
Flexible Access Control and Confidentiality over Encrypted Data for
Document-based Database

Maryam Almarwani, Boris Konev and Alexei Lisitsa
Department of Computer Science, University of Liverpool, Liverpool, U.K.

Keywords: Document Database, Querying over Encrypted Data, Access Control, Confidentiality.

Abstract: In this paper, we present a SDDB scheme regarding document-based store that satisfies three security re-
quirements: confidentiality, flexible access control, and querying over encrypted data. The scheme is inspired
by PIRATTE and CryptDB concepts. PIRATTE is a proxy for sharing encrypted files through a social net-
work between the data owner and the number of users and the files are decrypted on user side with the proxy
key, whereas in CryptDB, it is proxy between a database and one user to encrypt or decrypt data based on
user’s queries. The scheme also improves CryptDB security and provides the possibility of sharing data with
multi-users through PIRATTE concept which is used to verify authentication on the proxy side.

1 INTRODUCTION

Databases often contain sensitive data such as per-
sonal and governmental information. The security
protection of such data has to address threats coming
from both external and internal adversaries. While
access control is commonly used to alleviate external
threats, encryption is applied to prevent data leaks to
both external and internal (e.g. curious administra-
tors) attackers. Using encryption is not without is-
sues. In order to query encrypted data, either they
have to be decrypted, making possible data leaks, or
special methods for querying encrypted data with lim-
ited querying power and efficiency have to be used.

The authors of (Ferretti et al., 2013) identified
three requirements for secure databases: (i) Confi-
dentiality, (ii) Enforcement access control, and (iii)
Querying over encrypted data. Several systems satis-
fying some of these requirements have been proposed.
In the context of relational databases CryptDB system
(Popa et al., 2011) addresses requirements (i) and (iii),
while DBMask (Sarfraz et al., 2015) deals with all (i)-
(iii). For NoSQL databases the requirements (i) and
(iii) are discussed, e.g. in (Xu et al., 2017) (document-
based DB) and (Aburawi et al., 2018) (Graph DB).

Recent years saw rise in popularity (Tre,) of var-
ious NoSQL datamodels and DBMSs, as they able to
store and process huge amounts of structured and un-
structured information effectively. There are four ba-
sic types of NoSQL databases: (1).Key-value store,
(2).Document-based store, (3).Column-based store,

(4).Graph-based store. According to October 2018
ranking (ran,) document-based store (MongoDB) oc-
cupies the 1st rank of NoSQL database used. No
comprehensive solutions for secure document-based
stores addressing all requirements (i)-(iii) have been
proposed so far to the best of our knowledge.

In this paper, we propose a particular scheme
SDDB (Secure Document DataBase) for implement-
ing secure NoSQL document-based databases. In
this schema to satisfy (i)-(iii) we adopt CryptDB ap-
proach for querying encrypted data, originally pro-
posed for relational DB and SQL (Popa et al., 2011),
for the case of document-based databases. We further
combine it with improved fine-grained access control
originated in PIRATTE scheme (Jahid and Borisov,
2012).

The rest of the paper is organized as follows. Sec-
tion 2 presents background of CryptDB and PIRATTE
systems. Section 3 presents details of Secure Docu-
ment Database (SDDB) scheme. Section 4 outlines a
case study of an application of SDDB scheme. Per-
formance and security of the SDDB are discussed in
Section 5. Section 6 presents related work. Finally,
Section 7 concludes the paper.

2 BACKGROUND

This section presents some background for CryptDB
and PIRATTE concepts used in our proposal.

606
Almarwani, M., Konev, B. and Lisitsa, A.
Flexible Access Control and Confidentiality over Encrypted Data for Document-based Database.
DOI: 10.5220/0007582506060614
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 606-614
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

CryptDB (Popa et al., 2011) is the first practical
database system which supports SQL queries over en-
crypted data. It functions as a proxy between the
database and the user by rewriting a query to exe-
cute querying over encrypted data on DBMS without
revealing plaintext and forwarding the encrypted re-
sult receiving from DBMS to the user side after de-
crypting. It uses different encrypted techniques de-
pending on the data type and operation such as Ran-
dom(RND) and Deterministic(DET). These types are
implemented using onion layers as depicted below in
Figure 1. CryptDB lacks the capacity to enforce fine-
grained access control of cells and columns. CryptDB
only enforces row access by using a proxy-based ref-
erence monitor due to encrypting each column data
by the one key. Also, users on CryptDB cannot en-
able sharing their data with a group of users.

