
Towards a New Adaptation Engine for Self-Adaptation of BPMN
Processes Instances

Jamila Oukharijane1, Imen Ben Said1, Mohamed Amine Chaabane1, Eric Andonoff2 and Rafik Bouaziz1
1MIRACL, University of Sfax, Route de l’Aéroport, BP 1088, 3018 Sfax, Tunisia

2IRIT, University Toulouse 1-Capitole, 2 Rue du Doyen Gabriel Marty, 31042 Toulouse Cedex, France

Rafik.Bouaziz@usf.tn

Keywords: BPMN, Self-Adaptation, Autonomic Computing, Adaptation Engine, MAPE-K, Context, Version,

BPMN4V-Context.

Abstract: In this paper we introduce an adaptation engine supporting self-adaptation of running BPMN process

instances. This adaptation engine implements the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge)

approach from autonomic computing for self-adaptation. The MAPE control loop aims at identifying the

adaptation need and defining and executing the operations required to deal with these needs while the K is

the knowledge needed for the MAPE control loop. More precisely, the paper presents the architecture of the

adaptation engine: it details how autonomic managers responsible for self-adaptation of process instances

implement the MAPE control loop.

1 INTRODUCTION

It is now widely acknowledged that processes are

fundamental in companies since they serve as a

support for the alignment between the information

systems of companies and their business strategies.

However, the dynamic environment in which

companies are involved forces them to frequently

adapt their processes to face these changes.

Moreover, to remain competitive it is crucial that

companies take these changes into account as

quickly and efficiently as possible. Thus the key to

success for companies is closely related to their

ability to automatically and autonomously capture

changes occurring in their environment and adapt

their processes accordingly. As it is not possible to

anticipate these changes and catch them into process

schemas/models at build-time (most of them are

unforeseeable: resources unavailability, new

customer requirements), it is important to be able to

manage them at run-time. In other words, it is

important to be able to monitor and manage the run-

time of process instances to identify adaptation

needs and define and perform the required

operations to implement them. As a consequence,

the need for automating process adaptation at run-

time is more and more strong.

Weber and Reichert have defined a typology for

classifying process adaptation needs at run-time

(Reichert and Weber, 2012). This typology has

identified the following adaptation needs for running

business process instances: (i) adaptation by

deviation for handling occasional unforeseen

changes or exceptions in process instances at run-

time without changing its process model, (ii)

adaptation by variability for handling different

process variants at run-time depending on the

current context situation, (iii) adaptation by

evolution for handling unforeseen changes in

process instances at run-time, which require

occasional or permanent modifications in its process

model and (iv) adaptation by looseness for handling

at run-time processes whose process model is not

known or incompletely known at design-time and is

under-specified.

In the recent past, process adaptation has been

highly investigated and numerous solutions have

been recommended to help BPM practitioners in

managing adaptation manually at run-time (e.g.,

(Adams et al., 2006), (Adams et al., 2007), (Zhao

and Liu, 2013)). However, the manual adaptation of

processes is a costly, time consuming and error

prone task (Müller et al., 2004), (Reichert and

Weber, 2012), (Sprovieri et al., 2016). Thus the

218
Oukharijane, J., Ben Said, I., Chaabane, M., Andonoff, E. and Bouaziz, R.
Towards a New Adaptation Engine for Self-Adaptation of BPMN Processes Instances.
DOI: 10.5220/0007626602180225
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 218-225
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

issue of self-adaptation of processes has to be

investigated.

On the other hand, autonomic computing is a

field of computer science aiming at building systems

that are able to automatically and autonomously

adapt their own structure and behavior in response to

changes occurring in their operating environment

(Horn, 2001). This concept is known as self-

adaptation (De Lemos et al., 2010). To achieve the

self-adaptation, several solutions have recommended

the IBM’s MAPE-K approach (IBM, 2006), which is

the de facto reference model to design self-adaptive

software in the context of autonomic computing.

