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Abstract: In this paper we introduce an adaptation engine supporting self-adaptation of running BPMN process 

instances. This adaptation engine implements the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) 

approach from autonomic computing for self-adaptation. The MAPE control loop aims at identifying the 

adaptation need and defining and executing the operations required to deal with these needs while the K is 

the knowledge needed for the MAPE control loop. More precisely, the paper presents the architecture of the 

adaptation engine: it details how autonomic managers responsible for self-adaptation of process instances 

implement the MAPE control loop. 

1 INTRODUCTION 

It is now widely acknowledged that processes are 

fundamental in companies since they serve as a 

support for the alignment between the information 

systems of companies and their business strategies. 

However, the dynamic environment in which 

companies are involved forces them to frequently 

adapt their processes to face these changes. 

Moreover, to remain competitive it is crucial that 

companies take these changes into account as 

quickly and efficiently as possible. Thus the key to 

success for companies is closely related to their 

ability to automatically and autonomously capture 

changes occurring in their environment and adapt 

their processes accordingly. As it is not possible to 

anticipate these changes and catch them into process 

schemas/models at build-time (most of them are 

unforeseeable: resources unavailability, new 

customer requirements), it is important to be able to 

manage them at run-time. In other words, it is 

important to be able to monitor and manage the run-

time of process instances to identify adaptation 

needs and define and perform the required 

operations to implement them. As a consequence, 

the need for automating process adaptation at run-

time is more and more strong. 

Weber and Reichert have defined a typology for 

classifying process adaptation needs at run-time 

(Reichert and Weber, 2012). This typology has 

identified the following adaptation needs for running 

business process instances: (i) adaptation by 

deviation for handling occasional unforeseen 

changes or exceptions in process instances at run-

time without changing its process model, (ii) 

adaptation by variability for handling different 

process variants at run-time depending on the 

current context situation, (iii) adaptation by 

evolution for handling unforeseen changes in 

process instances at run-time, which require 

occasional or permanent modifications in its process 

model and (iv) adaptation by looseness for handling 

at run-time processes whose process model is not 

known or incompletely known at design-time and is 

under-specified. 

In the recent past, process adaptation has been 

highly investigated and numerous solutions have 

been recommended to help BPM practitioners in 

managing adaptation manually at run-time (e.g., 

(Adams et al., 2006), (Adams et al., 2007), (Zhao 

and Liu, 2013)). However, the manual adaptation of 

processes is a costly, time consuming and error 

prone task (Müller et al., 2004), (Reichert and 

Weber, 2012), (Sprovieri et al., 2016). Thus the 
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issue of self-adaptation of processes has to be 

investigated. 

On the other hand, autonomic computing is a 

field of computer science aiming at building systems 

that are able to automatically and autonomously 

adapt their own structure and behavior in response to 

changes occurring in their operating environment 

(Horn, 2001). This concept is known as self-

adaptation (De Lemos et al., 2010). To achieve the 

self-adaptation, several solutions have recommended 

the IBM’s MAPE-K approach (IBM, 2006), which is 

the de facto reference model to design self-adaptive 

software in the context of autonomic computing. 

This approach advocates four functions including (i) 

Monitor (M) for collecting data about the managed 

system and its environment from sensors, filtering 

and aggregating them into symptoms, (ii) Analyze 

(A) for analyzing the symptoms to detect if changes 

are required, (iii) Plan (P) for constructing the 

actions needed to resolve detected changes and (iv) 

Execute (E) for applying the actions required to 

adapt the behavior of the managed system using 

effectors. These four functions (MAPE) handle and 

share Knowledge (K).  

Several contributions have recommended the use 

of solutions from autonomic computing in the BPM 

field for making processes self-adaptable (Ayora et 

al., 2012), (Oliveira et al., 2012), (Oliveira et al., 

2013), (Ferro and Rubira, 2015), (Seiger et al., 

2016), (Seiger et al., 2017). These contributions are 

a step forward for self-adaptation of processes. 