Figure 1: Onion encrypted layer in CryptDB(Popa et al.,
2011).

To mitigate CryptoDB limitations and adopt it
for document based DB, we suggest using ad-
vanced cryptographic primitives such as cipher-policy
attributed based encryption(CP-ABE) (Bethencourt
et al., 2007). Jahid and Borisov proposed the PI-
RATTE scheme (Jahid and Borisov, 2012) in which
CP-ABE is integrated with user revocation mecha-
nism using a proxy that handles attributes and user
revocation to allow dynamic users. The data owner
in PIRATTE issues user secret keys and a proxy key
once, but for user revocation, only the proxy key is
updated.

3 SDDB SCHEME

This section presents an overview of SDDB scheme,
i.e., system requirements, architecture, threat model,
SDDB workflow and its algorithms.

3.1 SDDB Requirements

Our proposed design satisfies the following require-
ments :

Figure 2: SDDB Scheme Architecture.

• C1: Querying over Encrypted Data. The
scheme is able to perform operations and queries
over encrypted data without revealing the data.

• C2: Flexible Access Control. Users have access
to parts of the data based on data owner’s policy
and the policy can be changed if it is necessary.

• C3: User Revocation Support. The scheme can
revoke the users based on data owners requests, so
they cannot access the data after that.

• C4: No Re-encryption Data. Data does not need
to be re-encrypted in the case of an user revoca-
tion.

• C5: No Re-distributed Key. Keys don’t need to
be re-distributed in the case of an user revocation.

• C6: Multi-user Sharing Support. Based on data
owner’s policy (parts of) data can be accessed by
multiple users.

• C7: Security and Performance Trade-off. The
scheme allows configuring for better security or
performance.

3.2 SDDB Architecture

Figure 2 illustrates the proposed that includes four en-
tries: Data Owner (DO), User Application, Proxy, and
DBMS Server. Their interaction can be described as
follows:

1. DO is the authority responsible for establishing
access privileges for her/his data which will be
called access policy(AP) in the rest of the paper.
For example, DO may be a user who shares his
or her data through applications. This entity uses
a different keys to encrypt different parts of the
data depending on the AP and uploads them to
the DBMS server. It creates the secret keys for
each access policy (AP) and distributes the secret
keys to the users. Then, the proxy verifies authen-
ticated user who can access the data.

Flexible Access Control and Confidentiality over Encrypted Data for Document-based Database

607

2. User Applications are users who request data
sharing for the DO. The users send their attributes
to the DO and receive their secret keys using
which they identify themselves to the proxy for
accessing parts of the data and executing their
queries.

3. Proxy is the intermediate server between DO, user
application, and DBMS. It is responsible for veri-
fying the right access for each user and rewriting
queries to be executed on the encrypted data.

4. DBMS server is a server that provides database
services such as storage and retrieval. It is respon-
sible for storing encrypted data and executing the
query without revealing the plaintext data (if pos-
sible).

3.3 Threat Model

• DO: It is trusted and remains offline after encrypt-
ing and uploading the encrypted data and dis-
tributes the keys to the users unless a new user
requests permission or until a user access rights is
removed by the owner.

• User Applications: It is untrusted. Therefore, the
proxy must verify them before allowing them to
access and query the data. Proxy and DO do not
share decryption keys with them.

• Proxy: It is semi-trusted. It obtains encrypted
keys and cannot decrypt data alone.

• DBMS server: It is semi-trusted and thus cannot
obtain the keys to decrypt inner layer.

3.4 Data Format and Query Language

While SDDB scheme can be implemented for var-
ious document-based DBs, we consider MongoDB
environment as a primary target. We briefly outline
here the data storage format and the query language
for MongoDB that will be needed for understand-
ing of the rest of the paper. Firstly, MongDB repre-
sents its data in binary-encoded format called BSON.
BSON is an extension for JSON with additional data
types, such as date and binary, and embedding fea-
ture. It provides high-efficiency of encoding and de-
coding with different languages and can be found
a more detailed information at http://bsonspec.org/.
Secondly, MongoDB query language has its own syn-
tax compatible with JSON structure and is nearly as
powerful as SQL. For example, a database contains
a collection (table) called ”people” that consists of
three fields (columns) represented by SQL and Mon-
goDB query as shown in Figure 3. Some examples of
MongoDB querying below on the previous example

Figure 3: SQL vs MongoDB Structure.

and for more types of queries in details see at https:
//www.tutorialspoint.com/mongodb/index.htm./.

