
Analytic Pattern and Tool for Analysis of a Gap of Changes in Enterprise
Architectures

Richard Dijkstra1 and Ella Roubtsova2

1Sligro Food Group, The Netherlands
2Open University of the Netherlands, The Netherlands

Keywords: ArchiMate Enterprise Model, Analytic Pattern, Gap of Changes, Tool for Analysis of a Gap of Changes, Case
of Replacing Legacy System with ERP with Best of Breed.

Abstract: Change analysis of enterprise architectures is usually done by observing differences between two enterprise
architectures, As-Is and To-Be. If the As-Is and To-Be have a lot of differences, it is problematic to manually
create a correct view on changes. This paper proposes a revision of a definition of the Gap of Changes and
defines it as a language independent analytic pattern suitable for using in tools. The paper describes a tool
built on the basis of this definition. The change analysis without the tool and with the tool output has been
tested in a workshop. The added value of the tool was acknowledged by the workshop participants.

1 INTRODUCTION

Change analysis of enterprise architectures is one of
the repeated activities fulfilled when an enterprise is
changed. This analysis is usually done manually, by
observing visualizations of As-Is and To-Be enter-
prise architectures.

One of the notations used for modelling of en-
terprises is the ArchiMate language, an Open Group
Standard (The Open Group, 2018). For visualiza-
tion of changes, ArchiMate specifies a concept Gap
as “a statement of difference between two plateaus”,
where “a plateau represents a relatively stable state of
the architecture that exists during a limited period of
time” (The Open Group, 2018). This concept does
not define what architecture elements and relations
belong to a Gap.

A precise definition of a “Gap of Changes” has
been proposed by Bakelaar et al. (Bakelaar et al.,
2016) as a view derived from the As-Is (current) and
To-Be (desired) architecture and comprising obsolete,
changed, unchanged, new elements and their relations
in the context of a change. The definition includes the
new relationships “replaced by” and “extended by”.
The “Gap of Changes” has been illustrated in Archi-
Mate with one industrial case (Bakelaar et al., 2016).

The initial goal of this work was to evaluate the
use of the “Gap of Changes” on another industrial
case of transforming a Legacy system into an Enter-
prise Resource Planning (ERP) with Best of Breed

(BOB) components. However, the manual derivation
of changes for this case appeared impossible without
a tool support. The case initiated the idea of automatic
creation and analysis of the “Gap of Changes” and
added the followup research question on how such a
tool can be implemented.

In order to realise this idea, the definition of a
“Gap of Changes” has been revised and built into a
tool for creating and analysis of a Gap. The tool has
been tested within the case where the initial legacy
architecture is replaced by a desired architecture that
comprises an ERP (SAP) system combined with a
Best-of-Breed (BOB) solution (Stibo Master Data
Management (StiboSystems, 2018)). The usefulness
of the tool has been tested in a workshop with several
participants.

The structure of the paper is the following:

• Section 2 presents the related work.

• Section 3 contains the revised definition of a “Gap
of Changes”.

• Section 4 reports the tool implementation, its in-
put and output.

• Section 5 describes the workshop for testing of the
usefulness of the tool on a case of replacement of
a legacy system with an ERP/BOB.

• Section 6 discusses the usage of the revised defi-
nition and the tool for analysis of changes.

• Section 7 concludes the paper.

226
Dijkstra, R. and Roubtsova, E.
Analytic Pattern and Tool for Analysis of a Gap of Changes in Enterprise Architectures.
DOI: 10.5220/0007655502260233
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 226-233
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

2.1 Enterprise Modelling in ArchiMate

Enterprise modelling is supported by many enterprise
modelling languages, for example, 4EM (Sandkuhl
et al., 2014)), ArchiMate (The Open Group, 2018)
etc. These languages present an enterprise in different
dimensions. In this paper, we visualise enterprise ar-
chitectures using the ArchiMate language, so we use
the ArchiMate visualization conventions. However,
the research results of this paper are also applicable
for other enterprise modelling languages.