This approach advocates four functions including (i)

Monitor (M) for collecting data about the managed

system and its environment from sensors, filtering

and aggregating them into symptoms, (ii) Analyze

(A) for analyzing the symptoms to detect if changes

are required, (iii) Plan (P) for constructing the

actions needed to resolve detected changes and (iv)

Execute (E) for applying the actions required to

adapt the behavior of the managed system using

effectors. These four functions (MAPE) handle and

share Knowledge (K).

Several contributions have recommended the use

of solutions from autonomic computing in the BPM

field for making processes self-adaptable (Ayora et

al., 2012), (Oliveira et al., 2012), (Oliveira et al.,

2013), (Ferro and Rubira, 2015), (Seiger et al.,

2016), (Seiger et al., 2017). These contributions are

a step forward for self-adaptation of processes.

However they have the following drawbacks. First,

they do not address the issue of self-adaptation of

processes in a comprehensive and global way within

the framework of the four adaptation needs defined

in Reichert and Weber’s taxonomy (Reichert and

Weber, 2012): they only take into account one or

two adaptation needs but never all four at the same

time. Second, most of the contributions mainly focus

on the self-adaptation of the behavioral dimension of

running process instances (i.e., process activities and

their coordination), the informational dimension

(i.e., data required to or produced by activity

execution) and/or the organizational dimension (i.e.,

resources involved in activity execution), but neglect

the intentional dimension (defining process goals

and process constraints), which is another important

dimension that must be taken into account to have a

comprehensive view of processes.

To overcome these limitations, we recommend

an adaptation engine based on the MAPE-K

approach from autonomic computing to manage the

running of process instances so that they self-adapt

to changes occurring in their operating environment.

The adaptation engine includes a set of autonomic

managers monitoring process components, namely,

the process itself and its activities (i.e., sub-

processes or tasks). Each manager implements the

MAPE control loop responsible for (i) the

identification of adaptation needs and (ii) the

definition and the execution of the operations

required to the implementation of the identified

adaptation. These autonomic managers also handle

and share knowledge (K). Knowledge modeling is

based on a meta-model that allows processes and

their activities to be represented in different ways:

the notion of version serves as a support for such a

representation. The meta-model also makes it

possible to define when to use these versions: the

notion of context serves as a support for such a

definition.

The remainder of the paper is organized as

follows. Section 2 is dedicated to the presentation of

the main works addressing self-adaption of

processes using the MAPE-K approach of

autonomic computing. Section 3 presents our

contribution to address the issue of self-adaptation of

business process instances. It mainly introduces the

recommended adaptation engine and details the

MAPE control loop. Finally, Section 4 concludes the

paper and gives some directions for future works.

2 RELATED WORK

Self-adaptation of processes has been the focus of
several contributions such as (Ayora et al., 2012),
(Oliveira et al., 2012), (Oliveira et al., 2013), (Ferro
and Rubira, 2015), (Seiger et al., 2016) or (Seiger et
al., 2017). Each of these contributions recommends
the use of the MAPE-K approach for activity (sub-
process or tasks) or process monitoring.

For instance, (Ayora et al., 2012) recommended
a solution to manage process variants at design time
and self-adapt them at run-time. At design time, the
solution makes it possible to model process
variability by describing process variants using three
models: the base model to specify process fragments
(i.e., consistent part of processes) shared by all
process variants, the variation model to specify the
replacement fragments that can alternatively replace
fragments of the base model, and the resolution
model to specify the context conditions that define
the conditions of use for the replacement fragments.
At run-time, the recommended solution monitors
fragments and dynamically adapts the base model
according to the variation model. Thus it compares
the context conditions of monitored fragments with
the context events recorded in the context model,

Towards a New Adaptation Engine for Self-Adaptation of BPMN Processes Instances

219

and eventually defines an adaptation plan gathering
actions for fragments replacement.

