
A Fog-Cloud Computing Infrastructure for Condition Monitoring and
Distributing Industry 4.0 Services

Timo Bayer, Lothar Moedel and Christoph Reich
Institute of Cloud Computing and IT Security, University of Applied Science, 78120 Furtwangen, Germany

Keywords: Fog Computing, Industrial Cyber Physical System, Application Deployment, Condition Monitoring.

Abstract: Data-driven Industry 4.0 applications require low latency data processing and reliable communication models
to enable efficient operation of production lines, fast response to failures and quickly adapt the manufacturing
process to changing environmental conditions. Data processing in the Cloud has been widely accepted and in
combination with Fog technologies, it can also satisfy these requirements.
This paper investigates the placement of service containers and wheater they should be carried out in the Cloud
or at a Fog node. It shows how to provide an uniform well-monitored execution environment to automatically
distribute services concerning their application-specific requirements. An infrastructure is presented, that
utilizes measurement probes to observe the node and environmental conditions, derive and evaluate appropriate
distribution algorithms and finally deploy the application services to the node that meets the requirements.

1 INTRODUCTION

Industry 4.0 is a ubiquitous keyword, including au-
tomated and data-driven manufacturing technologies,
communicating plants and a large set of data sources
to collect detailed process information. Basis for
this, are optimized processing infrastructures provid-
ing computation capabilities and data storage.

Cloud Computing is a typical enabler for such ap-
plications. However, Industry 4.0 applications often
deal with frequency data and require low latency data
processing. Low latency is important to enable effi-
cient operation, fast response to failures and quickly
adapt the manufacturing processes to changing envi-
ronmental conditions (Jiang et al., 2017). Further-
more, they are often built on sensitive data, including
intellectual properties or customer data that need to
be protected. Low latency and strict privacy require-
ments make the use of Cloud Computing problematic.

A new trend to overcome these insufficiencies is
to combine Cloud Computing and Fog Computing.
For instance, Fog Computing can be used to provide
low latency data processing or perform preprocessing
tasks such as data fusion. Using the results of the Fog
nodes, further tasks that require considerable process-
ing power are executed inside the Cloud.

Combining Cloud Computing and Fog Computing
poses particular challenges concerning service execu-
tion, data integration and communication capabilities.

One point of special interest is the decision weather a
service is better executed in the Cloud or on a Fog
node. To be able to do a founded decision, several
characteristics of the involved nodes and their envi-
ronment need to be considered.

This paper investigates most significant distribu-
tion criteria and presents an architecture to measure
and collect the required data for service distribution,
apply suitable distribution algorithms and finally de-
ploys the services on the most suitable node. The ar-
chitecture also provides an excelent environment to
develop new or optimize existing distribution algo-
rithms to match the individual requirements arising
from combining Cloud and Fog Computing.

The paper is structured as follows. Section 2
presents related topics in the field of Fog Comput-
ing. In Section 3 criteria and requirements for service
distribution are investigated. The architecture to mea-
sure these criteria and deploy the services accordingly
is presented in Section 4 and evaluated in Section 5.
Section 6 summarizes the results.

2 RELATED WORK

Several investigations took place showing possible
use cases and approaches to integrating Cloud and
Fog. Mahmud et al. (Mahmud et al., 2018) intro-
duced an IoT healthcare solution and explored the in-

Bayer, T., Moedel, L. and Reich, C.
A Fog-Cloud Computing Infrastructure for Condition Monitoring and Distributing Industry 4.0 Services.
DOI: 10.5220/0007584802330240
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 233-240
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

233



tegration of Cloud-Fog technologies. They evaluated
the scenario in regards to distributed computing, re-
ducing network latency, optimize communication and
power consumption. The investigation showed that
using Fog-Cloud solutions results in better task distri-
bution, instance cost, energy usage and network delay.
Notably, a significant improvement in the field of real-
time processing can be recognized. The benefits are
also pointed out by Chakraborty et al. (Chakraborty
et al., 2016). They introduced a solution to gather, an-
alyze and store time-sensitive data. To achieve min-
imum delay while ensuring data accuracy they per-
form time-sensitive tasks within the Fog nodes and
apply further processing and long-term persistence in-
side the Cloud. We took these design principles and
enhanced them with the capability to integrate mea-
surement probes and container virtualization to create
an infrastructure focussing on distribute services.