The ArchiMate diagrams have a vertical and a hor-
izontal directions. The vertical direction from bottom
to top expresses the structure of a business system:
technology, application, business. The horizontal di-
rection from left to right expresses the aspects of the
system: passive, behaviour and active structure.

An enterprise architecture view is always an ab-
straction showing the elements of structure, vision,
and evolution of the organization, business processes,
information systems and infrastructure. It is not a
model of all IT functionality. For visualization of the
IT functionality, one should use the UML notations,
such as class diagrams, sequence diagrams and state
diagrams.

Changeability is an immanent property of any en-
terprise architecture. A special enterprise architec-
ture view can be devoted to expressing changes. For
such a view, a textual presentation of changes is al-
ways needed to support discussion between enterprise
architects and different business roles. This will in-
crease their ability to understand and accept changes
as the effect of a design conversation (Hoffman and
Maier, 1967).

The “Gap” concept within ArchiMate (The Open
Group, 2018) is a candidate for such a view on
changes as it is defined to present differences between
two plateaus in enterprise architectures. The speci-
fication of the ArchiMate (The Open Group, 2018)
does not define what to include into a “Gap”.

2.2 Need for Analysis of Enterprise
Models and their Changes

It has been noticed by several authors, that the En-
terprise Modelling community has a strong focus on
enterprise (Dietz and Hoogervorst, 2008), “been re-
stricted in their use to non-analysis purposes” (Sunkle
et al., 2013). In other words, there is a need in support
of the architecture analysis.

On the other hand, there is a possibility for analy-
sis. The architectural languages, such as Archi-

Mate (The Open Group, 2018), or 4EM (Sandkuhl
et al., 2014), present sets of elements and their rela-
tions and suitable for analysis. The matter is only to
find the useful repeated analysis questions and built
them as formal requests into tools.

Such commercial tools as Sparx EA (Sparxsys-
tems, 2019) and BizzDesign Enterpise Studio (Biz-
zdesign, 2019) have analysis functionality allowing
to define patterns. However, they have not recognized
and defined a Gap of Changes as a pattern, repeatedly
used used by different business roles for planning and
implementation activities.

(Diefenthaler and Bauer, 2013) have recognised
a Gap of Changes and proposed a solution for “gap
analysis using semantic web technologies on a high-
level current and target state of an enterprise architec-
ture”. The authors identify only the replacement rela-
tions between elements of two architectures, whereas
also other relations exist between the elements of As-
Is and To-Be architectures.

2.3 Existing Definition of a Gap of
Changes

In (Bakelaar et al., 2016), it has been noticed, that As-
Is and To-Be architectures can be seen as the largest
plateaus and the elements from an As-Is and a To-Be
architectures can be associated with a “Gap”.

A formal definition of a Gap of Changes has been
given in (Bakelaar et al., 2016) for visualization of
changes.

A Gap of Changes is defined as a tuple:

Gch = (Oobsolete,Onew,Ounchanged ,Ochanged ,

Robsolete,Rnew,Rreplaced−by,Rextended−by,Rborder).

The sets of objects are defined as follows:
Oobsolete = {o| o ∈ OAsIs and o /∈ OToBe} - obsolete
objects, visualised as grey boxes.
Onew = {o| o /∈ OAsIs and o ∈ OToBe}- new objects,
visualised as green boxes.
Ounchanged = {o| o ∈ OAsIs and o ∈ OToBe and
∀x : (o,x) ∈ RToBe⇔ (o,x) ∈ RAsIs} - unchanged ob-
jects, visualized in the original ArchiMate colour.
Ochanged = ((OAsIs ∩OToBe) \Ounchanged) - changed
objects, visualized as orange boxes.

The relationships are defined as follows:
Robsolete = {(a,b)|(a,b) ∈ RAsIs and (a,b) /∈ RToBe} -
depicted as grey arrows.
Rnew = {(a,b)|(a,b) /∈ RAsIs and (a,b) ∈ RToBe} - de-
picted as green arrows.
R<replaced−by> ⊆ Oobsolete×Onew- black arrows. Fig-
ure 1.