However they have the following drawbacks. First, 

they do not address the issue of self-adaptation of 

processes in a comprehensive and global way within 

the framework of the four adaptation needs defined 

in Reichert and Weber’s taxonomy (Reichert and 

Weber, 2012): they only take into account one or 

two adaptation needs but never all four at the same 

time. Second, most of the contributions mainly focus 

on the self-adaptation of the behavioral dimension of 

running process instances (i.e., process activities and 

their coordination), the informational dimension 

(i.e., data required to or produced by activity 

execution) and/or the organizational dimension (i.e., 

resources involved in activity execution), but neglect 

the intentional dimension (defining process goals 

and process constraints), which is another important 

dimension that must be taken into account to have a 

comprehensive view of processes.  

To overcome these limitations, we recommend 

an adaptation engine based on the MAPE-K 

approach from autonomic computing to manage the 

running of process instances so that they self-adapt 

to changes occurring in their operating environment. 

The adaptation engine includes a set of autonomic 

managers monitoring process components, namely, 

the process itself and its activities (i.e., sub-

processes or tasks). Each manager implements the 

MAPE control loop responsible for (i) the 

identification of adaptation needs and (ii) the 

definition and the execution of the operations 

required to the implementation of the identified 

adaptation. These autonomic managers also handle 

and share knowledge (K). Knowledge modeling is 

based on a meta-model that allows processes and 

their activities to be represented in different ways: 

the notion of version serves as a support for such a 

representation. The meta-model also makes it 

possible to define when to use these versions: the 

notion of context serves as a support for such a 

definition. 

The remainder of the paper is organized as 

follows. Section 2 is dedicated to the presentation of 

the main works addressing self-adaption of 

processes using the MAPE-K approach of 

autonomic computing. Section 3 presents our 

contribution to address the issue of self-adaptation of 

business process instances. It mainly introduces the 

recommended adaptation engine and details the 

MAPE control loop. Finally, Section 4 concludes the 

paper and gives some directions for future works. 

2 RELATED WORK 

Self-adaptation of processes has been the focus of 
several contributions such as (Ayora et al., 2012), 
(Oliveira et al., 2012), (Oliveira et al., 2013), (Ferro 
and Rubira, 2015), (Seiger et al., 2016) or (Seiger et 
al., 2017). Each of these contributions recommends 
the use of the MAPE-K approach for activity (sub-
process or tasks) or process monitoring.  

For instance, (Ayora et al., 2012) recommended 
a solution to manage process variants at design time 
and self-adapt them at run-time. At design time, the 
solution makes it possible to model process 
variability by describing process variants using three 
models: the base model to specify process fragments 
(i.e., consistent part of processes) shared by all 
process variants, the variation model to specify the 
replacement fragments that can alternatively replace 
fragments of the base model, and the resolution 
model to specify the context conditions that define 
the conditions of use for the replacement fragments. 
At run-time, the recommended solution monitors 
fragments and dynamically adapts the base model 
according to the variation model. Thus it compares 
the context conditions of monitored fragments with 
the context events recorded in the context model, 
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and eventually defines an adaptation plan gathering 
actions for fragments replacement. 

The contribution described in (Oliveira et al., 
2012) and (Oliveira et al., 2013) introduced the 
MABUP (Multi-Level Autonomic Business Process) 
approach for self-adaptation of processes. MABUP 
recommends two main steps. The modeling step 
supports the modeling of processes considering four 
abstraction levels: the organizational level, the 
technological level, the operational level and the 
service level. The part relating to self-adaptation is 
more particularly defined in the technological level, 
which identifies monitored tasks, and in the 
operational level, which defines the self-adaptation 
of monitored tasks in terms of variant, variation 
point and context. The other step of MABUP is the 
management step that uses the MAPE-K approach to 
self-adapt processes. This step checks all the 
variation points and evaluates the context in each 
variant to identify adaptation needs. If adaptations 
are required, it selects the variation point and thus 
the variant that satisfies the context of the operating 
environment.  