Developing an application that is distributed over
Cloud and Fog poses particular challenges such as
ensuring interoperability, providing consistent pro-
gramming models and distribution algorithms. Re-
cently appeared frameworks try to simplify applica-
tion development. Cheng et al. (Cheng et al., 2018)
described a framework for Smart City applications
while considering distributed data processing, low la-
tency and reducing network usage. The main char-
acteristic of this approach is a programming model
that allows to implement applications using Fog and
Cloud in an uniform fashion. Using this approach,
they showed three use cases including anomaly detec-
tion of energy consumption, video surveillance and
smart city magnifier. There are several similarities
to the work presented in our paper such as enabling
low latency and scalable applications. To increase the
flexibility and support heterogeneous nodes, we use a
container-based approach instead.

The feasibility of using containerization is inves-
tigated by Bellavista et al. (Bellavista and Zanni,
2017). They presented a fog-oriented framework
based on extensions of the Kura gateway to investi-
gate the feasibility of Docker-based containerization
even over strongly resource limited nodes. The re-
sults showed that containerization provides good scal-
ability, limited overhead and high flexibility. Another
approach that utilizes containerization is presented by
Woebker et al. (Woebker et al., 2018). They described
a solution to deploy and manage Fog applications,
based on containers. The deployment mainly relies
on statically raised distribution criterias such as la-
tency and bandwith. Based on these criteria the nodes
are labeled and categorized using the labeling system
provided by Kubernetes. Our approach builds upon
the solutions presented above but focusses on provid-

ing an infrastructure to measure environmental con-
ditions such as the current load, location or security
levels to support decision making wheater a service
shall be carried out in the Cloud or on a Fog node.

A lot of effort has been made to investigate dis-
tribution algorithms in the areas of Cloud and High-
Performance Computing. The solutions need to be
adapted to the specific requirements of Fog and Cloud
integration. Neto et al. (Neto et al., 2017) described
the current problems of Fog Computing such as qual-
ity of service and load distribution. They described an
algorithm to optimize load distribution, that takes cri-
teria such as latency and priorities into consideration.
The solution presented in our paper aims to provide a
framework to evaluate existing distribution algorithm
and apply them in Fog-Cloud environments.

3 DISTRIBUTION CRITERIA

Selecting the most suitable node to distribute a ser-
vice is one primary challenge while combining Fog
and Cloud. The relevance of the criteria highly de-
pends on the optimization goal, like enery optimiza-
tion, privacy protection or process time minimization.
The following section presents static and dynamic cri-
teria that can support the decision making.

Network Connection. Several network characteris-
tics need to be considered to choose a suitable node.
Ensuring low latency data processing is crucial to
provide appropriate query time and fast computation.
Industry 4.0 applications require to collect local data,
process it and use the processing result to control the
manufacturing process. Thus, it’s necessary to deploy
time-sensitive services to a node with low latency.

Industry 4.0 services often processes large
datasets and extract insights on time. Transfering
large data sets need a high network bandwidth and is
critical for deploying services. For instance, it’s pos-
sible that short running applications perform better
deployed in the Cloud due to the delay for the deploy-
ment on low bandwidth nodes. The type of network
connection is also relevant. Applications with high
data rates or a high demand for reliable network con-
nections require a wired connection, whereas other
applications perform well with wireless connections.

Performance & Storage Capabilities. Industry 4.0
services require high computational and storage capa-
bilities. In contrast, Fog nodes are typically resource
limited. Therefore, it is necassary to consider the per-
formance (e.g. CPU and RAM). Besides the statical
performance, it is essential to dynamically check the

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

234



current load of the nodes before deploying a service.
The involved data volume requires high storage ca-
pabilities. There is a tradeoff between the total data
amount required to fulfill the desired task and the de-
mand for data locality to match the latency require-
ments and reduce network traffic.