1. Find all Documents in the collection:

db . p e o p l e . f i n d ({})

2. Find all Documents on the collection containing
user-id=”abc123”:

db . p e o p l e . f i n d
({” u s e r i d ” : ” abc123 ”})

3. Update age on all Documents in the collection
containing user-id=”abc123” to 56:

db . p e o p l e . UpdateMany ({” u s e r i d ” :
” abc123 ”} ,{\ $ s e t :{ ” age ” : 5 6}})

3.5 SDDB Workflow Overview

The DO has documents that are written in BSON for-
mat, and the data sharing between the Data owner and
the users is achieved in four stages.

1. Data Encryption (Stage A). This stage includes
system initialization and encrypting data and up-
loading it. The DO issues access policy (AP) ,that
holds attributes to determine who users can ac-
cess data, for each group of documents. It then
issues secret keys such as public key and proxy
key based on PIRATTE SETUP algorithm and
onion key for each AP based on algorithms used
in such as AES-CBC and Homomorphic Encryp-
tion based on CryptDB SETUP algorithm. Then,
the DO uses the secret keys, i.e. master key, col-
lection key, document key, onion key and layer
key, for encrypting data for several onions and
layers, as shown in figure 3(A) similar to SQL-
aware Encryption on CryptDB. To optimize per-
formance, the DO does not have to encrypt all the
documents in all onions and layers and instead

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

608

chooses the appropriate onions and layers as per
the level of sensitivity of DO’s data and desired
queries. The DO then encrypts the secret keys us-
ing the public key and sends them to proxy with
the proxy key.

2. Flexible Access Control (Stage B). This stage is
from enforcing access control step for PIRRATTE
but it executes on the proxy side. It is responsible
for verifying a user. Users send their attributes
to the DO to obtain users’ secret keys. Users
then send their secret key, attributes, and query to
proxy. Proxy, in turn, combines the proxy key, the
encrypted secret data’s secret keys, and the users’
secret keys to obtain data secret keys,as shown
in figure 3(B). If the proxy obtains correct secret
keys, it will move to the next stage(C) otherwise
the users’ query will be rejected.

3. Data Query and Retrieval (Stage C). This stage
is from querying and retrieving data steps for
CryptDB system. At this stage, a query is exe-
cuted and high security is provided, as shown in
figure 3(C). Proxy rewrites the query according
to the layer that can be executed on it, for which
some querying may require adjustment layer be-
fore the user query is executed. Back to the pre-
vious example on 2.3 section, if the collection en-
crypted on two layers (RND, DET see section 5
for details of these algorithms), therefore, query 1
will be executed immediately on RND layer but
query 2 will be executed after peeling off RND
layer. Some queries cannot be executed on en-
crypted data and this case will not be discussed in
this paper left for future work. Then, the proxy
sends user query to DBMS which executes it and
sends the encrypted result. Proxy decrypts the
encrypted result and sends it back to the user.
For higher security, we suggest that the proxy re-
encrypts the peeling layers after each query or
user session ends.

4. Revoked Users (Optional). This stage is exactly
from revocation step for PIRATTE. This stage is
executed if the DO wants to revoke a user. The
DO will update only the proxy key without affect-
ing other users in the system.

3.6 SDDB Algorithms

An SDDB scheme can be outlined by nine algorithms,
which is taken from PIRATTE and CryptDB algo-
rithms. These algorithms are classified according to
which stage they are used in, as follows:

• Stage A Algorithms. The algorithms of this cat-
egory are taken as follows:

(i)AttrGen(),KeySetup(),ProxyKeySetup() from
PIRATTE scheme.
(ii)LayerKeySetup() and EncKey() from
CryptDB.
– AttrGen (). Data Owner defines sets of at-

tributes and generates access policy (AP) for
each set of attributes.

– KeySetup (). Data Owner generates Public
Key (PK) and Master Key (MK) for each ac-
cess policy.