The contribution described in (Oliveira et al.,
2012) and (Oliveira et al., 2013) introduced the
MABUP (Multi-Level Autonomic Business Process)
approach for self-adaptation of processes. MABUP
recommends two main steps. The modeling step
supports the modeling of processes considering four
abstraction levels: the organizational level, the
technological level, the operational level and the
service level. The part relating to self-adaptation is
more particularly defined in the technological level,
which identifies monitored tasks, and in the
operational level, which defines the self-adaptation
of monitored tasks in terms of variant, variation
point and context. The other step of MABUP is the
management step that uses the MAPE-K approach to
self-adapt processes. This step checks all the
variation points and evaluates the context in each
variant to identify adaptation needs. If adaptations
are required, it selects the variation point and thus
the variant that satisfies the context of the operating
environment.

Another interesting contribution is (Ferro and
Rubira, 2015). This contribution introduced an
adaptation engine for self-adaptation of process
instances at run-time. The adaptation engine is based
on the MAPE-K approach. It introduces three types
of agents, the agents monitor, adapter and executor
that implement the different steps of the approach.
The agent adaptor implements decision making for
adaptation, which is driven by goal and business rule
analysis. It also implements the operations possibly
required for process adaptation, in two steps: first, it
selects existing activities in the process repository or
it uses planning technique for reconfiguration of
activity coordination analyzing pre-conditions, post-
conditions, interdependences between activities;

second, it uses business rules to define the required
operations for process adaptation.

Finally, (Seiger et al., 2016) and (Seiger et al.,
2017) suggest the self-adaptation of process
instances based on their goals. More precisely, the
authors proposed a framework for enabling self-
adaptive business process in cyber-physical systems
(CPS) based on the MAPE-K approach. The
Monitor function collects context elements from the
physical world related to task goals. These context
elements are then analyzed to check for CPS
consistency after task execution with respect to task
goals. In case an inconsistency is detected, i.e., a
task goal is not satisfied, the task instance is (i)
adapted by replacing the resource involved in task
execution by another and (ii) executed afterwards in
order to try to restore CPS consistency and continue
with process execution as planned.

Table 1 evaluates the previous contributions with

respect to (Oukharijane et al., 2018) criteria related

to self-adaptation of process instances at run-time

and giving answers to the following questions:

• What components are monitored?

• What process dimensions are affected by

adaptation?

• What is the basis for adaptation decision

making?

• Does the approach allow traceability?

• What process adaptation needs are taken into

account

The first and main observation we can make

from Table 1 is that all the examined contributions

only partially consider the adaptation needs of

Reichert and Weber’s taxonomy (Reichert and

Weber, 2012). This is mainly due to the chosen

modeling approach for adaptation. Indeed the

variant-based approach, recommended for instance

Table 1: Related work evaluation.

Works

Criteria
(Ayora et al., 2012)

(Oliveira et al., 2012)

(Oliveira et al., 2013)

(Ferro and Rubira,

2015)

(Seiger et al., 2016)

(Seiger et al., 2017)

monitored components
fragment (task, sub-

process or process)
task task task

impacted process

dimensions

informational

organizational

behavioral

informational

organizational

informational

organizational

behavioral

organizational

decision-making for

adaptation
any process variable any process variable

goal process

variable

goal process

variable

adaptation achievement variant-based variant-based
goal-based

rule-based
goal-based

traceability not supported not supported not supported not supported

process adaptation needs
variability

looseness
variability

deviation

looseness
deviation

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

220

in (Ayora et al., 2012) and in (Oliveira et al., 2012),

(Oliveira et al., 2013), allows the modeling of

several variants for fragments or tasks, each variant

being convenient to a given context. Only one

fragment schema is kept for each variant and there

is no track of the different changes performed to

each variant (none of these works supports

traceability). However, evolution is not related only

to the ability to perform updates on process, sub-

process or task schemas but also to the ability to

keep track of these updates.

Second, we can observe that the process

dimensions impacted by the adaptation differ from a

contribution to another. For instance, in (Ayora et

al., 2012), the adaptation may impact the

informational, organizational and behavioral

dimensions of process, while in (Seiger et al., 2016)

and (Seiger et al., 2017), only the organizational

dimension of process may be adapted.