The number of mobile devices, such as au-
tonomous guided vehicles increase the demand to in-
tegrate battery powered devices. Thus, the energy
consumption of a service and the available power
supply of the nodes need to be considered. A dis-
tinction can be made between services that are conti-
nously running or only react to low frequency events.
This mainly affects if the service needs to be deployed
on a device with a permanent power supply or if the
battery level of the device fits the requirements.

Security & Privacy. Industry 4.0 applications pro-
cess sensitive information including intellectual prop-
erties or customer data. Thus, it is required to pro-
vide a secure infrastructure and ensure data pri-
vacy. To achieve this, special characteristics need to
be considered. The primary goal is to achieve mutual
trust between the involved components. If this can’t
be ensured due to insecure communication channels
or missing computation performance to provide ad-
vanced security mechanisms, it’s better to select a
different node. In contrast, if the sensitive data pro-
cessing should only take place in a trusted network,
using components with high reputation, it’s appro-
priate to execute it on a Fog node.

The node location also needs to be considered
regarding privacy concerns and national regulations.
Using Cloud infrastructures, it is required to be aware
where the virtual machine is deployed. Due to the
possibility to change the location of a virtual machine
or a mobile Fog node, it’s required to dynamically
check the current location before deploying a task and
get informed if a migration took place.

The decision how secure a node is can be arbi-
trarily complex. Besides some easy examples such as
checking for a encrypted communication, more com-
plex or application specific methods are required. Se-
curity checks can comprise autonomous security tasks
that run on each involved node and collect evidence
about security or privacy concerns. These checks
need to be applied on heterogeneous environments,
such as Cloud nodes, Hypervisors and Fog nodes.

Inventory & Environmental Constraints. Dis-
tributing Industry 4.0 services also requires more
application-specific distribution criteria, such as the
node inventory. For instance, the node inventory can
include the data sources/actuators attached to a spe-

cific node or the available software libraries needed
to fulfill the desired task. Concerning the node inven-
tory before deploying a service can also ensure data
locality because the inventory can be used to deter-
mine where the required data is collected.

Another type of application-specific distribution
criteria are environmental constraints. A environ-
mental constraint can be a specific type of node, that
is required by the service or a certain level of rep-
utation a node must provide. Especially, if mobile
nodes are involved, the constraints can also include
the availability of collaboration partners.

4 ARCHITECTURE

The architecture presented in this section aims to
overcome the challenges of combining Fog and Cloud
Computing by providing uniform functionality to
monitor advanced deployment criteria and consis-
tently apply distribution algorithms to find the most
suitable node. This section describes the requirements
and the high level architecture.

4.1 Requirements

Develop a Industry 4.0 Service
• R1: Support distributed data processing tasks be-

tween Cloud and Fog nodes

• R2: Provide all required functionalities to provide
suitable node management, inter-node communi-
cation, and task execution

Integrating Measurement Probes
• R3: Determine node conditions by integrating and

deploying measurement probes on the nodes

• R4: Provide support for centralized and decentral-
ized measurement probes

• R5: Provide a uniform way to execute the mea-
surement probes and services on all nodes regard-
less of the actual technology they use

• R6: Provide a consistent execution environment
that is suitable to migrate measurement probes
and services during runtime

Integrate Distribution Algorithms
• R7: Integration of distribution algorithms that

make use of the measurement results to deploy an
application service accordingly

• R8: Provide a common interface to apply and con-
figure different distribution algorithms

A Fog-Cloud Computing Infrastructure for Condition Monitoring and Distributing Industry 4.0 Services

235



4.2 Overview & Containerization

The following section provides an overview about the
architecture and how container virtualization is uti-
lized to provide state of the art node and task man-
agement, design and deploy interoperable application
services and how to execute measurement probes.

Infrastructure Services. According to Figure 1,
the architecture can be divided into management and
worker layers. The management layer provides func-
tionality for node and task management, control the
measurement probes and deploy services based on
different distribution algorithms. These responsibil-
ities are realized using infrastructure-specific imple-
mentations, which are described later.