– LayerKeySetup (). Data Owner runs setup
function for each encryption algorithm, such
as AES, using it to encrypt data for each ac-
cess policy in order to obtain secret layers keys
(SLK).

– ProxyKeySetup (PK, MK, AP). Data Owner
generates Proxy Key (PXK) by PK and MK for
each AP to decrypt (SKL).

– EncKey (PK, K). Data Owner encrypts SKL
and MK by PK.

• Stage B Algorithms. The algorithms of this cate-
gory are taken from PIRATTE.
– KeyGen (MK, AP). DO generates a set of se-

cret keys for ’i’ users (SKi) from MK corre-
sponding to AP.

– DecKEY (E, PYX, SKi). Proxy decryptes se-
cret keys.

• Stage A and B Algorithm. The algorithm of this
category is taken from CryptDB.
– LayerEnc (SLK, D). Data Owner or Proxy

runs Encryption function for each encryption
algorithm by using data (D) and SLK to obtain
decryption data(C).

• Stage C Algorithm. The algorithm of this cate-
gory is taken from CryptDB.
– LayerDec (SLK, C). Proxy runs Decryption

function for each of the encryption algorithms
by using C and SLK to obtain data (D).

4 CASE STUDY

In this section, it is assumed that the DO has a set of
data consisting of one collection that comprises two
documents, each with two fields. These two fields,
ID and Name, are integer and string data type respec-
tively and Q1 will be executed through MongoDB
querying language for both without-SDDB and with-
SDDB.

Q1 : (db . c o l l e c t i o n −1. f i n d ({ ID : 2 3} ,
{name : 1 }))

Flexible Access Control and Confidentiality over Encrypted Data for Document-based Database

609

Figure 4: Case Study.

4.1 Without-SDDB

This scenario is used in case the system does not pro-
vide encryption of data or verified access. DO up-
loads the data in DBMS as Plaintext and assumes that
access privileges are granted to users by sending its
password (PW) to them. Therefore, the user uses PW
with Q1 through user application that, in turn, sends
it to the DBMS server to execute and then returns the
result to the user, where Name=Alice is matched to
ID=23.

4.2 With-SDDB

This scheme can be divided into cases based on
classes of computation required by the application’s
queries. For example, in this case study, as the ap-
plication requires queries(insert,delete,update,select)
with equality operation, the data is encrypted consid-
ering onion equality between two layers, RND and
DET, as shown in figure 4.

The table 1 shows the notations that will be used
in this case study. If the DO wishes to share the data

Table 1: Scheme’s Notations.

Notation Description
DO Data Owner
Ui Users or user applications

KUi Key for user i
DET Deterministic Algorithm
RND Random Algorithm
AP Access policy
PK Public key
MK Master key
CK Collection key
DK Document Key
OK Onion Key

LKRND RNDLayerKey
LKDET DET LayerKEy
PXK Proxy key
Qi User’s or Proxy’s Query

with the Ui and only allow for equality computation,
the system will have to be followed in four stages.

1. Data Encryption (Stage A)
1.1 System Initialization. For this sub-

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

610

stage, Do runs AttrGen, Key-
Setup,LayerKeySetup,ProxyKEySetup,EncrKey
once for documents.The DO creates AP, for ex-
ample (Doctor AND Surgery Department), and
establishes the keys for PK, MK, CK, DK, OK,
LKRND , LKDET, and PXK according to each AP
and encrypts all previous keys, except PK and
PXK by PK (i.e. EPK(MK), EPK(CK),EPK(DK),
EPK(OK), EPK(LKRND),EPK(LKDET)), and sends
them with PXK and AP to the proxy and store
in-memory, as shown in table 2.

Table 2: Scheme Keys.

AP (Doctor AND Surgery Department)
MK EPK(MK)
CK EPK(CK)
DK EPK(DK)
OK EPK(OK)

LKRND EPK(LKRND)
LKDET EPK(LKDET)

PX PXK

1.2 Data Encryption and Upload. DO runs Lay-
erEnc and uses MK, CK, DK, OK, and LKs to
encrypt the data in an equality onion and upload
it to BDMS.