The third observation that can be made from

Table 1 relates to decision-making for adaptation

and its achievement. In the examined works,

decision-making for adaptation is based on the

comparison of the values that the process variables

have in the operating environment and the variation

points or process goals. However, in both cases,

operating environment modeling is not addressed in

a comprehensive way, taking into account all the

process dimensions. On the other hand, adaptation

techniques of the examined contributions are either

variant-based or goal-based. As explained before,

the variant-based approach does not allow dealing

with adaptation by evolution. Moreover, we believe

that these techniques could be suitably mixed to

improve adaptation achievement.

In this paper, we recommend an adaptation

engine that ensures the self-adaptation of process

instances and addresses the drawbacks of the works

previously examined.

First, as in examined contributions, we

recommend the MAPE-K approach for self-

adaptation. Indeed the use of this approach reduces

human involvement when adapting the running

process instances. It also ensures a modular

separation between the process engine and the

adaptation engine in order to overcome the

drawbacks of embedding the self-adaptation logic

within the process engine. Finally, it makes

processes highly reactive to changes occurring in

their operating environment.

Second, in contrast with the examined works,

our adaptation engine monitors business process

instances at the following abstraction levels: (i) the

process and the sub-process levels, to support

adaptation by variability and adaptation by

evolution; and (ii) the task level to support

adaptation by deviation (including unavailability of

data or resources) and adaptation by looseness

(including late binding). Thus we take into account

the main adaptation needs for process instances at

run-time. Moreover, considering these three

abstraction levels makes the self-adaptation of all

the dimensions of processes possible.

Third, we recommend versioning as adaptation

technique for adaptation achievement. The reasons

of this choice are as follows. First, the notion of

version has been recognized as a key notion to deal

with adaptation by variability, adaptation by

evolution, adaptation by deviation and adaptation

by looseness (Zhao and Liu, 2013), (Ben Said et al.,

2014). Notably, versioning allows supporting both

adaptation by variability and adaptation by

evolution, as several alternatives (variants) of a

same process (or sub-process or task) may be

modeled according to the context and also several

schema versions can be kept for each variant

(traceability is supported in versioning). Second,

handling versions of processes facilitates the

migration of instances from an initial schema to a

final one, allowing, if the migration is not possible,

two different instances of the same process (or sub-

process) to run according to two different schema

versions. Therefore, the adaptation achievement

should benefit from the versioning technique.

3 MAPE-K ARCHITECTURE
OF THE ADAPTATION
ENGINE

This section introduces the architecture of the

Adaptation Engine (AE) by distinguishing its

external architecture, which highlights how it is

connected with the outside, from its internal

architecture, which highlights how it monitors and

possibly adapts process instances at run-time. We

also give the life cycles of the components of this

internal architecture

3.1 External Architecture

Figure 1 gives an overview of the external

architecture of the AE.

Towards a New Adaptation Engine for Self-Adaptation of BPMN Processes Instances

221

Adaptation Engine Process Engine
sensors effectors

Physical Operating

Environment

Figure 1: External Architecture of the Adaptation Engine.

The AE is connected to the Physical Operating

Environment (POE) in which processes operate and

to the Process Engine (PE) that executes them. More

precisely it receives data from sensors in the POE,

analyses them and eventually sends to the PE

(e.g., Camunda, Activiti, Bonita, JBPM…) via

effectors the operations to be carried out to adapt

process instances. Thus we separate the self-

adaptation concern from other concerns. The main

advantage of the separation between the AE and the

PE is the reusability of the adaptation engine for

various process engines. This means that we do not

modify the structure of any process engine.

In the same way, we separate the AE from the

POE. The main advantage of this separation is that it

makes easier the integration of new sensors. Indeed,

sensors of the POE are both physical and software

entities installed in the physical environment: the

physical entity records sensor data while its

corresponding computational entity sends to the

adaptation engine changes detected in the recorded

data. Thus when adding new sensors to the POE, the

AE must not be modified since only the POE is

impacted (as it integrates both the physical and the

computational entities of sensors).

