
Online Generator and Corrector of Parametric Questions in Hard Copy
Useful for the Elaboration of Thousands of Individualized Exams

Francisco de Assis Zampirolli a, Fernando Teubl b and Valério Ramos Batista c

Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC),

Keywords: Automatic Item Generation, Multiple Choice Questions, Parametrized Quizzes.

Abstract: In this work we present a method to produce parametric questions, which can be useful for various classes and
institutions. Our method generates exams with different texts but the same content, hence the same level of
difficulty. We made several interfaces in order to gather information about institutions, programmers, courses,
topics, classes, exams and questions. Our method makes questions belong to topics, which in their turn belong
to courses. Hereby we detail our process of producing parametric questions, which utilizes a bit of LATEX and
mainly some parts in Python. With this programming language we define the parameters inside the statement
of the questions. The presented results show that we were able to build an efficient system even in its first
version defined on web pages written in Django. Our system is free and it offers to teachers and professors
the possibility of generating and correcting tests in an automatic and comfortable way. Since the exams are
printed with different texts but the same content, then even for hundreds or thousands of students the method
will be fast, effective and also efficient.

1 INTRODUCTION

Thousands of students are evaluated by teachers and
professors from many branches of science every
day. Evaluating students fairly is a challenging task.
The problem becomes much more difficult to han-
dle when it involves a very large number of appli-
cants, which is the case of famous tests like TOEFL
and DELE (Diplomas de Español como Lengua Ex-
tranjera) for language proficiency, and NAEP for
educational progress. Like DELE, TOEFL exami-
nations are taken worldwide. Numbers in (Educa-
tional 2018) indicate that it is accepted in more than
10,000 colleges, agencies and other institutions in
over 150 countries. Regarding NAEP, nowadays circa
51 million students attend elementary and secondary
schools in the USA, hence the number of applicants
is huge (NCES National 2018).

Of course, such exams require very complex lo-
gistics to assure reliability of the results because of
their continental extent. But in the case of any big
educational institution we have developed an online
platform that produces and corrects tests automati-

a https://orcid.org/0000-0002-7707-1793
b https://orcid.org/0000-0002-2668-5568
c https://orcid.org/0000-0002-8761-2450

cally even for thousands of students. They must solve
questions in hard copy, and the results are reliable be-
cause though exams have all the same content their
texts are different. Cheating is practically impossible
since the questions are parametric, hence answerkeys
do not coincide.

At the Federal University of ABC (UFABC) in
Brazil we could recently validate our method through
the variance in marks obtained by students from two
exclusive models of the course Introduction to Pro-
gramming (IP). Details are given in (Zampirolli et al.,
2018) but here we present a brief description. IP
belongs to an interdisciplinary undergraduate pro-
gramme called Bachelor’s in Science&Technology
(BST). BST consists of 2,400 hours and takes three
years, each one divided in three trimesters. On IP
freshmen always enrol in the third trimester. Af-
ter BST the student can choose many other com-
plementary programmes like Computer Science and
Aerospace Engineering.

At UFABC classes are heterogeneous because our
students come from many different backgrounds. Al-
most 2,500 enroll on IP every year if we consider the
two models: IPC (classroom) and IPH (half-distance-
learning/half-classroom). In IPH only the three stu-
dent evaluations must be in classrooms and the course

352
Zampirolli, F., Teubl, F. and Batista, V.
Online Generator and Corrector of Parametric Questions in Hard Copy Useful for the Elaboration of Thousands of Individualized Exams.
DOI: 10.5220/0007672603520359
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pages 352-359
ISBN: 978-989-758-367-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

is fully coordinated. This is not the case of IPC,
whose greatest problem resides in a fair evaluation of
its students.

