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Abstract: In this paper, a novel architecture of Recurrent Neural Network (RNN) is designed and experimented. The 

proposed RNN adopts a computational memory based on the concept of stigmergy. The basic principle of a 

Stigmergic Memory (SM) is that the activity of deposit/removal of a quantity in the SM stimulates the next 

activities of deposit/removal. Accordingly, subsequent SM activities tend to reinforce/weaken each other, 

generating a coherent coordination between the SM activities and the input temporal stimulus. We show that, 

in a problem of supervised classification, the SM encodes the temporal input in an emergent representational 

model, by coordinating the deposit, removal and classification activities. This study lays down a basic 

framework for the derivation of a SM-RNN. A formal ontology of SM is discussed, and the SM-RNN 

architecture is detailed. To appreciate the computational power of an SM-RNN, comparative NNs have been 

selected and trained to solve the MNIST handwritten digits recognition benchmark in its two variants: spatial 

(sequences of bitmap rows) and temporal (sequences of pen strokes).

1 INTRODUCTION 

Recurrent Neural Networks (RNNs) are today among 

the most effective solutions for modeling time series, 

speech, text, audio, video, etc. (Schmidhuber, 2015). 

An RNN is a special type of NN using its internal 

state (memory) to process sequences of inputs. This 

internal memory makes the RNN able to remember 

the relevant information about the previous samples, 

in order to model their dynamics. 

In contrast to Feed-Forward NN (FFNN), which 

does not explicitly consider the notion of sequence, in 

the RNN the input information cycles through a loop. 

This structure allows the simultaneous processing of 

both the current and the recent samples. In the RNN, 

the deep learning algorithm tweaks its weights 

through gradient descent and backpropagation 

through time (BPTT, Mazumdar et al., 2008). In 

essence, BPTT is backpropagation (BP) applied to an 

equivalent unfolded FFNN. Specifically, Figure 1a 

shows a basic RNN, made by an MLP layer and a 

cyclic connection from the output to the input neuron. 

An RNN with finite response to finite length settles 

to zero in finite time, and can be modelled as a 

directed acyclic graph. This RNN can be unfolded 

and transformed into an FFNN, i.e., an equivalent 

static MLPs chain, with each MLP working at an 

instant of time of the finite response, i.e., working 

without memory (Figure 1b). Thus, within BBTT the 

error is back-propagated from the last to the first time 

step. The weights are updated by calculating the error 

for each time step. Since the unfolded NN is static, it 

can be trained by BP. However, in case of high 

number of time steps, the unfolded NN is much 

larger, and contains a large number of weights, which 

makes BBTT computationally expensive. 

A major issue with BP on large NN chains is 

related to the gradient descent. In essence, BP goes 

backwards through the NN to find the partial 

derivatives of the error with respect to the weights, in 

order to subtract the error from the weights. Such 

derivatives are used by the gradient descent 

algorithm, which iteratively minimizes a given 

objective function. For better efficiency, the unfolded 

NN can be transformed into a computational graph of 

derivatives before training (Goodfellow et al., 2016). 

A problem when training computational graph is to 

manage the order of magnitude of gradients 

throughout a large graph (Pascanu et al, 2013). The 

exploding gradients problem occurs when error 

gradients accumulate during an update. As a result, 

very large gradients are produced and, in turn, large 

updates to the network weights of long-term 
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components. This may cause network instability and 

weights overflow. The problem can be easily solved 

by clipping gradients when their norm exceeds a 

given threshold (Goodfellow et al., 2016), by weight 

regularization, i.e., applying a penalty to the networks 

loss function for large weight values (Pascanu et al, 

2013). 

On the other side, the vanishing gradient problem 

occurs when the values of a gradient are too small. As 

a consequence, the model slows down or stops 

learning. Thus, the range of contextual information 

that standard RNNs can access is in practice quite 

limited.  

 
(a) 

 
(b) 

Figure 1: (a) An RNN (b) The equivalent NN unfolded in 

time. 

