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Abstract: Car tracking in a traffic environment is a crucial task for the autonomous vehicle. Through tracking, a self-
driving car is capable of predicting each car’s motion and trajectory in the traffic scene, which is one of the
key components for traffic scene understanding. Currently, 2D vision-based object tracking is still the most
popular method, however, multiple sensory data (e.g. cameras, Lidar, Radar) can provide more information
(geometric and color features) about surroundings and show significant advantages for tracking. We present a
3D car tracking method that combines more data from different sensors (cameras, Lidar, GPS/IMU) to track
static and dynamic cars in a 3D bounding box. Fed by the images and 3D point cloud, a 3D car detector and
the spatial transform module are firstly applied to estimate current location, dimensions, and orientation of
each surrounding car in each frame in the 3D world coordinate system, followed by a 3D Kalman filter to
predict the location, dimensions, orientation and velocity for each corresponding car in the next time. The
predictions from Kalman filtering are used for re-identifying previously detected cars in the next frame using
the Hungarian algorithm. We conduct experiments on the KITTI benchmark to evaluate tracking performance
and the effectiveness of our method.

1 INTRODUCTION

Multiple object tracking (MOT) is one of the key
roles in computer vision problems. The aim of the
MOT is to predict trajectories and maintain identi-
ties individually in the next frame, given initial po-
sitions and identities of multiple objects from se-
quential frames. The majority of current tracking
methods are detection-based tracking on RGB im-
ages, and wide applications involve many scenarios,
for example, pedestrian surveillance in public (Chen
et al., 2018), (Breitenstein et al., 2011), sport players
tracking in the video (Lu et al., 2013), (Xing et al.,
2011), (Nillius et al., 2006). However, multiple ob-
ject tracking in autonomous driving scenario needs to
involve more information, such as accurate depth in-
formation, for safe navigation and environment per-
ception, as pure visual tracking presents insufficient
information for estimation of surrounding objects’ 3D
locations and motions, which is important to traf-
fic scene understanding for the autonomous vehicle
(Kocić et al., 2018).
In order to sense surrounding objects in autonomous
system, many kinds of sensors are utilized to obtain
information of whereabouts, such as lidar, kinds of

cameras, etc. Visual sensors (e.g. monocular cam-
era, stereo camera, RGB-D camera) can indicate a
large number of color information from environment.
Some application examples include object detection
in image domain (Girshick, 2015) (Redmon et al.,
2016), traffic sign recognition (Luo et al., 2018) and
other applications. While lidar is able to provide pre-
cise 3D laser scan to generate point clouds for 3D
representation of the environment. Although the dis-
advantage of highly cost, it can provide precise dis-
tance information and is normally used to create high-
resolution maps with applications of SLAM for nav-
igation (Durrant-Whyte and Bailey, 2006) and object
detection for 3D detection in point clouds domain
(Zhou and Tuzel, 2017) in autonomous system. Con-
sidering that camera takes advantage of obtain color
information, while lidar sensor has high accuracy of
distance information without color data, the data fu-
sion problem combining lidar with camera has be-
come increasingly popular recently in applications of
3D object (cars, pedestrians, cyclists) detection with
orientation estimation, 3D object tracking for traffic
scene understanding. Meanwhile information from
GPS/IMU will support ego-car to estimate self pose
and attitude for tracking objects in the world space.
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Driven by the applications in autonomous driving sce-
nario and advantages of kinds of sensors for percep-
tion, many solutions are proposed for 3D object de-
tection based on multiple sensory data in robotics
and autonomous scenario for environment perception.
(Chen et al., 2017), (Ku et al., 2017) show state of art
3D detection performance based on camera images
and lidar point clouds data. However few works are
presented for 3D objects tracking in traffic scene due
to the open issues of understanding of complex traffic
environment, precise data fusion and 3D object de-
tection from multiple sensors, motion estimation for
each traffic participator.