3.2 Internal Architecture

The AE is composed of a set of autonomic managers

responsible for the monitoring and the possible

adaptation of process instances at run-time. There

are as many autonomic managers as there are

running process instances. Each of these autonomic

managers implements the Monitor, Analyze, Plan

and Execute (MAPE) control loop of autonomic

computing to support self-adaptation of process

instances and handle and share knowledge (K).

Figure 2 gives an overview of the architecture of

an autonomic manager. Regarding the K, it is

composed of the version repository and the logical

operating environment. The version repository

stores versions of tasks, sub-processes and processes

as well as their contexts of use. These versions and

their contexts of use are modeled according to the

BPMN4V-Context meta-model, which is an

extension of BPMN supporting the modeling of

versions of BPMN components (i.e., processes, sub-

processes, tasks, roles and data), along with their use

contexts. As for the Logical Operating Environment

(LOE), it gives an accurate picture of the running

environment of process instances. It is composed of

a set of context elements that correspond to data sent

by sensors from the POE and that refer to process

instance variables from any context category

(immediate, internal, external or environmental).

These data are only sent by sensors if their values

change.

Regarding the MAPE, each step is implemented

by separate software components. The Monitor

component aims at getting an accurate picture of the

operating environment of each monitored process

instance along with its sub-processes and tasks. It

receives data from the POE and records them in the

LOE. Each data sent from the POE corresponds to a

variable of the monitored process instance. This

variable is modeled in the LOE as a context

parameter, which can be from any context category,

and for which the Monitor component stores a value.

Note that this component follows a specific life

cycle, linked to the monitoring it must provide on

the POE.

Contrary, the three other components of the

MAPE control loop, namely A (Analyze), P (Plan)

and E (Execute), follow the same life cycle as they

respectively implement the identification of the

possible need for adaptation, the definition of the

operations required to address this need and the

execution of these operations in the process engine.

Communication between components is visualized

by thick arrows in Figure 2. There is no arrow

between the M and the APE because the life cycle of

these components are independent.

The Analyze component implements the A of the

control loop. It is responsible for the identification of

the need for adaptation. It is composed of several

task analyzers (as many as tasks in the process) that

match their use context with the current context, i.e.,

the context described in the LOE, and identify the

need for adaptation if the matching fails. Each task

analyzer notifies the analyzer of the component in

which it is involved and which is either a sub-

process analyzer or a process analyzer. In turn, the

sub-process analyzer notifies the analyzer of the

process in which it is involved. Note that

notifications between analyzers are visualized in

Figure 2 as thin arrows.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

222

Figure 2: Architecture of an Autonomic Manager.

To sum up, the identification of the need for

adaptation is based on task analysis (is their context

of use checked in the LOE?) and, if identified, the

adaptation need is also forwarded to the sub-process

or the process in which the considered task is

involved so that these latter are informed that an

adaptation is required.

The Plan component implements the P of the

control loop. It receives as an input the different

adaptation needs identified by the Analyzer

component (several tasks may have identified a need

for adaptation) and produces as an output the set of

operations to be carried out to meet these adaptation

needs. These operations are expressed using the

adaptation patterns recommended in (Weber et al.,

2008), which correspond to high-level operations

making changes on the process instance schema

easier to perform. The Plan component is composed

of several adapters that define needed operations to

implement the identified adaptation: one process

adapter, as many sub-process adapters as sub-

processes in the monitored process instance and as

many task adapters as tasks in the monitored process

instance. Each adapter deals with its own adaptation

and defines the operations required to carry it out.

Thus a task adapter deals with adaptation of the

monitored task, and mainly addresses adaptation by

looseness (late biding, unavailability of resources or

data), and adaptation by deviation (repeat, skip or

redo a task). A sub-process adapter and a process

adapter deal with adaptation by evolution and

adaptation by looseness (late modeling) as they can

modify the coordination of theirs tasks (and theirs

sub-processes) and insert, delete, move, or replace

tasks (and/or sub-processes). In addition, sub-

process adapters and process adapters also deal with

adaptation by variability as they can replace a

version of a task, sub-process or process with

another one by matching the context of use of the

considered versions (defined in the version

repository) with the current context (defined in the

LOE). However, if it does not exist any existing

solution modeled as a version in the version

repository, the adapter either requests for domain

expert intervention or builds on its own a new

solution (process or sub-process) in accordance with

the objectives to meet and the current situation, as in

(Rantrua et al., 2013). In addition, the Plan

component is also responsible for updating the

version repository if it is possible to specify new

versions from defined adaptation operations.