Long Short-Term Memory (LSTM, Graves et al., 

2009) is an RNN specifically designed to address the 

exploding and vanishing gradient problems. An 

LSTM hidden layer consists of recurrently connected 

subnets, called memory blocks. Each block contains 

a set of internal units, or cells, whose activation is 

controlled by three multiplicative gates: the input 

gate, the forget gate, and the output gate. An LSTM 

network can remember arbitrary time intervals. The 

cell decides whether to store (by the input gate), to 

delete (by the forget gate), or to provide (output gate) 

information, based on the importance assigned. The 

assignment of importance happens through weights, 

which are learned by the algorithm. Since the gates in 

an LSTM are analog, in the form of sigmoid, the 

network is differentiable, and trained by BP. 

In recent years, LSTM networks have become the 

state-of-the-art models for many machine learning 

problems (Greff et al., 2017). This has attracted the 

interest of researchers on the computational 

components of LSTM variants. 

This paper focuses on a novel concept of 

computational memory in RNNs, based on stigmergy. 

Stigmergy is defined as an emergent mechanism for 

self-coordinating actions within complex systems, in 

which the trace left by a unit’s action on some 

medium stimulates the performance of a subsequent 

unit’s action (Heylighen, 2016). To our knowledge, 

this is the first study that proposes and lays down a 

basic design for the derivation of Stigmergic Memory 

RNN (SM-RNN). In the literature, stigmergy it is a 

well-known mechanism for swarm intelligence and 

multi-agent systems. Although its high potential, 

demonstrated by the use of stigmergy in biological 

systems at diverse scales, the use of stigmergy for 

pattern recognition and data classification is still 

poorly investigated (Heylighen, 2016). As an 

example, in (Cimino et al.¸2015) a stigmergic 

architecture has been proposed to perform adaptive 

context-aware aggregation. In (Alfeo et al., 2017) a 

multi-layer architectures of stigmergic receptive 

fields for pattern recognition have been experimented 

for human behavioral analysis. In (Galatolo et al., 

2018), the temporal dynamics of stigmergy is applied 

to weights, bias and activation threshold of a classical 

neural perceptron, to derive a non-recurrent 

architecture called Stigmergic NN (S-NN). However, 

due to the large NN produced by the unfolding 

process, the S-NN scalability is limited by the 

vanishing gradient problem. In contrast, the SM-RNN 

proposed in this paper employs FF-NN as store and 

forget cells operating on a Multi-mono-dimensional 

SM, in order to reduce the network complexity. 

To appreciate the computational power achieved 

by SM-RNN, in this paper a conventional FF-NN, an 

S-NN (Galatolo et al., 2018), an RNN and an LSTM-

NN have been trained to solve the MNIST digits 

recognition benchmark (LeCun et al., 2018). 

Specifically, two MNIST variants have been 

considered: spatial, i.e., as sequences of bitmap rows, 

and temporal, i.e., as sequences of pen strokes (De 

Jong, E. D., 2018). 

The remainder of the paper is organized as 

follows. Section 2 discusses the architectural design 

of SM-NNs. Experiments are covered in Section 3. 

Finally, Section 4 summarizes conclusions and future 

work. 

2 ARCHITECTURAL DESIGN 

Let us consider, in neuroscience, the phenomenon of 

selective forgetting that characterizes memory in the 

brain: information pieces that are no longer reinforced 

will gradually be lost with respect to recently 

reinforced ones. This behavior can be modeled by 

using stigmergy. Figure 2 shows the ontology of an 

SM, made by four concepts: Stimulus, Deposit, 

Removal, and Mark. In essence, the Stimulus is the 

input of a stigmergic memory. The past dynamics of 

the Stimulus are indirectly propagated and stored in 

the Mark. This propagation is mediated by Deposit 

and Removal: Stimulus affects Deposit and Removal 

which, respectively, reinforces and weakens Mark. 
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Mark can be reinforced/weakened up to a 

saturation/finishing level. On the other side, Mark 

itself affects Deposit and Removal. This behavior can 

be characterized as recurrent. 

Figure 3 shows an example of dynamics of a 

mono-dimensional SM, i.e., a real-valued mark 

variable, generically called 𝑚(𝑡). Specifically, the 

mark starts from 𝑚(0), and for 𝑡 = 0, … ,4 it 

undergoes a weakening by  ∆𝑚−(0), … , ∆𝑚−(4), 

respectively, up to the finishing level 𝑚. For 𝑡 =
11, … ,13 the mark variable undergoes a 

reinforcement by  ∆𝑚+(11), … , ∆𝑚+(13), 

respectively, up to the saturation level 𝑚. 