2. Flexible Access Control (Stage B)
2.1 User Registration. Ui sends their attributes to

the DO to obtain KUi. For example, assume
U1 and U2 are Doctor and Surgery Department,
and U3 is a Nurse and Surgery Department.
The DO runs KeyGen to create KU1 and KU2
and sends it to U1 and U2, respectively, and re-
jects the U3 request that does not satisfy AP.

2.2 Verifying User. For example, U1 sends KU1
with his/her attributes and Q1 to the proxy
which runs DecKey. Before executing Q1, the
proxy must verify the user’s authentication to
obtain the secret keys. The proxy calculates
PXK and KU1 with each encrypted key to ob-
tain MK, CK, DK, OK, and LKs.

3. Data Query and Retrieval (Stage C)
The proxy follows the following steps:

3.1 Examines the current layer of ID field and its
suitability to Q1 if Q1 requires DET layer and
the current is RND.

3.2 Decrypts the field (i.e. F1-Eq) corresponding to
ID by issuing a query Q2 and sends it to DBMS
by LayerDec.

Q2 : (db . c o l l e c t i o n −1. updateMany (
$ {} ,{ $ s e t =F1−Eq =DECRYPT RND(
k , F1−Eq , F1−IV }))

3.3 Rewrites Q1 query by replacing the constants
with the corresponding value on DET and
swaps the fields corresponding to the DB fields
as Q3 for executing it on the DBMS server, af-
ter which the result F2-Eq, F2-IV is sent to the
proxy.

Q3 : db . c o l l e c t i o n −1. f i n d ({F1−Eq=
xe243 } ,{F2−IV : 1 , F2−Eq : 1 })

3.4 Decrypts F2-Eq twice in RND and DET on
the proxy side by LayerDec, as the F2-Eq
field is still in RND, to obtain the result
(name=”Alice”) and send it to U1.

3.5 Returns F1-Eq to RND to obtain higher secu-
rity by issuing an opposite query Q4 to Q2 by
LayerEnc.

Q4 : db . c o l l e c t i o n −1. updateMany ({} ,
{\ $ s e t =F1−Eq=ENCRYPT RND(
k , F1−Eq , F1−IV) })

4. Revoked Users (Optional)
This is an optional step that is executed if the DO
wants to revoke the user. For this, the DO only
updates PXK and resends it. For example, to re-
voke U1, PXK is updated without having to data
re-encryption or key distribution and without af-
fecting the rest of the users. After that, U1 sends a
query to a proxy after revocation that its requests
cannot be executed because he/she has lost au-
thentication and rejected.

5 DISCUSSION

In this section, there will be a discussion regarding the
security and performance of the two previous mod-
els in the case study, as well as studies inspired by
it. Finally, we briefly compare our scheme with some
existing works. In term of security, in the without-
SDDB model, if the DBMS server is exposed to com-
promise or curiosity, it will reveal plaintext data be-
cause it is not encrypted. In addition, it is likely that
the adversary will be able to obtain the password and
impersonate the data owner to manipulate the data.
Therefore, this requires a secure channel to exchange
it.

In the with-SDDB example, the DBMS server
does not reveal the information except where it is de-
tected based on the encryption algorithm in the cur-
rent layer used, such as equal in DET. Therefore,
the decryption layer will be returned to high-security
layers other than CryptDB. In this model, there is
also no need to share encryption keys because dif-
ferent keys are used for both user authentication and

Flexible Access Control and Confidentiality over Encrypted Data for Document-based Database

611

Table 3: Comparison of our scheme with some existing work.
(Popa et al., 2011) (Xu et al., 2017) (Aburawi et al.,

2018)
(Sarfraz et al.,
2015)

(Ferretti et al.,
2013)

(Pirretti et al.,
2006)

SDDB

C1 X X X X X X X
C2 � � X X X X X
C3 � � � X � X X
C4 � � � Only user’s group

belong
� X X

C5 � � � Only user’s group
belong

� X X

C6 X X X X X X X
C7 X X X X X � X
DB Relational DB Document DB Graph DB Relational DB Relational DB � Document DB
PS X � X X X � In the future

Notes.{X} :satisfies. {X} : does not satisfy. {�} : Out of scope the paper.

data encryption, according to access privileges other
than CryptDB. PIRATTE runs decryption data on the
user’s side and is not trustworthy and therefore, this
permission is given to the proxy in our scheme. In
the case that the adversary is able to obtain the keys,
they cannot impersonate the data owner by associat-
ing these keys with the user’s attributes and the Proxy
Key. Furthermore, in the case that the proxy is ex-
posed or compromised, there will not be a leakage of
data because it cannot decrypt keys alone.