2 RELATED WORK

According to different criteria, multiple object track-
ing problem can be categorized to different sets(Luo
et al., 2014). For example, depending on target initial-
ization, tracking methods are grouped in detection-
based and detection-free tracking. Detection-based
tracking applies trained object detector to each frame
to obtain the location and appearance of each object in
advance, then tracking model links locations to trajec-
tories for the same object from the sequence (Berclaz
et al., 2011), (Breitenstein et al., 2009), (Ess et al.,
2009). Detection-free tracking needs to initialize the
positions of the respective targets manually in the first
frame, then the tracking model will track the given
targets in the sequence according to targets appear-
ance (Hu et al., 2012), (Zhang and van der Maaten,
2013). MOT can also be classified in online track-
ing and offline tracking. The difference is that online
tracking does not leverage observations from future
sequence (Hong et al., 2015), (Choi et al., 2017), (Hu
et al., 2012), while offline tracking utilizes a batch of
frames or the whole sequence as input before tracking
(Yang et al., 2011), (Brendel et al., 2011).
For instance, in the 2D image MOT domain, (Xiang
et al., 2015) considers the MOT problem as a Markov
Decision Process (MDP) that leverages reinforcement
learning approach to learn a policy to realize the data
association. (Choi, 2015) introduced an aggregated
local flow descriptor for similarity measurement, the
descriptor encodes the relative motion pattern in the
2D bounding box from each frame for data associa-
tion, which will be combined with object dynamics,
appearance similarity and regularization of long-term
trajectories to achieve robust tracking.
In the 3D image with depth information MOT do-
main, stereo cameras (Geiger et al., 2010) or time-of-
flight cameras (RGB-D) (Zollhöfer et al., 2018) are
involved to exploit sparse depth or per-pixel depth in-

formation. (Osep et al., 2017) utilizes the stereo cam-
era to detect cars and pedestrians in the street and es-
timate visual odometry (VO) in advance, then VO is
used for the ego-car’s pose estimation that is impor-
tant to transform objects to world space system whilst
ego-car is also moving. At last, a 2D-3D Kalman fil-
ter combines objects in a 2D image bounding box and
a 3D point cloud bounding box to obtain robust track-
ing performance.
In the lidar-sensor-based 3D MOT domain, the track-
ing process is normally in detection-free mode (De-
quaire et al., 2016), (Dequaire et al., 2018), (Dewan
et al., 2016), (Kaestner et al., 2012), as object de-
tection based on pure point clouds data needs lots of
computation to extract information from 100K point
clouds in traffic scenario, which leads to very slow in-
ference speed. As a result, (Dequaire et al., 2016),
(Dequaire et al., 2018) introduced end-to-end neural
networks to learn object links from raw lidar data, re-
alizing a tracking pipeline without detection process.
In addition, (Dequaire et al., 2016) demonstrated the
end-to-end tracking approach on a moving platform
in a busy traffic environment to track both static and
dynamic objects through occlusion, while (Dequaire
et al., 2018) proposed an end-to-end tracking frame-
work in the totally unsupervised manner.
In the multi-sensors-based 3D tracking domain, (As-
vadi et al., 2016) leveraged multiple sensors (2D im-
age camera, 3D point cloud lidar) to estimate the loca-
tion of cars, pedestrians, and cyclists, then two mean-
shift (Cheng, 1995) methods are applied to 2D images
and 3D point clouds respectively for location estima-
tion of each object. At last, a constant acceleration
Kalman filter is used for tracking both objects’ loca-
tion in the 2D image and 3D point clouds. However,
the tracking method is applied as single-object track-
ing rather than MOT, as the initial position of the ob-
ject need to be given in advance before tracking.
Some researcher leverages semantic segmentation
processing for object detection and tracking (Ošep
et al., 2016). They proposed a two-stage segmentation
and scale-stable clustering to detect and track more
generic objects in the complex street scenes instead
of limited categories of objects.

3 METHOD OVERVIEW

In our work, depicted in Figure 1, we use images,
point clouds and GPS/IMU data from KITTI bench-
mark (Geiger et al., 2012), and take advantage of a
3D object detection model AVOD (Ku et al., 2017) for
accurate 3D car detection, followed by a spatial trans-
former module used to map 3D cars from the camera
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coordinate system to the world coordinate system. At
last, we introduce a 3D Kalman filter to estimate 3D
car trajectories.

3.1 3D Car Detection based on Images
and Point Clouds Data

The proposed 3D car tracking method is a detection-
based and online tracking algorithm, which deeply re-
lies on the performance of the 3D car detector. We
compared previous state-of-the-art models for 3D car
detection in Table 1, and use Aggregate View Object
Detection (AVOD) (Ku et al., 2017) as our 3D car de-
tector. Although VoxelNet achieved higher accuracy
than AVOD, the forward time takes much longer than
AVOD. For purpose of high-resolution feature maps,
the AVOD encodes images and BEV (Bird Eye View)
of point cloud to a modified VGG-16 network (Si-
monyan and Zisserman, 2014) to generate full-sized
feature maps, which are used for estimating the 3D
proposal generation and orientation vector. The de-
tector model is generated by minimizing a multiple
loss that includes a regression task for the 3D bound-
ing box and orientation vector prediction, and a clas-
sification task for the object category.
In our tracking application, the output of the AVOD
network is used as an observation model. The de-
tection results for each frame will provide orienta-
tion ry3D

img, length l3D
img, width w3D

img, height h3D
img, center-

point of the bottom [x3D
img,y

3D
img,z

3D
img] as 3D bounding

box b3D
img in the camera space as the current state for

detected car, shown in Figure 2

b3D
img = [ry3D

img, l
3D
img,w

3D
img,h

3D
img,x

3D
img,y

3D
img,z

3D
img]