Analytic Pattern and Tool for Analysis of a Gap of Changes in Enterprise Architectures

227

R<extended−by> ⊆ Ochanged×Onew- black arrows. Fig-
ure 2.
Rborder ⊆ (Ounchanged × Ochanged) ∪ (Ochanged ×
Ounchanged) - green arrows.

Figure 1 and Figure 2 illustrate the relations be-
tween As-Is and To-Be objects in the view “Gap of
changes”:
• < replaced − by >: (Previous app., New app)

and
• < extended−by >:
(ApplicationComponent, ApplicationFunction).

Figure 1: “Previous app” is“ Replaced By” “New app”.

Figure 2: “Application Component” is “Extended By” “Ap-
plication Function”.

3 REVISED GAP OF CHANGES
FOR TOOLING

3.1 Observations

Experiments with changes have shown that the ini-
tial definition of a Gap of Changes defined (Bakelaar
et al., 2016) leaves room for overlooking changes.

Figure 3: Rnew : (“Application Component1”,“Application
Component 2”).

Let us show examples:
Figure 3 shows that the relation Rnew (green) may

be defined between new elements that both do not ex-
ist in the As-Is architecture. This case is not part of
the Rnew definition in (Bakelaar et al., 2016).

Figure 4: Obsolete and Border.

Figure 4 shows that the “Application Function A”
(in grey) is obsolete. The “Application Function B”
in this example is unchanged and qualified as “un-
changed object”, although it is assigned to a changed
Application Component (Figure 4).

This unchanged object “Application Function B”
is a border object (visualised in original blue colour)
needs a border relation (green). The definition of Gap
of Changes by (Bakelaar et al., 2016) does not require
such a relation to the unchanged elements included
into the Gap.

The Gap of Changes combined with the standard
modelling ArchiMate methods, is of great benefit be-
cause the architect needs to be more precise during
the architectural conversations to make an exact re-
placement and extension of design.

We propose a revised definition of a Gap of
Changes with some practical improvements based on
the described observations. The definition is designed
as a structure or a pattern for automatic analysis of
changes.

3.2 Revised Gap of Changes (GOC’)

GIVEN: As-Is architecture: (OAsIs,RAsIs).

To-Be architecture: (OToBe,RToBe).

Oobsolete = {o| o ∈ OAsIs and o /∈ OToBe},
Onew = {o| o /∈ OAsIs and o ∈ OToBe}.

LET us introduce new constructions.

• A changed object is a part of both As-Is and To-
Be and it has at least one relation in both As-Is
and To-Be and has at least one relation that is part
of To-Be and not of As-Is or part of As-Is and not
of To-Be.

Ochanged = {o|o ∈ OAsIs ∧

∃x|(x ∈ OAsIs∧ (o,x) ∈ RToBe⇔ (o,x) ∈ RAsIs) ∧
∃y|(y ∈ OAsIs∧ (o,y) ∈ RToBe 6⇔ (o,y) ∈ RAsIs)}.
We assume that a changed object cannot be in iso-
lation (with empty set of relations).

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

228

• Unchanged objects are part of both As-Is and To-
Be and are not part of the set changed objects.
The set of unchanged objects Ounchanged may be
large compared to the set of changed Ochanged . Us-
ing the set of Ochanged simplifies the analysis of
changes.

• The new concept of a border object is defined.
Let us remind that a border relation relates a
changed object and an unchanged object and de-
picted as a green arrow:

Rborder ⊆ (Ounchanged×Ochanged) ∪

(Ochanged×Ounchanged).

The consequence of this definition is a set of bor-
der objects, being unchanged objects that need to
be included into a Gap of Changes. A border ob-
ject is an unchanged object that has at least one
border relation.

Oborder = {o|(o ∈ Ounchanged∧

∃x : x ∈ OAsIs : (o,x) ∈ Rborder)}
The concept of a “border object” becomes very
useful if two or more changes have a shared bor-
der object. This might not be noticed visually.