Kubernetes Master. The service deployment, man-
agement functionality and low-level measurement
probes are realized using Kubernets. The manage-
ment layer includes a Kubernetes cluster, that is in-
terfaced by the infrastructure services using Kubectl.
Kubectl allows to add nodes, initiate the deployment
or request data provided by the cluster. These requests
are processed by the API Server. All common ser-
vices such as the Kubernetes Scheduler for service
deployment, the key-value store etcd as well as the
Controller Manager deamon responsible for lifecy-
cle management are contained in the Kubernetes Mas-
ter and can be utilized by requesting the API Server.
One component of particular interest is the Metrics
Server. The Metrics Server is an add-on for the Ku-
bernetes cluster and provides measurement capabili-
ties. Within this architecture, the Metrics Server is
used to collect low-level environmental conditions,
such as the actual CPU or memory usage.

Kubernetes Nodes. The Worker Layer contains all
nodes responsible for executing services and collect-
ing the information required to decide how to deploy a
specific service. On a low-level perspective all nodes
are managed by the Kubernetes Cluster. Hence, all
nodes are registered within the Kubernetes Master
and contain the Kublet agent, responsible for moni-
tor the API server and execute the desired contain-
ers. One central part of the Kubelet is the cAdvisor.
The cAdvisor collects, processes and aggregates met-
rics about the containers. This information is used
by the Metrics Server. All Kubernetes Nodes include
a Service Proxy that enables inter-container commu-
nication by forwarding requests to the desired target.
Besides these services, all worker nodes include Mea-
surement Pods as well as several Application Pods. A

Figure 1: Architecture & Containerization.

Pod is the smallest execution unit that can be orches-
trated by using Kubernetes. The architecture utilizes
Pods to execute the services and provide distributed
measurement capabilities. A Pod can be a whole ap-
plication including several containers or just a single
container. The Measurement Pods include all mea-
surement tasks mentioned in Section 3. Which mea-
surement probes are executed on a node can be con-
figured by using the Infrastructure Service. The appli-
cation services are executed within a Application Pod.
Both kind of Pods are monitored by the cAdvisor.

Networking and Communication. Another chal-
lenge is to provide the networking capabilities while
minimizing the administration effort. We realized the
communication between nodes, Pods and containers
using the pod-overlay network provided by Flannel.
Flannel creates a network between the host environ-
ment, all Pods and all containers. The main benefit of
using Flannel is the high flexibility concerning pub-
lic IPs. In contrast to many other technologies, the
IP addresses are not required to belong to the same
network. Primarily, in geographically distributed sys-
tems this approach results in higher flexibility. The
overlay network creates a private network that be-
longs to all Kubernetes Nodes. Within the nodes, each
Pod receives an IP assigned from Docker. Communi-
cation between Kubernetes Nodes is also possible by
using the Flannel Kernel Route Table and UDP en-
capsulation. This approach allows requesting compo-
nents by just using the service name, forwarded by the
Service Proxy. This benefit is utilized by the archi-
tecture in regards to migrating services dynamically
based on changing environmental conditions.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

236



Figure 2: Architecture Overview.

4.3 Management & Measurements

The following section provides an overview about
the architecture in regards to infrastructure manage-
ment and measurement probes. According to Figure
2 the architecture is divided into management layer
and worker layer. The Infrastructure Service Layer
contains the management capabilities of the archi-
tecture. Using the Interface service, the infrastruc-
ture can be administrated, measurement probes can
be chosen and deployment algorithms can be defined.