T (1)

3.2 Spatial Transform Module

When an autonomous vehicle is in a static scenario,
which means that the ego-car is in the stationary situ-
ation, the moving cars viewed in the world coordinate
system will be coherent with those viewed in the local
sensor coordinate system, such as camera coordinate
system. However, when tracking dynamic cars from a
moving platform, the egomotion of the sensor on the
autonomous vehicle will affect the relative location
and orientation of the detected cars from the sensors’
perspective. As a result, we develop a spatial trans-
formation module to decouple the egomotion of the
autonomous vehicle from the motion of the detected
cars in the traffic scene.
In order to transform the location and orientation of
the detected cars to the world coordinate system while
the ego-vehicle is moving, we utilize the GPS/IMU

data to estimate the ego-vehicle’s 6 degrees of free-
dom (DoF) pose T t

t−1 in the IMU coordinate system
(Osborne, 2008), followed by the transformation such
that:

Pworld
img = T t

t−1 ∗T imu
img ∗Pimg (2)

Where Pworld
img is the transformation from the camera

space to the world space, T t
t−1 is the ego-vehicle’s

pose update from time t−1 to t in the IMU coordinate
system, T imu

img is the transformation from camera space
to IMU space, Pimg is the 3D location of detected car
in the camera space.

3.3 3D Constant Acceleration Kalman
Filter

A 3D constant acceleration Kalman filter is used
for robust 3D car tracking, as the constant ac-
celeration assumed will be useful to model tar-
get motion that is smooth in position and ve-
locity changes. The state of vector is defined
as xworld = [ry, ṙy, r̈y, l,w,h,x, ẋ, ẍ,y, ẏ, ÿ,z, ż, z̈]Tworld in
the world coordinate system, and [ẋ,ẏ,ż], [ẍ,ÿ,z̈] are the
velocity and the acceleration corresponding to x,y,z
positions respectively. The state model and measure-
ment model of the discrete linear time-invariant sys-
tem are defined by Equations 3 and 4:

xt = A · xt−1 +wt−1 (3)

zt =C · xt + vt (4)

where t is the time index, A is the state transition
matrix of the process from the state xt−1 to the state
xt , C is the observation matrix that connects the state
vector and the measurement vector, w and v are the
process noise and measurement noise, and they are
all assumed to be mutually independent, zero-mean,
white Gaussian noise, with covariance Qt and Rt re-
spectively. zt is the measurement. The problem is to
estimate x̂t+1 of xt+1 for the prediction of cars loca-
tion and orientation, given the detection of cars in the
next frame zt+1.

3.4 Data Association

Data association is a typical problem encountered in
MOT task matching the same identities in sequence.
In the last decades, many methods have been pro-
posed for data association, such as the Hungarian al-
gorithm (Kuhn, 1955), the Joint Probabilistic Data
Association (JPDA) (Fortmann et al., 1983), the Mul-
tiple Hypothesis Tracking (MHT) (Reid et al., 1979).
In this paper, we use the Hungarian algorithm in our
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Figure 1: 3D Car Tracking Method Process.

Table 1: Previous State of art 3D Car Detection Networks.

Easy Moderate Hard
Networks Input Data Forward Time AP(%)

AVOD (Ku et al., 2017) Image&Lidar 0.08s 73.59 65.78 58.38
MV3D (Chen et al., 2017) Image&Lidar 0.36s 71.09 62.35 55.12

VoxelNet (Zhou and Tuzel, 2017) Lidar 0.5s 77.47 65.11 57.73

Figure 2: 3D Car Bounding Box.

work as it is a simple, efficient and linear data associ-
ation algorithm that minimizes the total cost of simi-
larity for each observation and hypotheses pair. The
performance of data association is indicated from the
MOT metrics of MOTA and IDS in Table 3.
The pre-fit residual between predicted quantity and
measurement, and the corresponding residual covari-
ance matrix are defined by Equation 5 and 6.

ỹk = zk−Ckx̂k|k−1 (5)

Sk = Rk +CkPk|k−1CT
k (6)

where P is the predicted state error covariance matrix.
Considering the distance of state vector between mea-
surement and prediction satisfies Gaussian distribu-

tion with mean of ỹk and covariance of Sk, the prob-
ability of which is defined as distance measure di j
from each tracking target state vector to measure-
ment. Then we apply the Hungarian algorithm (Kuhn,
1955), which can find an optimal assignment solution
using a cost matrix, and solving the matching problem
by minimizing the total cost E of Equation 7.