The revised Gap of Changes (GOC’) looks as fol-
lows:

GOC′ = (Oobsolete,Onew,Oborder,Ochanged ,

Robsolete,Rnew,

Rreplaced−by,Rextended−by,Rborder).

This definition can be used as a structure from which
the sets of new, obsolete, changed and unchanged ob-
jects and relations can be queried for an estimation of
the Gap and for work planning.

4 TOOL FOR ANALYSIS A GOC’

Even for small changes, the recognizing of the
changed elements is error prone. The number of el-
ements in a GOC’ can be large, for example, in com-
plete system replacements, like our case, shown in
Figure 5, Figure 6, Figure 7. The analysis of changes
has to be supported with a tool.

The tool for analysis a GOC’ called EAGOC
Notebook is written as part of this research in Python
3.0 (Python, 2018) using a Jupyter Notebook (Jupyter,
2018). The tool analyzes the repository using CSV
exports from the modelling tool Archi (Archi, 2018).

The EAGOC Notebook uses simple data
structures like dictionary and dataframe (Pan-
das.DataFrame, 2018). The initial repositories of

As-Is and To-Be architectures are used as an input for
the GOC’ structure. An enterprise architect can make
selections among elements of the GOC’ and produce
lists of new, obsolete, changed and border objects
and relations.

The selection of subsets for analysis is based on
the definition of GOC’. The queries are indepen-
dent from the analysed case, written once and can be
reused.

For example, the set of new objects:

Onew = {o| o /∈ OAsIs and o ∈ OToBe}.

In the EAGOC Notebook this is checked with the
following assertion using sets, where the symbol ==
is used in Python for testing equality:

s e t n e w e l e m e n t s ==
s e t t o b e e l e m e n t s −s e t a s i s e l e m e n t s

Another example is a set of the “replaced by” re-
lations:

R<replaced−by> ⊆ Oobsolete×Onew.

In the EAGOC Notebook the following set assertion:

{ (r e l a t i o n s d i c t [r] . sou rce ,
r e l a t i o n s d i c t [r] . t a r g e t)

f o r r i n
s e t r e p l a c e d b y r e l a t i o n s }<=
{∗ p r o d u c t (s e t o b s o l e t e e l e m e n t s ,

s e t n e w e l e m e n t s)}

is used to select the list of pairs of R<replaced−by>.
This list is used to support visualization of the pairs.

The complete set of relationships of the Gap of
Changes can be listed by the following request:

g o c e l e m e n t s d f
[g o c e l e m e n t s d f . s t a t e ==

’ changed o b j e c t ’]
[[’ o b j e c t s e q ’ ,
’ o b j e c t t y p e ’ ,
’ name ’ ,
’ e l e m e n t i d ’]]

When an element in the To-Be needs extra atten-
tion, one can view this in Archi, but also obsolete ob-
jects may appear. In the EAGOC Notebook, the ob-
solete elements can be filtered with the function:

<e lement >. g e t r e l a t e d t o b e e l e m e n t s ()

The tool is available on GitHub (Dijkstra, 2018)

Analytic Pattern and Tool for Analysis of a Gap of Changes in Enterprise Architectures

229

5 TESTING THE USEFULNESS
OF GOC’ AND TOOL

5.1 Industrial Case Study

Our industrial case study is the Product Data man-
agement at the Sligro Food Group (Sligro, 2018).
Food distribution uses customer data, vendor data and
food product data with attributes like product name
and storage conditions. These data safeguards unam-
biguous communication between sales, procurement
and supply chain operations. This case focuses on
a system that enables data management as a process
of getting products ready to be bought, shipped and
sold. For this, Sligro has two legacy systems PIM
and SIAM which will be replaced by one component
called Stibo, because having a single component for
managing product data is less complex than using two
components.

In the As-Is architecture Figure 5, the product data
as data object “Product” is being used in the appli-
cation function “Product selection”. This application
function is realised through the application compo-
nent PIM. PIM also realises the application function
“Assortment management”, where products are se-
lected for availability on the web-shop. In the SIAM
component, the logistic reference data is added to the
product data, e.g. the shops where that product is be-
ing sold.