IPC has in average 50 classes per year and 30
students per class. It is scheduled for five hours per
week, and two of them are lab lectures. Three classes
meet for each classroom lecture, where then we have
90 students. Of course, each laboratory is supervised
by a single professor. For IPC they are circa 40 in
total and each one has a different way of evaluating
students. Hence IPC does not count on a unified ex-
amination and has a large variance in marks.

This problem does not happen in IPH, where both
examination and content are fully unified. Students
access all the content of IPH in a same platform
called e-learning Tidia and developed through https:
//sakaiproject.org. In (Zampirolli et al., 2018) we ob-
tained, for students that failed IP in 2017, the variance
of 2.3% for IPH, which is negligible compared with
16.3% for IPC. See that reference for details on sta-
tistical analyses performed on all classes of IPC and
IPH from 2009 to 2017.

These statistics must be taken as an overview be-
cause IPH differs from IPC in the following setup:
in each trimester circa only 180 students enrol on the
course, and in average they are supervised by just five
professors but they count on teaching assistants that
help the students solve 35 lists of exercises.

In IPH three exams (the first in classrooms and the
others in laboratories) are all furnished by our online
generator of parametric questions, a platform named
webMCTest. We strongly believe that IPC will also
present a similar variation as IPH when that course
becomes coordinated. This will give more evidence
that webMCTest represents a valuable means of fair
evaluations.

2 RELATED WORKS

In (Zampirolli et al., 2018) we presented evaluations
of students for dissertation questions carried out with
a previous version of webMCTest. This and for-
mer versions are just called MCTest because they are
not completely online. Parametric questions were
not discussed in (Zampirolli et al., 2018) , which
used MCTest 4.0, though they are already supported
by this version. With webMCTest parametric ques-
tions are prepared as explained in Subsection 3.2, and
more specifically we resume the method for MCTest
in Subsubsection 3.2.2, which can also be found in
(Zampirolli et al., 2016).

Before we draw comparisons between ours and
other methods, if the reader prefers to first have an

overview of webMCTest the short video at
https://youtu.be/SxQlw9ADxe8

can be quite helpful.
In (Gusev et al., 2016) the authors present a tool

of online multiple choice tests for student evaluation.
Their tool resorts to Information and Communication
Technology (ICT). In their database, questions are
grouped by content: if each three of them that treat
of the same content are answered correctly, then the
student is directed to the next content. Otherwise the
student gets extra questions on the same subject in
order to reinforce learning. Their questions are writ-
ten in XML files with several tags that describe the
many variations of multiple choice questions, such
as weight, number of correct answers and penalty for
wrong answers. Their work is similar to the one pre-
sented in (Zampirolli et al., 2018), which however dif-
fers in format (LATEX instead of XML) and purpose
(hard copy instead of online).

A more specific reference is (Del Fatto et al.,
2016), which presents an ICT applied to the course
Operating Systems of a master’s programme. The au-
thors programme in Bash (shell commands of Unix
operating system), and in their work they present ex-
ams consisting of 45 exercises in Bash that were sent
through LMS Moodle. These exams were taken in the
very LMS and they made use of the available data-
banks of questions.

In (Kose and Deperlioglu, 2012) the authors intro-
duce an ICT devoted to solving problems in the pro-
gramming language C. This ICT can diagnose how
much knowledge of C the student has, and it can also
elaborate specific questions with some feedback and
hints that help solve each problem. The authors devel-
oped a resource, which is an interface for the student
to click-and-hold and then release in order to make up
a code. This interface is however incorporated in an
e-learning system. The students learn from their mis-
takes by means of warning messages whose model is
based on restrictions. Their ICT chooses new prob-
lems for the students according to the questions they
have already solved and the time taken for that. Also,
there is an evaluation platform on which students can
take multiple choice tests prepared according to their
learning levels.