Another interesting contribution is (Ferro and 
Rubira, 2015). This contribution introduced an 
adaptation engine for self-adaptation of process 
instances at run-time. The adaptation engine is based 
on the MAPE-K approach. It introduces three types 
of agents, the agents monitor, adapter and executor 
that implement the different steps of the approach. 
The agent adaptor implements decision making for 
adaptation, which is driven by goal and business rule 
analysis. It also implements the operations possibly 
required for process adaptation, in two steps: first, it 
selects existing activities in the process repository or 
it uses planning technique for reconfiguration of 
activity coordination analyzing pre-conditions, post-
conditions, interdependences between activities; 

second, it uses business rules to define the required 
operations for process adaptation.   

Finally, (Seiger et al., 2016) and (Seiger et al., 
2017) suggest the self-adaptation of process 
instances based on their goals. More precisely, the 
authors proposed a framework for enabling self-
adaptive business process in cyber-physical systems 
(CPS) based on the MAPE-K approach. The 
Monitor function collects context elements from the 
physical world related to task goals. These context 
elements are then analyzed to check for CPS 
consistency after task execution with respect to task 
goals. In case an inconsistency is detected, i.e., a 
task goal is not satisfied, the task instance is (i) 
adapted by replacing the resource involved in task 
execution by another and (ii) executed afterwards in 
order to try to restore CPS consistency and continue 
with process execution as planned.  

Table 1 evaluates the previous contributions with 

respect to (Oukharijane et al., 2018) criteria related 

to self-adaptation of process instances at run-time 

and giving answers to the following questions:  

• What components are monitored? 

• What process dimensions are affected by 

adaptation? 

• What is the basis for adaptation decision 

making? 

• Does the approach allow traceability? 

• What process adaptation needs are taken into 

account 

The first and main observation we can make 

from Table 1 is that all the examined contributions 

only partially consider the adaptation needs of 

Reichert and Weber’s taxonomy (Reichert and 

Weber, 2012). This is mainly due to the chosen 

modeling approach for adaptation. Indeed the 

variant-based approach, recommended for instance 
 

Table 1: Related work evaluation. 

Works 

Criteria 
(Ayora et al., 2012) 

(Oliveira et al., 2012) 

(Oliveira et al., 2013) 

(Ferro and Rubira, 

2015) 

(Seiger et al., 2016) 

(Seiger et al., 2017) 

monitored components 
fragment (task, sub-

process or process) 
task  task task  

impacted process 

dimensions 

informational  

organizational  

behavioral  

informational  

organizational  

informational 

organizational  

behavioral  

organizational  

decision-making for 

adaptation  
any process variable any process variable 

goal process 

variable 

goal process 

variable 

adaptation achievement  variant-based variant-based 
goal-based 

rule-based 
goal-based  

traceability  not supported  not supported not supported not supported 

process adaptation needs 
variability  

looseness 
variability 

deviation  

looseness  
deviation  
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in (Ayora et al., 2012) and in (Oliveira et al., 2012), 

(Oliveira et al., 2013), allows the modeling of 

several variants for fragments or tasks, each variant 

being convenient to a given context. Only one 

fragment schema is kept for each variant and there 

is no track of the different changes performed to 

each variant (none of these works supports 

traceability). However, evolution is not related only 

to the ability to perform updates on process, sub-

process or task schemas but also to the ability to 

keep track of these updates. 

Second, we can observe that the process 

dimensions impacted by the adaptation differ from a 

contribution to another. For instance, in (Ayora et 

al., 2012), the adaptation may impact the 

informational, organizational and behavioral 

dimensions of process, while in (Seiger et al., 2016) 

and (Seiger et al., 2017), only the organizational 

dimension of process may be adapted.  

The third observation that can be made from 

Table 1 relates to decision-making for adaptation 

and its achievement. In the examined works, 

decision-making for adaptation is based on the 

comparison of the values that the process variables 

have in the operating environment and the variation 

points or process goals. However, in both cases, 

operating environment modeling is not addressed in 

a comprehensive way, taking into account all the 

process dimensions. On the other hand, adaptation 

techniques of the examined contributions are either 

variant-based or goal-based. As explained before, 

the variant-based approach does not allow dealing 

with adaptation by evolution. Moreover, we believe 

that these techniques could be suitably mixed to 

improve adaptation achievement. 

In this paper, we recommend an adaptation 

engine that ensures the self-adaptation of process 

instances and addresses the drawbacks of the works 

previously examined.  