In the To-Be architecture (Figure 6), the appli-
cation components PIM and SIAM are replaced by
Stibo. In Figure 6 the reader can also see the appli-
cation functions “Product selection” and “Assortment
management”, but now they are realised by the appli-
cation component Stibo. The replacement is driven
by the need for consistency of data used by different
application functions and uniformity of interfaces.

The Gap of Changes is shown in Figure 7. The
replacement of PIM and SIAM by Stibo is mod-
elled according the GOC’ with obsolete (grey) PIM
and SIAM and a new (green) application component
Stibo. Stibo has a replaced-by relation with PIM and
SIAM.

The integration platform has the same interface
“Online updates” to the web-shop in both As-Is (Fig-
ure 5) and To-Be (Figure 6). The element “Online
updates” is related to a changed element “Integration
platform”. Therefore, it has the original colour indi-
cating that it is part of GOC’ (Figure 7) and it is a
border element according the improved GOC’ defini-
tion.

All changes have been counted using the EAGOC
Notebook and listed in table 1. Most of the changes
took place in the application layer.

Table 1: All Changes counted by the tool EAGOC Note-
book and changes found by the workshop participants
P1,...,P5 observing the As-Is and To-Be models without the
tool.

All P1 P2 P3 P4 P5
Obsolete object 25 6 7 6 7 11

New object 13 2 4 2 4 6
Changed object 13 0 0 0 1 0

Obsolete relation 41 1 0 1 0 0
New relation 26 0 0 0 0 0
Border object 6 0 0 0 1 0

Replaced by relation 12 3 0 3 0 0
Extended by relation 4 0 1 0 1 0

5.2 Workshop to Test the Need of the
Tool

In order to test the usefulness of the EAGOC Note-
book, a workshop was conducted. Five participants
P1, ...,P5 took part in the workshop, two enterprise
architects and three managers of the Sligro company.

First, the As-Is model (Figure 5)) and the To-Be
model (Figure 6) were given to participants. The leg-
end of the models and the colours in ArchiMate were
explained. The participants were asked to count ob-
solete objects, new objects, changed objects, obsolete
relations, new relations, border objects, “replaced-by”
relations, “extended-by” relations.

Table 1 shows the numbers of the changes found
by participants using the As-Is and To-Be architec-
tures. The zero means that some comments were writ-
ten, but no elements were counted. The participants
were able to identify a subset of obsolete objects and
new objects. All participants commented that they
can easier recognise changes in objects, than in re-
lations.

Second, the As-Is, to-Be and GOC’ were given
to participants. Most participants were confused and
counters got even lower values.

Third, the lists of changed elements generated by
the EAGOC Notebook and the actual numbers of
changes were given to the participants to recognise
the changes. The lists were accepted as useful appli-
cation of the tool.

6 DISCUSSION

Analytic Pattern. The Gap of Changes (GOC’), pre-
sented in this work, is an analytic pattern both for the
way of its creation and for the way of its application.

The way of its creation is the analysis of two
repositories describing two enterprise architectures
As-Is and To-Be.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

230

Figure 5: As-Is architecture.

Figure 6: To-Be architecture.

The way of its application is the analysis of el-
ements of changes, selection of subsets of changes
based on different criteria. The selection of obsolete
objects and relations, changed objects and relations
and other is needed for implementation of changes,
estimation of work distribution and management. So,

the Gap of Changes structure makes the Enterprise
models analysable on changes.

Consistency of As-Is and To-Be. The experiments
show that the creation of a Gap of Changes from
two enterprise architectures contributes to consis-
tency analysis.

Analytic Pattern and Tool for Analysis of a Gap of Changes in Enterprise Architectures

231

Figure 7: Cap of Changes view.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

232

The Gap of Changes often reveals unexpected dif-
ferences of enterprise models. These can be caused
by undocumented changes inserted by the enterprise
architects or hidden design decisions taken on the fly.