For the research area of Medical Education (Gierl
et al., 2012) introduces a cognitive model to generate
a database of multiple choice questions. Such models
follow the representation of knowledge and skills that
are necessary to solve a problem (Pugh et al., 2016).
The study presented in (Gierl et al., 2012) begins with
a specialist in Medicine creating a cognitive model
to evaluate a specific topic. For each question many
correct alternatives are produced. Finally, the genera-

Online Generator and Corrector of Parametric Questions in Hard Copy Useful for the Elaboration of Thousands of Individualized Exams

353

tor programmed in Java shuffles both alternatives and
question statements in order to produce the database.
The result is a set of generated items with their re-
spective answerkeys. These items are saved either in
HTML or Word DOC format. Our webMCTest com-
plements their work because the specialist can use the
same cognitive model to make the database of ques-
tion statements with their variation of right and wrong
answers, providing the items are saved in a very ba-
sic TXT format exemplified in Subsubsection 3.2.2.
In this case webMCTest will be able to correct their
tests automatically.

In (Calm et al., 2013) the authors analyze the use
of tests with parametric instructions in Mathemat-
ics by means of the Moodle platform with the sym-
bolic calculator program Wiris www.wiris.com. The
advantage of webMCTest is that it works with the
Sympy library (www.sympy.org), which enables the
inclusion of graphs of equations, and also the produc-
tion of tests in hard copy, which is useful for large
classes.

Except for (Zampirolli et al., 2016; Zampirolli
et al., 2018) none of the works discussed in this sec-
tion deal with tests in hard copy, neither to generate
nor to correct them online.

3 METHOD

This section explains how we have implemented our
system of evaluation of students (and applicants in
general). Its main difference from other systems re-
sides in its production of hard copy tests, which are
useful when the institution cannot furnish computers
for a large number of students.

WebMCTest is part of a decade-long research that
began in order to meet internal demands of our in-
stitution, like a great quantity of students to evalu-
ate. We started developing our most recent version
of webMCTest in May 2018 and were able to con-
clude it in four months. This newest version comes
with tutorial videos that help professors make use of
the whole system. The most recent access report on
webMCTest dates from Dec. 4, 2018: our web system
has already generated 21,359 exams and performed
6,370 automatic corrections, with a total number of
138,452 questions. In the present day our databank of
questions has 367 of multiple choice and 31 that are
dissertative. Among them 38 are parametric, and 30
professors are already registered on our platform.

Our system was implemented in Python 3.6 with
Django 2.0 and it utilizes a MySQL database server.
The server runs on Ubuntu Linux 18.04.

3.1 System Structure

The main entities of our system are gathered in four
components:

Programme: Institution, Programme Name,
Course and Class

Topic: Topic Name, Question, Answers

Test: Exam, Student’s Exam, Question for the
Student

Student: Student’s Data (Name, Id, E-mail)

Hence each component is a set of entities that alto-
gether characterize the system. However, the entities
“Student’s Exam” and “Question for the Student” are
not endowed with interfaces yet. They will be im-
plemented in future works to include a followup of
the student’s records. These two entities will enable
the production of personalized tests according to the
student’s answers in previous evaluations. The other
entities all have graphical user interface (GUI) for the
teacher (or professor) to input, change, remove and
check data. Nowadays the main system entities are
“Question” and “Exam”, described as follows:

In the system each question must belong to a sin-
gle topic. Each topic must be created with a bond to
one or more courses. A course belongs to at least one
programme. Finally, a programme is offered by an
institution.

3.2 Preparing Questions from
Databases

There are two means of preparing questions for a test
in our system: (1) through its GUI; (2) by importing
them from a TXT file in a specific format. In both
cases the user must click on the link “Questions” on
the left-hand side of the main page, as depicted in Fig-
ure 1.

Figure 1: Main interface of the system.

As explained at the Introduction, the main purpose
of this work is to describe the production of paramet-
ric questions and the way to use them for producing a
test, which can be printed in hard copy.

