CPLEX did not find any
feasible solution (those specified by ”-”). Also, with
respect to the solution time, only for the smallest in-
stances with size 10 the time limit did not reached.
We should mention that the considerable difference
between Gapop: and Gapyp is an informative insight
showing the weak performance of lower bounds pro-
vided by the linear relaxation of the order acceptance
model even for moderate instances with 25 jobs. In
summary, the proposed model outperforms the order
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Table 2: CPU time for 10 jobs, one machine.

a=0.1 a=0.5 a=0.9

Instance Avg. CPU(s) Avg. CPU(s) Avg. CPU(s)
TaolR1 7.75 7.52 7.98
TaolR3 8.33 8.13 9.01
TaolR5 8.82 8.18 9.05
TaolR7 8.15 7.91 8.76
TaolR9 8.54 8.56 9.33
Tao3R1 8.52 7.51 8.04
Tao3R3 8.43 7.7 7.98
Tao3R5 8.97 8.55 9.4
Tao3R7 8.55 7.86 8.38
Tao3R9 8.98 8.17 8.93
Tao5R1 7.79 7.39 8.29
Tao5R3 8.16 8.74 9.52
Tao5R5 8.61 8.52 8.59
Tao5R7 8.07 7.61 8.6
Tao5R9 7.16 7.47 8.01
Tao7R1 8.18 8.32 9.53
Tao7R3 7.64 7.12 7.5
Tao7R5 8.04 7.55 8.52
Tao7R7 8.09 8.11 8.9
Tao7R9 8.19 8.26 9.2
Tao9R 1 8.65 7.96 8.75
Tao9R3 8.39 6.96 7.8
Tao9R5 9.05 8.6 9.28
Tao9R7 9.75 9.09 9.89
Tao9R9 8.77 8.5 8.9

Avg. 8.38 8.01 8.73

acceptance model in terms of both the solution quality
and the computational time.

The second set of the experiments was devoted to
the assessment of the computational tractability of the
proposed distributionally robust model. To this aim,
the non-linear MIP model was solved using the open
source SCIP library, released 3.2.0.

Tables 2 and 3 show the average CPU time in se-
conds, provided by SCIP for each class of instances.
For all the instances with 10 and 15 nodes and one
machine, SCIP was able to find the optimal solution
within short computational times. The CPU time does
not show a significant variation with the increase of .
For the biggest instances with 25 nodes (Tables 4 and
5 for one and two machines, respectively), with the in-
crease of o from 0.5 to 0.9, the CPU time drastically
increases (64% and 104%).

5 CONCLUSION

In this paper, we introduced the selective job sche-
duling problem with sequence dependent setup times
in a multi-machine context where the setup times as
well as the job processing times are uncertain. The
problem seeks the minimization of the total comple-
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Table 3: CPU time for 15 jobs, one machine.

a=0.1 a=0.5 a=0.9

Instance  Avg. CPU(s) Avg. CPU(s) Avg. CPU(s)
TaolR1 36.69 38.6 40.06
TaolR3 37.17 39.66 42.05
TaolR5 39.36 40.99 41.71
TaolR7 39.76 46.09 43.54
TaolR9 38.66 40.31 41.53
Tao3R1 37.79 40.41 40.29
Tao3R3 38.23 39.38 43.55
Tao3R5 39.94 39.82 43.27
Tao3R7 41.68 46.59 45.33
Tao3R9 36 40.66 40.62
Tao5R1 39.2 42.34 43.64
Tao5R3 40.57 40.18 39.94
Tao5R5 37.67 41.1 433
Tao5R7 38.64 41.65 43.48
Tao5R9 34.46 37.74 38.01
Tao7R1 39.28 40.21 41.84
Tao7R3 35.88 39.11 41.88
Tao7R5 41.32 4191 45.64
Tao7R7 35.99 36.73 39.23
Tao7R9 39.61 41.68 43.52
Tao9R1 38.93 42.09 43.04
Tao9R3 34.23 35.46 36.17
Tao9R5 36.87 39.39 42.31
Tao9R7 39.67 42.86 4341
Tao9R9 39.18 41.33 41.53

Avg. 38.27 40.65 41.96

Table 4: CPU time for 25 jobs, one machine.

a=0.1 a=0.5 a=0.9
Instance  Avg. CPU(s) Avg. CPU(s) Avg. CPU(s)
TaolR1 295.95 380.85 696.31
TaolR3 284.4 330.59 538.97
TaolR5 383.52 449.52 621.13
TaolR7 292.87 395.81 622.81
TaolR9 329.85 492.69 948.22
Tao3R1 303.51 457.73 779.48
Tao3R3 324.32 367.85 630.11
Tao3R5 388.36 452.19 558.76
Tao3R7 395.02 411.51 714.42
Tao3R9 349.44 440.82 748.21
Tao5R1 340.54 42423 810.03
Tao5R3 296.48 323.62 499.65
Tao5R5 272.08 350.51 614.55
Tao5R7 288.31 318.23 626.53
Tao5R9 344.98 377.1 775.88
Tao7R1 312.19 342.35 572.17
Tao7R3 292.1 339.05 518.48
Tao7R5 270.79 335.57 587.55
Tao7R7 275.4 354.04 454.84
Tao7R9 287.97 345.61 563.71
Tao9R1 229.7 370.06 417.83
Tao9R3 259.06 340.6 529.14
Tao9R5 280.73 345 455.18
Tao9R7 233.08 281.73 565.33
Tao9R9 259.3 292.25 430.72

Avg. 303.6 372.78 611.2

tion time such that a minimum service level in terms
of the profits of the selected jobs is met. We adopted
a distributionally robust approach and formulated the
problem as a non-linear MIP risk-averse model. We
tested the efficiency of the proposed model on a large
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Table 5: CPU time for 25 jobs, two machines.

o=0.1 a=0.5 a=0.9
Instance  Avg. CPU(s) Avg. CPU(s) Avg. CPU(s)
TaolR1 130.69 89.78 122.66
TaolR3 120.01 146.64 148.64
TaolR5 94.19 123.81 259.42
TaolR7 114.16 174.75 568.06
TaolR9 134.41 172.25 461.29
Tao3R1 112.58 160.54 358.55
Tao3R3 97.51 142.8 492.49
Tao3R5 141.19 163.15 330.12
Tao3R7 117.34 160.33 189.83
Tao3R9 100.38 68.21 78.84
Tao5R1 89.53 88.82 281.69
Tao5R3 93.56 86.06 259.5
Tao5R5 70.34 112.47 158.87
Tao5R7 89.2 89.77 188.48
Tao5R9 125.8 115.44 440.91
Tao7R1 73.28 91.76 159.64
Tao7R3 80.9 85.39 322.09
Tao7R5 116.16 123.9 243.05
Tao7R7 110.08 193.51 322.81
Tao7R9 88.09 158.97 281.59
Tao9R1 101.87 138.27 255.47
Tao9R3 147.58 185.53 255.07
Tao9R5 112.69 88.8 74.32
Tao9R7 100.9 135.96 279.13
Tao9R9 77.43 148.42 84.86
Avg. 105.59 129.81 264.7

set of scheduling benchmark instances providing the
optimal solution within short computational time for
the set of small and moderate sized instances. For the
biggest instances the computational effort increases,
calling for the development of a tailored heuristic ap-
proach, that could be a promising avenue for future
research.
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