So, the EAGOC Notebook, presented in this work,
serves not only to find and count changed elements,
but also to analyse inconsistencies of As-Is and To-
Be enterprise architectures.

In our experiment, the application of the EAGOC
Notebook to the repository with As-Is and To-Be has
helped to find the isolated objects with no relations
and multiple objects presented the same real life ob-
ject.

7 CONCLUSION

Nowadays, the formal methods experience revival of
their application. They become more practical and try
to close “the gap between research and practice, and
the gap between software development and traditional
engineering disciplines” (Parnas, 2010).

The results presented in this work is an applica-
tion of formal methods. A repeated analytical request
about changes in enterprise architecture, has been for-
malised as a semantically defined structure and named
“Gap of Changes” (GOC’). A formal, language inde-
pendent definition has made it useful for building a
tool EAGOC Notebook for analysis of changed ob-
jects and relations: obsolete, extended, replaced, etc.

The experimental testing of the tool and the “Gap
of Changes” as an analytic pattern has shown its
added value in the understanding of changes, forming
the common terminology of change expression and
countable estimation the volume of changes.

The currently implemented EAGOC Note-
book (Dijkstra, 2018) presents the changes as lists of
the GOC’ elements: changed, obsolete and border
objects and different sorts of relations, found useful
for the case of large changes.

These lists of GOC elements form the complete
repository for automatic visualization of a Gap of
Changes. Such a visualization may become a direc-
tion for future work.

An additional application of the EAGOC Note-
book for revealing hidden design decisions and incon-
sistencies in the As-Is and To-Be enterprise architec-
tures has been found. Such an additional application
of the EAGOC Notebook can be tested with other case
studies.

REFERENCES

Archi (2018). Archimate tool.
https://www.archimatetool.com/.

Bakelaar, R., Roubtsova, E., and Joosten, S. (2016). A
framework for visualization of changes of enterprise
architecture. In International Symposium on Busi-
ness Modeling and Software Design, pages 140–160.
Springer Berlin Heidelberg.

Bizzdesign (2019). Enterprise-architecture-software-tools.
https://bizzdesign.com/products/enterprise-studio.

Diefenthaler, P. and Bauer, B. (2013). Gap analysis in en-
terprise architecture using semantic web technologies.
In ICEIS (3), pages 211–220.

Dietz, J. L. and Hoogervorst, J. A. (2008). Enterprise ontol-
ogy in enterprise engineering. In Proceedings of the
2008 ACM symposium on Applied computing, pages
572–579. ACM.

Dijkstra, R. (2018). Enterprise architecture. gap of changes.
https://github.com/RichDijk/EAGOC.

Hoffman, L. R. and Maier, N. R. (1967). Valence in the
adoption of solutions by problem-solving groups: Ii.
quality and acceptance as goals of leaders and mem-
bers. Journal of Personality and Social Psychology,
6(2):175.

Jupyter (2018). Jupyter Notebook. http://jupyter.org/.
Pandas.DataFrame (2018). Pandas DataFrame.

https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.html.

Parnas, D. L. (2010). Really rethinking “formal methods”.
Computer, 43(1):28–34.

Python (2018). Python Software Foundation (US).
https://www.python.org/.

Sandkuhl, K., Stirna, J., Persson, A., and Wißotzki, M.
(2014). Enterprise modeling. Tackling Business Chal-
lenges with the 4EM Method. Springer, 309.

Sligro (2018). Sligro food group,
https://www.sligrofoodgroup.nl.

Sparxsystems (2019). Sparx systems enterprise architect.
https://www.sparxsystems.eu/enterprisearchitect.

StiboSystems (2018). Stibosystems.
https://www.stibosystems.com/.

Sunkle, S., Kulkarni, V., and Roychoudhury, S. (2013). An-
alyzable enterprise models using ontology. In CAiSE
Forum, volume 998, pages 33–40.

The Open Group (2018). ArchiMate 3.0 Specification.
http:/pubs.opengroup.org/architecture/archimate3-
doc/.

Analytic Pattern and Tool for Analysis of a Gap of Changes in Enterprise Architectures

233