CSEDU 2019 - 11th International Conference on Computer Supported Education

354

3.2.1 Preparing Questions Though the GUI

Click on the button “Create” illustrated in Figure 2.
This opens the interface shown in Figure 3. The dif-
ficulty levels are associated to numbers from 1 (very
easy) to 5 (very hard). Moreover, each question can be
either dissertational or multiple choice. The user may
even classify the question according to one of the five
types in the Revised Bloom’s Taxonomy (Ferraz and
Belhot, 2010). Finally, the question can be paramet-
ric, so that variables in the text will be replaced with
random values when our system generates the test.

Figure 2: Interface to choose between create or import
question; in the 2nd case there are instructions to format the
TXT file before importing it.

Figure 3: Interface to create a question.

In Figure 3 after choosing a topic one must give
a short description and then include the statement of

the question. The user will see a scrollbar with arrows
named “Type”, which defines the question as disser-
tational or multiple choice. Then it comes the level of
difficulty, Bloom’s taxonomy, and whether the ques-
tion is parametric. After clicking on “Submit” the sys-
tem shows a list of questions already created by the
user. Then it will be possible to complete the ques-
tion with alternatives in the multiple choice case. See
Figure 4.

Figure 4: Interface to update a question.

In this second case every time you click on “Sub-
mit” there will be a new field for an extra alterna-
tive providing you have already filled out the previ-
ous one. See in Figure 5 an example of after having
inserted an alternative.

On top left corner of Figure 4 there is the button
“See-PDF”. Clicking it makes the internet browser
show the PDF for the user to check and then correct
occasional errors in the format or the statement of the
parametrized text. See Figure 6.

For parametric questions each click on “See-PDF”
will generate a new version of the question. Figure 6
shows that the PDF specifies some characteristics of
the question: Topic, Group, Short Description, Type

Online Generator and Corrector of Parametric Questions in Hard Copy Useful for the Elaboration of Thousands of Individualized Exams

355

Figure 5: Part of the interface after having inserted an alter-
native.

Figure 6: PDF generated by our system after clicking “See-
PDF”.

(QM for multiple choice, QT for dissertational), Dif-
ficulty (from 1 - very easy to 5 - very hard), Bloom
Taxonomy, Last Update and Authorship (“Who cre-
ated”).

The green number indicates the register in the
database. Alternatives are given by capital letters in
alphabetical order from A up to J. Namely, the user
can work with at most ten alternatives per question.
The blue number #0 between the alternative letter D
and its text means that, in the example of Figure 6,
this is the right answer. The numbers in red indicate
their original position in the order they were inserted
(see Figure 5). This is an important feature of webM-
CTest because, for example, if the user inserted in the
third position an absurd answer (like a fraction, an ir-
rational or negative number, etc.), then one can iden-
tify all students that chose the absurd answer. Later in
the classroom the teacher/professor can train students
to make a better use of their intuition instead of just
resorting to “shots in the dark”.

3.2.2 Importing Questions from File

Older versions of MCTest worked with questions in
TXT files. Either a user that still has these files to
adapt, or even a new one that prefers not to always
count on the internet server, they will both find conve-
nient to prepare questions offline and afterwards up-
load them all into webMCTest with a single TXT file
(for non-parametric questions). But parametric ques-
tions must each come in a separate TXT file.

This option has some other advantages: questions
written in LATEX are easily re-formatted to MCTest,
and working offline spares the user from the exces-
sive clicking of a mouse button, which is typical of
online platforms.

After importing the TXT file the user will have
to complement the production of questions through
the graphical updating interface, described in the next
subsection. This is specially important in the case of
parametric questions.

The TXT file must be formatted as in the follow-
ing example:

QE::topic::group::
statement of the question [[code:a0]] ...

[[def::
Python code
a0 = random.random(0,5,1)
correctAnswer=111

A: [[code:correctAnswer]]
% The right answer comes first
A: 2nd alternative
...
A: last alternative

In this example we begin with QE. The other
choices are QM, QH and QT. They indicate the re-
spective level of difficulty (Easy, Medium, High) for
multiple choice questions, whereas QT indicates a
dissertation question.