One major responsibility is to introduce uni-
form measurement capabilities for heterogeneous
Cloud/Fog nodes. The measurements can be divided
into low-level infrastructure and application-specific
measurement probes, which are both controlled by
the Measurement Infrastructure Service. The infras-
tructure measurements are provided by the Metrics
Server. To be able to use these measurements, the
Measurement Infrastructure Service periodically re-
quests the Kubernetes API Server, converts the mea-
surement data and persists it using the Database Con-
nector. Due to the consistent execution environment
all infrastructure measurements can be directly uti-
lized requesting the Metrics Server and can be applied
to each Pod within the Kubernetes Cluster. Further-
more, they can be configured e.g. to adapt the mea-
surement interval. This low-level resource monitor-
ing performs best regarding scalability and efficiency
similar as can be seen in (Chang et al., 2017) and
(Tsai et al., 2017). According to the creators, the Met-

rics Server can be scaled up to 5000 nodes with 30
Pods per node, assuming a 1 minute metrics granu-
larity (Kubernetes, 2018). The Metrics Server can be
scaled individually. Both services are located in the
Kubernetes Management Layer.

While the Metrics Server already covers low-level
performance metrics, more sophisticated measure-
ments are required to optimize service deployment.
Therefore, the Measurement Infrastructure Service
is capable of executing central and controlling dis-
tributed measurements. Decentralized measurements
come with higher communication efforts and the need
to correlation the measurements. On the other hand,
centralized measurements are limited in measurement
capabilities and result in higher load of the infrastruc-
ture services. For instance, the centralized measure-
ment probes include monitoring the network connec-
tion or determining the actual location. They also can
be configured to either performed by the Measure-
ment Infrastructure Service or in a distributed fashion.

Decentralized measurement probes are located at
the worker nodes and controlled by the Measure-
ment Infrastructure Service. The probes are executed
within a Pod, which can either contain a single task
such as monitoring the energy consumption or include
multiple containers with more complex measurement
probes such as enhanced security checks. The in-
frastructure allows deploying whole security frame-
works such as the Audit Agent System which is able to
check if the node complies to security policies such
as the use of secure sockets or restrictions concern-

A Fog-Cloud Computing Infrastructure for Condition Monitoring and Distributing Industry 4.0 Services

237



ing data retention (Rübsamen et al., 2016). The re-
quired probes can either be configured while adding
the node or can be changed during runtime to match
changing requirements. Depending on the probe, data
collection can be configured regarding collection peri-
ods, aggregation intervals or task-specific thresholds.
Measurement results are stored in the Management
Database and are made available for service deploy-
ment. To ensure scalability and loose coupling, the
communication between the Measurement Infrastruc-
ture Service and the measurement probes is realized
using a messaging system. The architecture supports
hybrid probes with decentralized measurement probes
and a centralized probe backend.

4.4 Service Deployment

Distributed Industry 4.0 applications include services
using different programming languages or execution
environments. Therefore, the Deployment Service
provides a uniform mechanism to deploy measure-
ment probes and services. According to Figure 3 the
user uploads a deployment package and a deployment
configuration (1), using the Interface Service (2-3).
To address the high variability, the deployment pack-
age can assume several formats such as python scripts
or web application archives. Depending on the for-
mat, the required interpreter or application server is
automatically detected and a corresponding container
image is created (4) and uploaded to the repository
(5). The image creation utilizes Dockerfiles to be able
to reproduce the image if the service needs to be re-
deployed due to changing conditions.

The decision-making can be influenced by provid-
ing a deployment configuration. Depending on the re-
quirements, a configuration can define the desired de-
ployment algorithm or can specify thresholds for spe-
cific node criteria. This information is passed to the
Decision Making Unit (6), which applies and param-
eterizes the deployment algorithm. To cover current
conditions and historical data, the Decision Making
Unit makes use of the measurement data persisted in
the Management Database (7). Due to the high di-
versity regarding deployment criteria and the hetero-
geneous technologies, combining Cloud and Fog re-
quires to adapt existing and develop new deployment
mechanisms. To investigate this research topic, the in-
frastructure can apply different algorithms (8), includ-
ing basic round-robin scheduling, threshold-based de-
cision making, prioritized list of weighted distribution
criteria or more complex mechanisms such as rule-
based or model-based machine learning approaches.
Regardless of the deployment algorithm used, the ar-
chitecture provides a consistent interface for initiating

the deployment. The uniformity allows to investigate
new kinds of deployment algorithms, without chang-
ing the infrastructure.