 

Figure 2: Ontology of a stigmergic memory. 

 

Figure 3: Example of dynamics of a mono-dimensional 

stigmergic memory. 

Let us consider a mono-dimensional Stimulus, 

i.e., a real-valued variable generically called 𝑠(𝑡). For 

each 𝑡, ∆𝑚+(𝑡) and ∆𝑚−(𝑡) are determined by 

Deposit  and Removal, respectively, on the basis of 

𝑠(𝑡). Thus, 𝑚(𝑡) is a sort of aggregated memory of 

the 𝑠(𝑡) dynamics. The relationship between 𝑚(𝑡) 

and 𝑠(𝑡) is not prefixed. By using 𝑚(𝑡) to feed a 

subsequent classification or regression unit, this 

relationship can be trained via supervised learning.  

According to this concept, Figure 4 shows the 

structure of an SM-RNN based classification unit. 

Here, the Deposit, Removal, and Classification MLPs 

are realized by spatial FF-MLPs. The SM is based on 

an array of M mono-dimensional mark variables, 

where M is also equal to the number of outputs of the 

Deposit and Removal MLPs, as well as to the number 

of inputs of the Classification MLP. 

 

Figure 4: Structure of an SM-RNN based classification unit. 

Specifically, the Linear Layer at the input of 

Deposit and Removal MLP is a single layer of linear 

neurons, i.e., neurons with linear activation function. 

It performs a linear projection of the SM data.  

The three MLPs have the same structure, 

represented in Figure 5: (i) an Input Linear Layer; (ii) 

a PReLU (Parametric Rectified Linear Unit) 

activation function, which solves the vanishing 

gradient problem; (iii) an Output Linear Layer; (iv) a 

ReLU (Rectified Linear Unit) activation function, for 

the Deposit and Removal MLPs, or a PReLU 

activation function, for the Classification MLP, 

respectively. 

3 EXPERIMENTAL STUDIES 

The architecture of an SM-NN has been developed 

with the PyTorch framework (PyTorch, 2018) and 

made publicly available on GitHub (GitHub, 2019). 

The interested reader is referred to the GitHub 

repository for further algorithmic details. The flow of 

instructions has been modularized on different 

abstraction levels, according to the best programming 
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practices, and it has been based on high-level 

mathematical concepts. As a result, it is similar to 

conventional pseudo-code, thanks to the support of 

advanced machine-learning libraries, to encourage 

open collaboration. 

To appreciate the computational power of an SM-

RNN, different NNs have been trained to solve the 

MNIST digits recognition benchmark (LeCun et al., 

2018): an SM-RNN, an FF-NN, an S-NN, an RNN 

and an LSTM-NN. 

 

Figure 5: Structure of a Deposit, Removal, or Classification 

MLP. 

The purpose is twofold: to measure the 

computational power of SM-RNN with respect to FF-

NN, and to compare the performances of the other 

existing temporal NN. For this purpose, the following 

two variants of the MNIST benchmark have been 

used.  

In the Spatial MNIST dataset (LeCun et al., 2018), 

the input image is made by 28×28 = 784 pixels, and 

the output is made by 10 classes corresponding to 

decimal digits. In the case of FF-NN, the handwritten 

character is supplied in the form of full static bitmap. 

For the other NNs, the handwritten character is 

supplied row by row, in terms of 28 inputs, over 28 

subsequent instants of time. In this case, once 

provided the last chunk, the NN provides the 

corresponding output class. 

In the Temporal MNIST dataset (De Jong, E. D., 

2018), the handwritten character is supplied as a 

sequence of pen strokes. In this case, at each instant 

of time 𝑡, the next input is provided as a movement in 

the horizontal and vertical directions (𝑑𝑥(𝑡), 𝑑𝑦(𝑡)). 

Once provided the last pen stroke, the NN provides 

the corresponding output class. As an example, 

Figure 6 shows the representation of a handwritten 

digit in the Spatial MNIST (a) and Temporal MNIST 

(b). 