Both the statement and the alternatives can include
parts in LATEX. Parametric questions have Python
code inside [[def:...]] and [[code:...]]. The
parameter “group” means that for each test only one
question of the group will be drawn.

Back to Figure 1, after clicking on “Questions” we
get Figure 2. Now one must select “Choose File” for
the TXT and then click on “Upload-Questions”. This
automatically stores them in the system database and
the user will access the whole updated list by click-
ing again “Questions” in Figure 1. From this point on
changes and visualization are carried out as explained
previously from Figures 4 to 6. In Figure 5 the user

CSEDU 2019 - 11th International Conference on Computer Supported Education

356

will already find the corresponding question alterna-
tives that came from the TXT file.

4 RESULTS

Here we present some examples of parametric ques-
tions and also how to make a test consisting of these
questions.

4.1 Parametric Questions with
Equations and Figure

By following the same steps shown in Figures 4 to 6
now we give an example of parametric question that
includes a mathematical equation. Here it involves si-
nus, cosinus and integration, but one could add more
complexity with other functions, free variables, lim-
its, differentiation, etc. As explained in Subsubsec-
tion 3.2.1 the “See-PDF” button in Figure 4 will give
you a new version of the parametric question when-
ever you click on it. Of course, in the PDF the graph
of the equation will change accordingly. The question
statement exemplified in Figure 4 is now more elab-
orate because of extra attributes, as illustrated in Fig-
ure 7. Moreover, you must choose “Yes” for “Para-
metric Question” in Figure 3.

The integrand of $[[code:a0]]$ has its graph

depicted in Figure $Integrand$. The integral function is

\begin{figure}[ht!]

\centering \includegraphics[scale=0.5]{val_fig01}

\centerline{Figure $Integrand$}

\end{figure}

[[def:

a1 = random.randrange(3,6,1)

a2 = random.randrange(2,4,1)

a3 = random.randrange(1,3,1)

fig = plt.gcf()

var(’x’)

plot(a1*sin(a2*x)-a3*cos(x),(x,0,4*pi))

fig.savefig(’./tmp/val_fig01.png’)

x = symbols(’x’)

f = a1*sin(a2*x)-a3*cos(x)

a0 = latex(Integral(f, x))

b1 = latex(integrate(f, x))

b2 = latex(integrate(f+x, x))

b3 = latex(integrate(f-x, x))

b4 = latex(integrate(x**5 + x + 1, x))

]]

Figure 7: Example of a parametric question with figure.

In Figure 7 notice that the parametrization resides
on the coefficients a1, a2 and a3, which take random
values specified within [[def:...]]. Different
values will be drawn for these variables every time
our system reproduces this question.

The formula f=a1*sin(a2*x)-a3*cos(x) of the
integrand is stored in the coefficient a0. The integral
is included in the question statement through the func-
tion latex of the Sympy library. Namely, the line
a0 = latex(Integral(f, x)) will be rewritten in
LATEX syntax whenever our system compiles the ques-
tion. Figure 8 shows an output of the complete com-
pilation, in which we decided to include only three
alternatives according to Figure 5, so that the coeffi-
cient b4 in Figure 7 was not included as a possible
fourth alternative.

Figure 8: PDF with equations and figure generated by our
system.

In Figure 8 one sees that the Sympy library uses its
function integrate to compute the integral correctly,
and webMCTest identifies it there as the alternative C.
The user must assure that the other alternatives will be
wrong, as indicated by b2, b3 and b4 in Figure 7.