Figure 3: Deployment Architecture.

Data-driven applications usually include utility
tasks that need to be included in each worker node.
To match this requirement, two deployment types can
be chosen. This includes the default case in which
one service is deployed to one specific node or a dea-
monset. A deamonset is deployed to any node in the
cluster. The deployment decision is passed to the
Deployment File Generator (9), which is responsi-
ble for creating a YAML file including the deployment
type, network configuration and authorization infor-
mation (10). With this file, the Pods are created by
the Kubectl service using the repository (11-12) and
automatically deployed on a specified node (13-14).

5 EVALUATION

The following section evaluates the architecture by
using the scenario-based software architecture ana-
ysis method. This includes an example containing
monitoring probes and a basic deployment algorithm.

According to Figure 4 the example includes a sub-
set of an automated manufacturing process. The pro-
cess starts with an incoming order. Based on the order

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

238



Figure 4: Application Example.

the industrial feedstock is picked and conveyed to the
manufacturing areas by using Autonomous Guided
Vehicles (AGV). Each AGV contains a processing
unit that is representing a mobile Fog node. The pro-
duction plant contains a local datacenter that is con-
sidered as a Fog node. To provide further computation
capabilities the plant is connected to a public Cloud.

Develop a Industry 4.0 Service (R1-R2). The ex-
ample includes three services with individual require-
ments (R1). The order information, including sensi-
tive customer data, is processed by the Process Cus-
tomer Data service. The requirement of this service
is a high security level (e.g. data locality, encryption)
to ensure data privacy. Based on the order the process
flow is calculated using the Calculate Process Flow
service. This service aims to optimize the pick or-
der by performing comprehensive calculations. Thus,
strong computation capabilities (e.g. CPU, Memory)
and a appropriate network connection (e.g. band-
with, latency) are required for fast response time. The
AGVs use the results from the previous services and
start operation, controlled by the Pick & Place Job.
To ensure a efficient process the services need to be
deployed in regards to the process state of the AGVs
(e.g. current location, loaded goods) and their energy
level (e.g. remaining battery power). The tasks are
orchestrated by the Management Service (R2).

Integrating Measurement Probes (R3-R6). In the
following it is described which measurement probes
are utilized to fulfill the requirements (R3). To be able
to choose the most suitable Cloud node, each Cloud
node contains four measurement probes responsible
for monitoring the location, network quality, secu-
rity level and performance (R4). These measurement

probes are made available by the infrastructure and
linked to the node type. The Fog nodes located in the
datacenter contains two measurement probes, perfor-
mance metrics and security checks (ensuring an en-
crypted communication channel). The performance
metrics are determined by using the Metrics Server
(R4). The mobile Fog nodes include two measure-
ment probes, monitoring the battery level and locate
the vehicle inside the production hall to determine the
actual process state. To integrate a new probe, an ex-
ecutable need to be created using the infrastructure
framework and its blueprint implementations (R5). In
this example, the implementation consists out of re-
questing a GPS modul and keep track of the process
state by interpreting the current and subsequent pick
orders. Using the Interface Service, the executable is
uploaded and a corresponding Pod is created (R6).

Integrate Distribution Algorithms (R7-R8). The
distribution can be categorized into load balancing be-
tween similar nodes and choosing the preferred node
type. Whereas the Pick & Place Job is linked to a
specific node type (Mobile Fog Node) and only load
balancing is required, the Process Customer Data and
Calculate Process Flow services can be deployed to a
Cloud or a Fog node. To illustrate decision-making,
we use a rule-based algorithm for each service (R7).
Figure 5 shows the decision-tree. For instance, the
Process Customer Data doesn’t requires a special
node type, is not time sensitive, but involves sensi-
tive data. Therefore the location monitoring measure-
ment probe is used to choose a node that is located in a
trusted area (e.g the local plant). The further decisions
are made on the resulting subset. The service also re-
quires a node that provides an encrypted communica-
tion channel. This is validated by using the security

A Fog-Cloud Computing Infrastructure for Condition Monitoring and Distributing Industry 4.0 Services

239



check measurement probe. Afterwards, a least loaded
algorithm is used to determine the most suitable node
within the resulting subset. Using the blueprint imple-
mentations, it is straight-forward to implement a dis-
tribution algorithm (R8). The framework predefines
distribution logic and provides the functionality to re-
quest the measurement data. In the example, it is only
required to implement nested conditional statements
that create a set of suitable nodes. Afterward, this set
is passed to a predefined least-loaded algorithm. Us-
ing this approach existing blocks can be combined or
enhanced with additional distribution logic.