First, as in examined contributions, we 

recommend the MAPE-K approach for self-

adaptation. Indeed the use of this approach reduces 

human involvement when adapting the running 

process instances. It also ensures a modular 

separation between the process engine and the 

adaptation engine in order to overcome the 

drawbacks of embedding the self-adaptation logic 

within the process engine. Finally, it makes 

processes highly reactive to changes occurring in 

their operating environment. 

Second, in contrast with the examined works, 

our adaptation engine monitors business process 

instances at the following abstraction levels: (i) the 

process and the sub-process levels, to support 

adaptation by variability and adaptation by 

evolution; and (ii) the task level to support 

adaptation by deviation (including unavailability of 

data or resources) and adaptation by looseness 

(including late binding). Thus we take into account 

the main adaptation needs for process instances at 

run-time. Moreover, considering these three 

abstraction levels makes the self-adaptation of all 

the dimensions of processes possible.  

Third, we recommend versioning as adaptation 

technique for adaptation achievement. The reasons 

of this choice are as follows. First, the notion of 

version has been recognized as a key notion to deal 

with adaptation by variability, adaptation by 

evolution, adaptation by deviation and adaptation 

by looseness (Zhao and Liu, 2013), (Ben Said et al., 

2014). Notably, versioning allows supporting both 

adaptation by variability and adaptation by 

evolution, as several alternatives (variants) of a 

same process (or sub-process or task) may be 

modeled according to the context and also several 

schema versions can be kept for each variant 

(traceability is supported in versioning). Second, 

handling versions of processes facilitates the 

migration of instances from an initial schema to a 

final one, allowing, if the migration is not possible, 

two different instances of the same process (or sub-

process) to run according to two different schema 

versions. Therefore, the adaptation achievement 

should benefit from the versioning technique. 

3 MAPE-K ARCHITECTURE 
OF THE ADAPTATION 
ENGINE  

This section introduces the architecture of the 

Adaptation Engine (AE) by distinguishing its 

external architecture, which highlights how it is 

connected with the outside, from its internal 

architecture, which highlights how it monitors and 

possibly adapts process instances at run-time. We 

also give the life cycles of the components of this 

internal architecture  

3.1 External Architecture 

Figure 1 gives an overview of the external 

architecture of the AE.  
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sensors effectors

Physical Operating
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Figure 1: External Architecture of the Adaptation Engine. 

The AE is connected to the Physical Operating 

Environment (POE) in which processes operate and 

to the Process Engine (PE) that executes them. More 

precisely it receives data from sensors in the POE, 

analyses them and eventually sends to the PE  

(e.g., Camunda, Activiti, Bonita, JBPM…) via 

effectors the operations to be carried out to adapt 

process instances. Thus we separate the self-

adaptation concern from other concerns. The main 

advantage of the separation between the AE and the 

PE is the reusability of the adaptation engine for 

various process engines. This means that we do not 

modify the structure of any process engine. 

In the same way, we separate the AE from the 

POE. The main advantage of this separation is that it 

makes easier the integration of new sensors. Indeed, 

sensors of the POE are both physical and software 

entities installed in the physical environment: the 

physical entity records sensor data while its 

corresponding computational entity sends to the 

adaptation engine changes detected in the recorded 

data. Thus when adding new sensors to the POE, the 

AE must not be modified since only the POE is 

impacted (as it integrates both the physical and the 

computational entities of sensors). 

3.2 Internal Architecture 

The AE is composed of a set of autonomic managers 

responsible for the monitoring and the possible 

adaptation of process instances at run-time. There 

are as many autonomic managers as there are 

running process instances. Each of these autonomic 

managers implements the Monitor, Analyze, Plan 

and Execute (MAPE) control loop of autonomic 

computing to support self-adaptation of process 

instances and handle and share knowledge (K). 