4.2 Parametric Questions with Matrix

There are many strategies to show a matrix in the
statement of a question. One of them is to include
the matrix written in LATEX, for example:

Table 1: A matrix (i, j)-entry a0 and the elements around it.

a8 = Northwest a1 = North a2 = Northeast
a7 = West a0 = (i, j) a3 = East
a6 = Southwest a5 = South a4 = Southeast

Another strategy is the Python library Matplotlib.
Here is an example: let us define an (i, j)-entry
a0 of a matrix Mm×n as West greater in case a0 >
max{a6,a7,a8}. See part of M in Table 1, which
shows only a0 and the elements around it, namely
m≥ 3 and n≥ 3. Now we write a parametric question

Online Generator and Corrector of Parametric Questions in Hard Copy Useful for the Elaboration of Thousands of Individualized Exams

357

that makes Mm×n out of random integers from 0 to 9,
where m and n are also random.

We can even generalize our definition as Direc-
tion greater/lesser, where Direction is one of the eight
possibilities in Table 1. In our parametric question the
properties “greater”, “lesser” will come at random, as
well as “Direction”. Figure 9 shows an output of this
question.

Figure 9: PDF with matrix generated by our system.

We generated the images in Figure 9 by means of
the function drawMatrix within [[def:...]], as
indicated in Figure 10.

4.3 Parametric Questions with Graph

In this last subsection we write a parametric ques-
tion that includes a graph G = (V,E), where V =
{n1,n2, · · · ,np} is a set of vertices and E is a set of
edges such that each e ∈ E is given by e = (ni,n j)
for ni,n j ∈V . Edges can have weight and the follow-
ing example solves the problem of finding the path
of minimum weight. A path is a sequence of adja-
cent vertices, which determines a sequence of edges,
and one computes the path weight by summing up the
weights of its edges. See an output of this question in
Figure 11.

In order to generate the image in Figure 11 we had
to include the function nx1.draw within [[def:...
]], as indicated in Figure 12.

5 CONCLUSIONS

In this work we presented webMCTest, a web sys-
tem devoted to generating and correcting exams auto-
matically, in which they are made out of parametric
questions. Here we gave three examples of paramet-
ric questions but their amount of types and variations
is in fact directly proportional to the creativity of the
user that prepares them.

Since webMCTest enables the generation of many
versions of a same question, we can prepare and
give them to a whole class and still be sure that

...

chooses one of the 8 directions

dir=random.choice([1,2,3,4,5,6,7,8])

nouns to appear in the table

directionAll=["North","Northeast","East","Southeast",

"South","Southwest","West","Northwest"]

chosen direction

direction=directionAll[dir-1]

another random value

greaterlesser=random.choice(["greater","lesser"])

makes random matrix

m = random.randrange(7,9,1) # number of lines

n = random.randrange(15,21,1) # number of columns

A = np.random.random((m, n))*10

A = A.astype(int)

function to draw matrix

def drawMatrix(A,myfile):

fig, ax = plt.subplots()

mat=ax.imshow(A,cmap=’Pastel1’,interpolation=’nearest’)

for x in range(A.shape[0]):

for y in range(A.shape[1]):

ax.annotate(str(A[x, y])[0], xy=(y, x),

horizontalalignment=’center’,

verticalalignment=’center’)

plt.show()

fig.savefig(’./tmp/’+ myfile +’.png’, dpi=300)

plt.close()

...

]]

Figure 10: Example of a parametric question with matrix.

Figure 11: PDF with graph generated by our system.

the students are all facing the same level of diffi-
culty. Parametrized questions also require much less
database storage without penalizing the randomness
of the exams. Preparing them becomes a much easier
task for teachers and professors.