Figure 5: Example Distribution Algorithm.

6 CONCLUSIONS

This paper investigated how to provide a consistent
environment to combine Fog and Cloud Computing
using container virtualization. The architecture is fo-
cussing on develop new deployment algorithms for
distributing services between worker nodes. To be
able to do so, this paper described how to integrate
centralized and decentralized measurement probes to
collect node conditions such as the available network
connection, performance and storage capabilities as
well as security and privacy checks. Another research
question targeted in this paper is to provide uniformity
in terms of applying different deployment algorithms
and combine services using different technologies.

The architecture enables further research to in-
crease efficiency of data-driven applications, reduce
power consumption and overcome the security and
privacy challenges. As a next step, we’ll integrate
further distribution algorithms such as machine learn-

ing approaches and integrate additional measurement
probes for more complex security checks.

REFERENCES

Bellavista, P. and Zanni, A. (2017). Feasibility of fog com-
puting deployment based on docker containerization
over raspberrypi. In Proceedings of the 18th Interna-
tional Conference on Distributed Computing and Net-
working, ICDCN ’17, pages 16:1–16:10. ACM.

Chakraborty, S., Bhowmick, S., Talaga, P., and Agrawal,
D. P. (2016). Fog networks in healthcare application.
In IEEE 13th International Conference on Mobile Ad
Hoc and Sensor Systems (MASS), pages 386–387.

Chang, C., Yang, S., Yeh, E., Lin, P., and Jeng, J. (2017).
A kubernetes-based monitoring platform for dynamic
cloud resource provisioning. In GLOBECOM IEEE
Global Communications Conference, pages 1–6.

Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E., Terasawa, K.,
and Kitazawa, A. (2018). Fogflow: Easy program-
ming of iot services over cloud and edges for smart
cities. IEEE Internet of Things Journal, 5(2):696–707.

Jiang, X., Fischione, C., and Pang, Z. (2017). Low latency
networking for industry 4.0. In Proceedings of the
2017 International Conference on Embedded Wireless
Systems and Networks, pages 212–213.

Kubernetes (2018). Metrics Server documenta-
tion. https://github.com/kubernetes/community/
blob/master/contributors/design-proposals/
instrumentation/metrics-server.md.

Mahmud, R., Koch, F. L., and Buyya, R. (2018). Cloud-fog
interoperability in iot-enabled healthcare solutions. In
Proceedings of the 19th International Conference on
Distributed Computing and Networking, ICDCN ’18,
pages 32:1–32:10. ACM.

Neto, E. C. P., Callou, G., and Aires, F. (2017). An al-
gorithm to optimise the load distribution of fog envi-
ronments. In 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE.

Rübsamen, T., Pulls, T., and Reich, C. (2016). Security and
privacy preservation of evidence in cloud accountabil-
ity audits. In Cloud Computing and Services Science,
pages 95–114. Springer International Publishing.

Tsai, P., Hong, H., Cheng, A., and Hsu, C. (2017). Dis-
tributed analytics in fog computing platforms us-
ing tensorflow and kubernetes. In 2017 19th Asia-
Pacific Network Operations and Management Sympo-
sium (APNOMS), pages 145–150.

Woebker, C., Seitz, A., Mueller, H., and Bruegge, B.
(2018). Fogernetes: Deployment and management
of fog computing applications. In NOMS 2018 -
2018 IEEE/IFIP Network Operations and Manage-
ment Symposium. IEEE.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

240