In terms of performance, the without-SDDB
model can execute any type of query or computations
at high speed. Meanwhile, the with-SDDB model
provides only desired queries based on the type of al-
gorithm used, as a result of reducing the number of
layers in CryptDB to meet the level of sensitivity of
the data owner and the application requirements. In
addition, the size of the encrypted data is constant, as
opposed to PIRATTE that increases reliance on AP.
The PIRATTE concept in this scheme is thus used in
the verification of access and not for the data encryp-
tion. Therefore, SDDB provides a trade-off between
security and performance. Finally, table 3 shows the
properties of our scheme in comparison with some
existing works, that is further explained in detail in
Section 6. The reported properties include C1-C7 the
database type (DB) and practical status (PS) which
means scheme has been implemented and evaluated.

6 RELATED WORK

CryptDB (Popa et al., 2011) as explained on back-
ground section is secure system worked on relational
database for SQL queries over encrypted data. In term
of its security, in the case of a proxy attack, only data
for users who are logged in at that time will be vul-
nerable to leakage.

With regards to NoSql, CryptMDB(Xu et al.,
2017)is a practical encryption system on MongoDB
that employs an additive homomorphic asymmetric
cryptosystem to encrypt data. It applies the proxy

concept at the top of MongoDB, setting it to only per-
form an additive operation over encrypted data.

CryptGraphDB (Aburawi et al., 2018) is a sys-
tem that executes queries to encrypted data stored in
graph store (i.e. Neo4j database) through the transfer
CryptDB concept. It provides traversal-aware encryp-
tion adjustment (using dynamically adjusting encryp-
tion layers) that is synchronised with the query exe-
cution - unlike static adjustment which precedes exe-
cution - thereby offering increased security(Aburawi
et al.,).

The previous studies focuses on confidentiality
and querying over encrypted data while (Ferretti et al.,
2013) and (Sarfraz et al., 2015) also focuses on ac-
cess control for relational database. In (Ferretti et al.,
2013) the data owners encrypt data by SQL-aware en-
cryption on CryptDB without the need to a proxy and
store it as relational database over a cloud. Then they
pass the encryption keys to Database administrator
who has the authority to access all the data over the
cloud and in turn responsible for distributing the keys
to users based on legitimate access.
DBmask(Sarfraz et al., 2015) is the system that offers
fine-grained access control built on attribute-based
group key management(AB-GKM) scheme, in which
users have attributes that should satisfy data policies
to grant access and execute SQL queries over en-
crypted data based on user permissions. The sys-
tem’s architecture is inspired by CryptDB and uses
the proxy that filters clause queries that do not execute
over encrypted data, instead execute on in-memory
from the proxy side. The DBmask system has been
implemented through two schemas: (1) DBmask-
SEC offers maximum security, (2) DBmask-PER of-
fers the best performance. The limitation is that ac-
cess policy groups belongs to each cell are revealed
to DBMS.

AB-GKM adds an extra column corresponding
for each column in a table to determine the group
belongs to a cell and this requires fixed data struc-
ture format as relational database as well as in case
of database attack, an adversary will reveal the cells

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

612

belonging to the same group. Consequently, it is
important to find an adequate mechanism for non-
relational database and provides property to hide ac-
cess control from the database side. However, in
2005, Sahai and Waters proposed attribute-based en-
cryption (ABE)(Sahai and Waters, 2005), which is
a type of public key encryption, that uses user iden-
tity for encrypting and decrypting data to access con-
trol of document data. ABE can further be classi-
fied into two types: key-policy-ABE(KP-ABE) and
ciphertext-policy-ABE(CP-ABE). In 2006, Goyal de-
veloped KP-ABE (Goyal et al., 2006) and stated that
the ciphertext is associated with a set of attributes with
the secret key associated with access policy (AP). A
user can decrypt data only if the corresponding at-
tributes of ciphertext satisfies the AP of a user’s key.
The disadvantage of this type of ABE is that the Data
Owner cannot determine which users can decrypt the
data. Therefore, KP-ABE is not suitable for applica-
tions which share data. However, in 2007, Bethen-
court developed CP-ABE (Bethencourt et al., 2007)
and stated that the cipher-text is associated with ac-
cess policy (AP) with the secret key associated with a
set of attributes to overcome the disadvantage of KP-
ABE and more suitable for applications. Both KP-
ABE and CP-ABE lack user revocation mechanism.
Though previous studies such as in (Pirretti et al.,
2006; Boldyreva et al., 2008; Liang et al., 2013) have
noted that revocation mechanism has been added to
CP-ABE, it requires either key re-distribution or data
re-encryption. In 2012, Jahid and Borisov proposed
the PIRATTE scheme (Jahid and Borisov, 2012) to
address these limitations as explained on background
section.