To adequately compare the different NNs, the 

following methodology has been used. First, the FF-

NN and the SM-RNN have been dimensioned to 

achieve their best classification performance. 

Secondly, the S-NN, RNN and LSTM-NN have been 

dimensioned to have a similar number of parameters 

with respect to the SM-RNN. 

Overall, the data set is made of 70,000 images. At 

each run, the training set is generated by random 

extraction of 60,000 images; the remaining 10,000 

images makes the testing set. 

 
(a) 

 
(b) 

Figure 6: representation of a handwritten digit in the Spatial 

MNIST (a) and Temporal MNIST (b). 

Table 1 shows the overall complexity of each NN. 

The complexity values correspond to the total number 

of parameters. Specifically, the SM is made by M = 

15 mark variables. Thus, the Deposit and Removal 

MLPs topology is made by 28 (temporal) + 15 (Linear 

Layer) inputs, i.e. 43 inputs. The Linear Layer before 

the Deposit and Removal MLPs contains 1515 

weights + 15 biases = 240 parameters. The 

Deposit/Removal MLPs contains the Input Linear 

Layer (4320 weights + 20 biases = 880 parameters). 

The PReLU contains 20 parameters. The Output 

Linear Layer contains 2015 weights + 15 biases = 

315 parameters. The Classification MLP contains the 

Input Linear Layer (1510 weights + 10 biases = 160 

parameters). The PReLU contains 10 parameters. The 

Output Linear Layer contains 1010 weights + 10 

biases = 110. Thus, the total number of parameter is 

2402 + (880+20+315) 2 + (160+10+110) = 3,190. 

For a detailed calculation of the complexity of the 

other NNs, the interested reader is referred to 

(Galatolo et al. 2018). 

In addition, Table 1 shows the performance 

evaluations, which are based on the 99% confidence 

interval of the classification rate (i.e., the ratio of 

correctly classified inputs to the total number of 

inputs), calculated over 10 runs. 

The Adaptive Moment Estimation (Adam) method 

(Kingma et al., 2015) has been used to compute 

adaptive learning rates for each parameter of the 

gradient descent optimization algorithms, carried out 

with batch method.  
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Table 1: Performance and complexity of different NNs 

solving the Spatial MNIST digits recognition benchmark. 

Neural Network Complexity Classification rate 

SM-RNN 3,190 .965 ± 0.056 

FF-NN 328,810 .951 ± 0.0026 

LSTM-RNN 3,360 .943 ± 0.011 

S-NN 3,470 .927 ± 0.016 

RNN 3,482 .766 ± 0.033 

 

It is interesting to note in Table 1 that the SM-RNN 

exhibits a classification accuracy similar to the best 

NNs, i.e., LSTM-RNN and S-NN. The FF-NN, 

although having a similar accuracy, employs a very 

large number of parameters, about two order of 

magnitude larger with respect to the others. Finally, 

the RNN accuracy is sensibly lower. To assess the 

quality of the training process, Figure 7 and Figure 8 

show a scenario of classification rate and the function, 

on the training set, against the number of iterations, 

respectively. The loss function is calculated as the 

Negative Log-Likelihood (NLL) using the softmax 

activation function at the output layer of the NN, 

which is commonly used in multi-class learning 

problems. 

 

Figure 7: Scenario of classification rate on training set 

against number of iterations, for the Spatial MNIST data 

set. 

With regard to the Temporal MNIST data set, three 

kinds of temporal NNs have been used, i.e., SM-

RNN, LSTM-RNN, and RNN.  

Table 2 shows the overall complexity of each NN. 

The complexity values correspond to the total number 

of parameters. Specifically, the SM is made by M = 

30 mark variables. Thus, the Deposit and Removal 

MLPs topology is made by 4 temporal inputs (i.e., the 

horizontal and vertical directions, the stroke and digit 

ends) + 30 (Linear Layer) inputs, i.e. 34 inputs. The 

Linear Layer before the Deposit and Removal MLPs 

contains 3030 weights + 30 biases = 930 parameters. 