The Execute component implements the E of the

control loop. It receives from the Plan component

the operations to be carried out and maps these

operations into operations that can be understood by

the target process engine. Each process engine being

specific, we have defined several wrappers suitable

for each of them and it is these wrappers who map

the operations defined by the Plan component into

operations of the process engine. In addition, the

Execute component can also use specific operations

of the process engine that allow suspending,

resuming or restarting the execution of a process

instance. Ultimately it triggers the execution of these

mapped adaptation operations in the target process

engine.

Finally, the dotted arrows of Figure 2 visualize

the read/write operations in K of the Monitor,

Analyze, Plan and Execute components.

Towards a New Adaptation Engine for Self-Adaptation of BPMN Processes Instances

223

L
if

e
cy

cl
e

fo
r

M

data sent from the POE

stop of the AE
LOE

Monitor

Figure 3: Life cycle for M (Monitor) as a BPMN diagram.

L
if

e
cy

cl
e

fo
r

A
P

E

stop of the AE

LOE

Version repository

adaptation
need identified

Analyze

Plan Execute

adaptation operations
mapped adaptation operations

Figure 4: Life cycle for APE (Analyze, Plan and Execute) as a BPMN diagram.

3.3 Life Cycles for MAPE

Figures 3 and 4 respectively give the life cycles of

M and APE as BPMN diagrams. Regarding M, its

life cycle indicates that the activity Monitor reacts to

each data sent from the POE and updates the LOE

accordingly. This life cycle ends when the

adaptation engine is stopped. Regarding APE, the

first task is Analyze, which supports the

identification need from data stored in the LOE and

in the Version repository. If a need for adaptation is

identified then the tasks Plan and Execute are

triggered. Plan defines the set of operations to be

carried out using the adaptation patterns of (Weber

et al., 2008) while Execute maps the adaptation

operations according to the target process engine and

executes the mapped adaptation operations.

Adaptation operations and mapped adaptation

operations are modeled in the BPMN diagram as

data objects produces and/or consumed by the

activities Plan and Execute. This life cycle ends

when the adaptation engine is stopped.

4 CONCLUSION

This paper has addressed the issue of process self-

adaptation, which is an important issue in the BPM

field. To address this issue, the paper has

recommended an Adaptation Engine (AE) based on

the MAPE-K approach of autonomic computing so

that monitored process instances self-adapt to

changes occurring in their operating environment.

The adaptation engine includes a set of autonomic

managers monitoring process components. Each

manager implements a MAPE control loop

responsible for the identification of adaptation needs

and for the definition and execution of the

operations required to the implementation of the

identified adaptation. These autonomic managers

also handle and share knowledge (K).

Paper contributions are as follows. First, the

paper has defined the architecture of the AE. It has

discussed the interaction between the AE and the

operating environment through sensors and between

the AE and the process engine through connectors.

Second, it has presented the internal architecture of

the autonomic managers implementing the MAPE

control loop, including their life cycle.

Benefits of our approach are as follows. First the

separation between the AE and the process engine

with which it interacts makes the AE reusable for

various process engines. In the same way, the

separation between the AE and the physical

operating environment, integrating sensors

responsible for the measurement of data describing

the operating environment of processes, makes

easier the integration of new sensors. Second, the

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

224

recommended solution benefits from the MAPE-K

approach advantages. This approach from the

autonomic computing field makes possible the

implementation of self-adaptation for monitored

components thanks to autonomic managers

implementing MAPE control loop and sharing

K(knowledge). Third, the combined use of contexts

and versions makes it possible to take into account

the different adaptation needs identified in Reichert

and Weber's taxonomy. Thus our recommended

solution supports in a coherent framework the self-

variation, self-looseness, self-deviation and self-

evolution of monitored process instances.