7 CONCLUSIONS

This paper presents the main idea of Secure Docu-
ment Database (SDDB) scheme satisfying three main
security database requirements, which are confiden-
tiality, flexible access control and querying over en-
crypted data for a document-based store. Future work
will concentrate on the choice of encryption primi-
tives appropriate to construct onions. Then, SDDB
will be implemented on the MongoDB and trade-off
between security and performance will be evaluated.

ACKNOWLEDGMENTS

Maryam Almarwani was supported by Royal Em-
bassy of Saudi Arabia. Alexei Lisitsa was partially

supported by EPSRC funded RAI Hub FAIR-SPACE
(EP/R026092/1).

REFERENCES

Db-engines ranking. https://db-engines.com/en/ranking.
Accessed: 2018-11-14.

Nosql, rdbms - explore - google trends.
https://trends.google.com/trends/explore?date=all
&q=NoSQL,RDBMS. Accessed: 2018-07-14.

Aburawi, N., Coenen, F., and Lisitsa, A. Traversal-aware
encryption adjustment for graph databases.

Aburawi, N., Lisitsa, A., and Coenen, F. (2018). Querying
encrypted graph databases. In Proceedings of the 4th
International Conference on Information Systems Se-
curity and Privacy, ICISSP 2018, Funchal, Madeira -
Portugal, January 22-24, 2018., pages 447–451.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In Secu-
rity and Privacy, 2007. SP’07. IEEE Symposium on,
pages 321–334. IEEE.

Boldyreva, A., Goyal, V., and Kumar, V. (2008). Identity-
based encryption with efficient revocation. In Pro-
ceedings of the 15th ACM conference on Computer
and communications security, pages 417–426. ACM.

Ferretti, L., Colajanni, M., and Marchetti, M. (2013). Ac-
cess control enforcement on query-aware encrypted
cloud databases. In 2013 IEEE 5th International Con-
ference on Cloud Computing Technology and Science
(CloudCom), pages 219–219. IEEE.

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006).
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th
ACM conference on Computer and communications
security, pages 89–98. Acm.

Jahid, S. and Borisov, N. (2012). Piratte: Proxy-based
immediate revocation of attribute-based encryption.
arXiv preprint arXiv:1208.4877.

Liang, K., Fang, L., Susilo, W., and Wong, D. S. (2013). A
ciphertext-policy attribute-based proxy re-encryption
with chosen-ciphertext security. In Intelligent Net-
working and Collaborative Systems (INCoS), 2013 5th
International Conference on, pages 552–559. IEEE.

Pirretti, M., Traynor, P., McDaniel, P., and Waters, B.
(2006). Secure attribute-based systems.

Popa, R. A., Redfield, C., Zeldovich, N., and Balakrish-
nan, H. (2011). Cryptdb: protecting confidentiality
with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, pages 85–100. ACM.

Sahai, A. and Waters, B. (2005). Fuzzy identity-based
encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 457–473. Springer.

Sarfraz, M. I., Nabeel, M., Cao, J., and Bertino, E. (2015).
Dbmask: fine-grained access control on encrypted re-
lational databases. In Proceedings of the 5th ACM

Flexible Access Control and Confidentiality over Encrypted Data for Document-based Database

613

Conference on Data and Application Security and Pri-
vacy, pages 1–11. ACM.

Xu, G., Ren, Y., Li, H., Liu, D., Dai, Y., and Yang, K.
(2017). Cryptmdb: A practical encrypted mongodb
over big data. In Communications (ICC), 2017 IEEE
International Conference on, pages 1–6. IEEE.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

614