Figure 2 gives an overview of the architecture of 

an autonomic manager. Regarding the K, it is 

composed of the version repository and the logical 

operating environment. The version repository 

stores versions of tasks, sub-processes and processes 

as well as their contexts of use. These versions and 

their contexts of use are modeled according to the 

BPMN4V-Context meta-model, which is an 

extension of BPMN supporting the modeling of 

versions of BPMN components (i.e., processes, sub-

processes, tasks, roles and data), along with their use 

contexts. As for the Logical Operating Environment 

(LOE), it gives an accurate picture of the running 

environment of process instances. It is composed of 

a set of context elements that correspond to data sent 

by sensors from the POE and that refer to process 

instance variables from any context category 

(immediate, internal, external or environmental). 

These data are only sent by sensors if their values 

change.  

Regarding the MAPE, each step is implemented 

by separate software components. The Monitor 

component aims at getting an accurate picture of the 

operating environment of each monitored process 

instance along with its sub-processes and tasks. It 

receives data from the POE and records them in the 

LOE. Each data sent from the POE corresponds to a 

variable of the monitored process instance. This 

variable is modeled in the LOE as a context 

parameter, which can be from any context category, 

and for which the Monitor component stores a value. 

Note that this component follows a specific life 

cycle, linked to the monitoring it must provide on 

the POE.  

Contrary, the three other components of the 

MAPE control loop, namely A (Analyze), P (Plan) 

and E (Execute), follow the same life cycle as they 

respectively implement the identification of the 

possible need for adaptation, the definition of the 

operations required to address this need and the 

execution of these operations in the process engine. 

Communication between components is visualized 

by thick arrows in Figure 2. There is no arrow 

between the M and the APE because the life cycle of 

these components are independent. 

The Analyze component implements the A of the 

control loop. It is responsible for the identification of 

the need for adaptation. It is composed of several 

task analyzers (as many as tasks in the process) that 

match their use context with the current context, i.e., 

the context described in the LOE, and identify the 

need for adaptation if the matching fails. Each task 

analyzer notifies the analyzer of the component in 

which it is involved and which is either a sub-

process analyzer or a process analyzer. In turn, the 

sub-process analyzer notifies the analyzer of the 

process in which it is involved. Note that 

notifications between analyzers are visualized in 

Figure 2 as thin arrows. 
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Figure 2: Architecture of an Autonomic Manager. 

To sum up, the identification of the need for 

adaptation is based on task analysis (is their context 

of use checked in the LOE?) and, if identified, the 

adaptation need is also forwarded to the sub-process 

or the process in which the considered task is 

involved so that these latter are informed that an 

adaptation is required. 

The Plan component implements the P of the 

control loop. It receives as an input the different 

adaptation needs identified by the Analyzer 

component (several tasks may have identified a need 

for adaptation) and produces as an output the set of 

operations to be carried out to meet these adaptation 

needs. These operations are expressed using the 

adaptation patterns recommended in (Weber et al., 

2008), which correspond to high-level operations 

making changes on the process instance schema 

easier to perform. The Plan component is composed 

of several adapters that define needed operations to 

implement the identified adaptation: one process 

adapter, as many sub-process adapters as sub-

processes in the monitored process instance and as 

many task adapters as tasks in the monitored process 

instance. Each adapter deals with its own adaptation 

and defines the operations required to carry it out. 

Thus a task adapter deals with adaptation of the 

monitored task, and mainly addresses adaptation by 

looseness (late biding, unavailability of resources or 

data), and adaptation by deviation (repeat, skip or 

redo a task). A sub-process adapter and a process 

adapter deal with adaptation by evolution and 

adaptation by looseness (late modeling) as they can 

modify the coordination of theirs tasks (and theirs 

sub-processes) and insert, delete, move, or replace 

tasks (and/or sub-processes). In addition, sub-

process adapters and process adapters also deal with 

adaptation by variability as they can replace a 

version of a task, sub-process or process with 

another one by matching the context of use of the 

considered versions (defined in the version 

repository) with the current context (defined in the 

LOE). However, if it does not exist any existing 

solution modeled as a version in the version 

repository, the adapter either requests for domain 

expert intervention or builds on its own a new 

solution (process or sub-process) in accordance with 

the objectives to meet and the current situation, as in 

(Rantrua et al., 2013). In addition, the Plan 

component is also responsible for updating the 

version repository if it is possible to specify new 

versions from defined adaptation operations. 