However, our contribution is incomplete as the

recommended solution has only dealt with the

architecture of the AE, notably the internal

architecture of the autonomic managers. In our

future work, we have planned (i) to implement this

architecture using multi-agent systems in which each

component of MAPE control loop can be considered

as a software agent; (ii) to address the modelling of

the knowledge handled and shared by autonomic

managers; and (iii) to address the connection with

different process engines and notably the

specification of adaptation operations and the

mapping of these adaptation operations according to

the target process engine.

REFERENCES

Adams M. et al. 2007. Dynamic, extensible and context-

aware exception handling for workflows. Int.

Conference on the Move to Meaningful Internet

Systems, Vilamoura, Portugal, pp. 95–112.

Adams M. et al. 2006. Worklets: a service-oriented

implementation of dynamic flexibility in workflows.

Int. Conference on the Move to Meaningful Internet

Systems, Montpellier, France, pp. 291–308.

Ayora C. et al., 2012. Applying CVL to business process

variability management. VARiability for You

Workshop (@MODELS), Insbruck, Austria, pp. 26–

31.

Ben Said I., et al., 2014. Extending BPMN 2.0 Meta-

models for Process Version Modelling. Int.

Conference on Enterprise Information Systems,

Lisbon, Portugal, April 2014, pp. 384–393.

Ferro S., Rubira C., 2015. An architecture for dynamic

self-adaptation in workflows. Int. Conference on

Software Engineering Research and Practice, Las

Vegas, Nevada, USA.

Horn P., 2001. Autonomic computing: IBM’s perspective

on the state of information technology.

https://www.researchgate.net/publication/200031805_

Autonomic_Computing_IBM's_Perspective_on_the_S

tate_of_Information_Technology

IBM, 2006. An architectural blueprint for autonomic

computing. IBM White Paper.

De Lemos R. et al., 2010. Software engineering for self-

adaptive systems: a second research roadmap. Int.

seminar on Software Engineering for Self-Adaptive

Systems, Dagstuhl Castle, Germany, pp. 1–32.

Müller R., et al. 2004. Agentwork: a workflow system

supporting rule-based workflow adaptation. Data and

Knowledge Engineering, 51(2), pp.223–256.

Oliveira K., et al. 2012. A multi-level approach to

autonomic business process. Brazilian Symposium on

Software Engineering, Natal, Brazil, pp. 91–100.

Oliveira K., et al. 2013. Multi-level autonomic business

process management. Int. Conference on Enterprise,

Business-Process and Information Systems Modeling,

Valencia, Spain, pp. 184–198.

Oukharijane J. et al., 2018. A survey of Self-Adaptive

Business Processes. Int. Business Information

Management Association Conference, Seville, Spain,

pp. 1388–1403.

Rantrua A., et al. 2013. Flexible and emergent workflow

using adaptive agents. Int. Conference on

Computational Collective Intelligence, Craiova,

Romania, pp. 185–194.

Reichert M., Weber B., 2012. Enabling flexibility in

process-aware information systems: challenges,

methods, technologies. Springer.

Seiger R., et al., 2016. Enabling self-adaptive workflow

for Cyber-physical Systems. Int. Conference on

Enterprise, Business-Process and Information Systems

Modeling, Ljubljana, Slovenia, pp. 3–17.

Seiger R. et al. 2017. Toward a framework for self-

adaptive workflows in cyber-physical systems.

Software & Systems Modeling. Springer, pp. 1–18.

Sprovieri D., et al. 2016. Run-time planning of case-based

business processes. Int. Conference on Research

Challenges in Information Science, Grenoble, France

pp. 1–6.

Weber B., et al 2008. Change patterns and change support

features - enhancing flexibility in process-aware

information systems. Data and Knowledge

Engineering, 66(3), pp. 438–466.

Zhao X., Liu C., 2013. Version management for business

process schema evolution. Information Systems, 38(8),

pp. 1046–1069.

Towards a New Adaptation Engine for Self-Adaptation of BPMN Processes Instances

225