The Deposit/Removal MLPs contains the Input 

Linear Layer (3420 weights + 20 biases = 700 

parameters). The PReLU contains 20 parameters. The 

Output Linear Layer contains 2030 weights + 30 

biases = 630 parameters. The Classification MLP 

contains the Input Linear Layer (3020 weights + 20 

biases = 620 parameters). The PReLU contains 20 

parameters. The Output Linear Layer contains 2010 

weights + 10 biases = 210. The activation ReLU 

contains 10 neurons. Thus, the total number of 

parameters is 9302 + (700+20+630)2 + (620+20+ 

210+10) = 5,420. 

 

Figure 8: Scenario of loss function on training set against 

number of iterations, for the Spatial MNIST data set. 

The Recurrent NN is made by the following layers: 

an Input Linear Layer (3450 weights + 50 biases = 

1,750 parameters), a PReLU (50 parameters), an 

Output Linear Layer (5030 weights + 30 biases = 

1,530 parameters), and an activation PReLU (30 

parameters). Thus, the total number of parameters is 

1,750 + 50 + 1,530 + 30 = 3,360. In the Recurrent 

NN, each output neuron has a backward connection 

to the input and to the Classification MLP which, in 

turn, is made by the following layers: the Input Linear 

Layer (3050 weights + 50 biases = 1,550 

parameters), the PReLU (50 parameters), the Output 

Linear Layer (5010 weights + 10 biases = 510), and 

the activation PReLU (10 neurons). Thus, the total 

number of parameters of the Recurrent and the 

Classification NNs is 3,360+1,550+50+510+10 = 

5,480. 

The LSTM-RNN fed by 4 inputs. For each LSTM 

layer, the number of parameters is calculated 

according to the well-known formula 4o(i+o+1), 

where o and i is the number of outputs and inputs, 

respectively. The topology is made by a 4×20 LSTM 

layer, a 20×20 LSTM layer, and a 20×10 Output 
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Linear layer. Thus, the overall number of parameters 

is 420(4+20+1) + 420(20+20+1) + 2010 + 10 = 

5,490. 

In addition, Table 2 shows the performance 

evaluations, based on the same criteria detailed for 

Table 1. It is apparent from the table that the SM-

RNN and the LSTM-RNN are equivalent in terms of 

classification rate. In contrast, the RNN is not able to 

gain a sufficient stability and accuracy. To assess the 

quality of the training process, Figure 9 and Figure 10 

show a scenario of classification rate and loss 

function, on the training set, against the number of 

iterations, respectively. The loss function of Figure 10 

is calculated as in Figure 8. 

Table 2: Performance and complexity of different NNs 

solving the Temporal MNIST data set. 

Neural Network Complexity Classification rate 

SM-RNN 5,420 .9467 ± 0.0076 

LSTM-RNN 5,490 .9496 ± 0.0027 

RNN 5,480 .7295 ± 0.1101 

 

Figure 9: Scenario of classification rate on training set 

against number of iterations, for the Temporal MNIST data 

set. 

Overall, the proposed SM-RNN shows a very good 

convergence with respect to the other NNs. In 

consideration of the relative scientific maturity of the 

other comparative NNs, the experimental results with 

the novel SM-RNN looks very promising, and 

encourage further investigation activities for future 

work. 
 

 

 

 

 

 

 

 

Figure 10: Scenario of loss function on training set against 

number of iterations, for the Temporal MNIST data set. 

4 CONCLUSIONS 

In this paper, the concept of computational stigmergy 

is used as a basis for developing a Stigmergic 

Memory for Recurrent Neural Networks. Some 

important issues in the research field, related to the 

gradient descent, are first discussed. The novel 

architectural design of the SM-RNN is then detailed. 

Finally, the effectiveness of the approach is shown via 

experimental studies, carried out on the spatial and 

temporal MNIST data benchmarks.  

Early experimental results, carried out on different 

NN architectures available in the literature for spatial 

or temporal data, are promising. In particular, the SM-

RNN can be appreciated for its computational power 

with respect to the static FF-NN, compared on the 

spatial dataset. Moreover, the SM-RNN exhibits a 

classification accuracy and a computational power 

similar to the best temporal NN, i.e., LSTM-RNN, on 

the spatial and temporal dataset. 

In order to achieve more significant results, future 

work will focus on further experimentation and 

investigation, as well as on a further formalization of 

the approach. 
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