The Execute component implements the E of the 

control loop. It receives from the Plan component 

the operations to be carried out and maps these 

operations into operations that can be understood by 

the target process engine. Each process engine being 

specific, we have defined several wrappers suitable 

for each of them and it is these wrappers who map 

the operations defined by the Plan component into 

operations of the process engine. In addition, the 

Execute component can also use specific operations 

of the process engine that allow suspending, 

resuming or restarting the execution of a process 

instance. Ultimately it triggers the execution of these 

mapped adaptation operations in the target process 

engine.  

Finally, the dotted arrows of Figure 2 visualize 

the read/write operations in K of the Monitor, 

Analyze, Plan and Execute components. 
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Figure 3: Life cycle for M (Monitor) as a BPMN diagram. 
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Figure 4: Life cycle for APE (Analyze, Plan and Execute) as a BPMN diagram. 

3.3 Life Cycles for MAPE 

Figures 3 and 4 respectively give the life cycles of 

M and APE as BPMN diagrams. Regarding M, its 

life cycle indicates that the activity Monitor reacts to 

each data sent from the POE and updates the LOE 

accordingly. This life cycle ends when the 

adaptation engine is stopped. Regarding APE, the 

first task is Analyze, which supports the 

identification need from data stored in the LOE and 

in the Version repository. If a need for adaptation is 

identified then the tasks Plan and Execute are 

triggered. Plan defines the set of operations to be 

carried out using the adaptation patterns of (Weber 

et al., 2008) while Execute maps the adaptation 

operations according to the target process engine and 

executes the mapped adaptation operations. 

Adaptation operations and mapped adaptation 

operations are modeled in the BPMN diagram as 

data objects produces and/or consumed by the 

activities Plan and Execute. This life cycle ends 

when the adaptation engine is stopped. 

4 CONCLUSION 

This paper has addressed the issue of process self-

adaptation, which is an important issue in the BPM 

field. To address this issue, the paper has 

recommended an Adaptation Engine (AE) based on 

the MAPE-K approach of autonomic computing so 

that monitored process instances self-adapt to 

changes occurring in their operating environment. 

The adaptation engine includes a set of autonomic 

managers monitoring process components. Each 

manager implements a MAPE control loop 

responsible for the identification of adaptation needs 

and for the definition and execution of the 

operations required to the implementation of the 

identified adaptation. These autonomic managers 

also handle and share knowledge (K).  

Paper contributions are as follows. First, the 

paper has defined the architecture of the AE. It has 

discussed the interaction between the AE and the 

operating environment through sensors and between 

the AE and the process engine through connectors. 

Second, it has presented the internal architecture of 

the autonomic managers implementing the MAPE 

control loop, including their life cycle.  

Benefits of our approach are as follows. First the 

separation between the AE and the process engine 

with which it interacts makes the AE reusable for 

various process engines. In the same way, the 

separation between the AE and the physical 

operating environment, integrating sensors 

responsible for the measurement of data describing 

the operating environment of processes, makes 

easier the integration of new sensors. Second, the 
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recommended solution benefits from the MAPE-K 

approach advantages. This approach from the 

autonomic computing field makes possible the 

implementation of self-adaptation for monitored 

components thanks to autonomic managers 

implementing MAPE control loop and sharing 

K(knowledge). Third, the combined use of contexts 

and versions makes it possible to take into account 

the different adaptation needs identified in Reichert 

and Weber's taxonomy. Thus our recommended 

solution supports in a coherent framework the self-

variation, self-looseness, self-deviation and self-

evolution of monitored process instances. 

However, our contribution is incomplete as the 

recommended solution has only dealt with the 

architecture of the AE, notably the internal 

architecture of the autonomic managers. In our 

future work, we have planned (i) to implement this 

architecture using multi-agent systems in which each 

component of MAPE control loop can be considered 

as a software agent; (ii) to address the modelling of 

the knowledge handled and shared by autonomic 

managers; and (iii) to address the connection with 

different process engines and notably the 

specification of adaptation operations and the 

mapping of these adaptation operations according to 

the target process engine. 
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