CSEDU 2019 - 11th International Conference on Computer Supported Education

358

What is the Dijkstra path in this graph, between

a and d nodes, with weights [[code:e_weighted]]

\begin{figure}[h]

\includegraphics[scale=0.5]{fzprof_fig00.png}

\end{figure}

[[def:

import matplotlib.pyplot as plt

import networkx as nx

plt.clf()

G=nx.Graph()

e=[(’a’,’b’,0.3),(’b’,’c’,0.9),(’a’,’c’,0.5),(’c’,’d’,1.2)]

G.add_weighted_edges_from(e)

e_weighted = str(e)

out = str(nx.dijkstra_path(G,’a’,’d’))

out1 = str(nx.dijkstra_path(G,’a’,’c’))

out2 = str(nx.dijkstra_path(G,’b’,’d’))

plt.show()

pos=nx.spring_layout(G) # positions for all nodes

nx.draw(G,pos=pos)

nx.draw_networkx_labels(G,pos=pos)

nx.draw_networkx_edge_labels(G,pos=pos)

plt.savefig(’./tmp/fzprof_fig00.png’) # save as png

]]

Figure 12: Example of a parametric question with graph.

We have been working on many improvements to
webMCTest. In the short run it will be endowed with
an online corrector for the students to compare their
answers with the answerkeys right after the exam.
As a year long research we plan to make webM-
CTest work with other types of parametrized ques-
tions, which are nowadays mostly multiple choice. In
the long term we are going to include methods of au-
tomatic authentication of students.

ACKNOWLEDGEMENTS

We thank the Preparatory School of UFABC for the
extensive use of the webMCTest tool in order to per-
form three exams per year, with 600 students each.
These students were selected through an exam with
approximately 2,600 candidates.

REFERENCES

Calm, R., Masià, R., Olivé, C., Parés, N., Pozo, F., Ripoll,
J., and Sancho-Vinuesa, T. (2013). Wiris quizzes&58;
a continuous assessment system with automatic feed-
back for online mathematics. Teorı́a de la Edu-
cación: Educación y Cultura en la Sociedad de la In-
formación, 14(2):452–472.

Del Fatto, V., Dodero, G., and Gennari, R. (2016). How
measuring student performances allows for measuring
blended extreme apprenticeship for learning bash pro-
gramming. Computers in Human Behavior, 55:1231–
1240.

Educational Testing S. (Accessed on the 28th of
November 2018). Who accepts toefl scores?
https://www.ets.org/toefl/ibt/about/who accepts scores.

Ferraz, A. P. d. C. M. and Belhot, R. V. (2010). Bloom’s tax-
onomy and its adequacy to define instructional objec-
tive in order to obtain excellence in teaching. Gestão
& Produção, 17(2):421–431.

Gierl, M. J., Lai, H., and Turner, S. R. (2012). Using au-
tomatic item generation to create multiple-choice test
items. Medical education, 46(8):757–765.

Gusev, M., Ristov, S., and Armenski, G. (2016). Technolo-
gies for interactive learning and assessment content
development. International Journal of Distance Ed-
ucation Technologies (IJDET), 14(1):22–43.

Kose, U. and Deperlioglu, O. (2012). Intelligent learning
environments within blended learning for ensuring ef-
fective c programming course. International Journal
of Artificial Intelligence & Applications, 3(1):105–
124.

NCES National Center E. S. (Accessed on the 28th
of November 2018). Back to school statistics.
https://nces.ed.gov/fastfacts/display.asp?id=372.

Pugh, D., De Champlain, A., Gierl, M., Lai, H., and
Touchie, C. (2016). Using cognitive models to de-
velop quality multiple-choice questions. Medical
teacher, 38(8):838–843.

Zampirolli, F. A., Batista, V. R., and Quilici-Gonzalez,
J. A. (2016). An automatic generator and corrector
of multiple choice tests with random answer keys. In
Frontiers in Education Conference (FIE), 2016 IEEE,
pages 1–8. IEEE.

Zampirolli, F. A., Goya, D., Pimentel, E. P., and Kobayashi,
G. (2018). Evaluation process for an introductory pro-
gramming course using blended learning in engineer-
ing education. Computer Applications in Engineering
Education.

Online Generator and Corrector of Parametric Questions in Hard Copy Useful for the Elaboration of Thousands of Individualized Exams

359