E =
N

∑
i

N

∑
j

Mi jdi j (7)

where M is a permutation matrix that determines the
total cost, N is the greater dimension of distance ma-
trix. It is worth noting that the distance matrix d will
be padded by 0 if it is not satisfied with square matrix.

4 EXPERIMENTAL RESULTS

In this section, we will apply our proposed tracking
method to the training dataset from the KITTI track-
ing benchmark (Geiger et al., 2013). The dataset
is captured from a VW station wagon equipped
with 2 high-resolution color stereo-cameras, 2 high-
resolution gray stereo-cameras, 1 Velodyne HDL-64E
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rotating 3D laser scanner, 1 GPS/IMU navigation sys-
tem. We extracted training sequences with ground
truth of detections for cars in 2D RGB images and 3D
point clouds from the dataset for evaluation. As the
ground truth of the testing dataset is not available, we
used a cross-validation method and split 7 sequences
from a total of 21 training tracking sequences.
Evaluation policy is based on the CLEAR MOT met-
rics (Bernardin and Stiefelhagen, 2008). The perfor-
mance metrics includes MOT precision (MOTP) indi-
cating averaged total error of distance between the ob-
ject and its corresponding matched object-hypothesis
for all frames, MOT accuracy (MOTA) indicating to-
tal tracking accuracy for all frames. Besides, (Li
et al., 2009) introduced other metrics, such as mostly
tracked (MT), partly tracked (PL), mostly lost (ML),
identity switches (IDS) indicating changing number
of matched ground truth identity, fragmentations (FR)
indicating the number of interrupted matched objects,
MODA presents multiple object detection accuracy.

4.1 3D Car Detection Result

The 3D car detection AVOD model is trained based
on KITTI dataset on an NVIDIA 1080Ti GPU, and
the results are evaluated on the validation dataset us-
ing the 3D bounding box IOU, BEV AP (Average Pre-
cision) and global orientation angle. The best results
are shown in Table 2, which are similar to the offi-
cial results. The slight difference is normal due to the
random dropout and random values of initial filters
during training. Figure 3 presents several qualitative
car detection results in 3D bounding box.

Table 2: Car Detection Average Precision (AP) of AVOD.

Easy Moderate Hard

AP3D(%)
Official 73.59 65.78 58.38

Ours 72.33 64.87 64.97

APBEV (%)
Official 86.80 85.44 77.73

Ours 86.18 77.98 78.05

4.2 3D Car Tracking Result

A clear advantage of Kalman filter can be seen in Ta-
ble 3 when we track cars in the 3D bounding box in
the world space, the visualization of the result is pre-
sented after transforming the location and rotation of
the cars from world space to image coordinate sys-
tem. It indicates that the tracking accuracy varies with
the detection performance. In Figure 4, the green 3D
bounding boxes with an arrow are detected cars, and
the red bounding boxes are the predicted result from
the Kalman filter from the previous frame.

Figure 3: Car Detection Result.

Figure 4: 3D Car Tracking Result.

5 CONCLUSIONS

In this paper, we presented a 3D dynamic car tracking
method in the dynamic traffic scene on the moving
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Table 3: 3D Car Tracking Result from Sequences from 0001 to 0007.

Seq01 Seq02 Seq03 Seq04 Seq05 Seq06 Seq07 Overall
MODA (%) 59.46 38.90 73.65 57.16 69.60 85.20 77.73 65.77
MOTA (%) 58.83 39.90 73.35 56.51 69.02 85.20 77.38 65.38
MOTP (%) 83.75 75.31 79.22 75.95 83.81 74.14 84.24 81.34

IDS 7 0 1 5 7 0 7 27
Frag 31 17 14 38 32 8 42 182

MT (%) 42.31 26.67 50.00 19.23 36.36 72.73 77.36 48.48
PT (%) 30.77 53.33 50.00 69.23 57.58 27.27 22.64 40.40
ML (%) 26.92 20.00 0.0 11.54 6.06 0.0 0.0 11.11

ego-car. Firstly we utilized a state of art car detector
AVOD to detect 3D cars from fused 2D RGB images
and its corresponding point clouds data, then a spatial
transform module maps the location and orientation
of detected car from camera space to world coordinate
system due to the effect of egomotion of the moving
platform. At last, a constant acceleration Kalman fil-
ter was applied to estimate the state of dynamic cars
in the world space for a smooth trajectory in the next
frame. However, we noticed that the estimated track-
ing bounding boxes are disturbed significantly by the
false rotation of the car that detected by the AVOD,
and our future work will focus on improvement of ro-
tation estimation of cars.
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