
Refactoring Misuse Case Diagrams using Model Transformation

Mohamed El-Attar and Nidal Nasser
Department of Software Engineering, College of Engineering, Alfaisal University, Riyadh, Saudi Arabia

Keywords: Misuse Case Modeling, Refactoring, Model Transformation, Antipatterns.

Abstract: Secure software engineering entails that security concerns needs to be considered from the early phases of

development, as early as the requirements engineering phase. Misuse cases is a well-known security

analysis and specifications techniques, based on the popular use case modeling technique, that takes place in

the requirements engineering phase. Similar to use case modeling, misuse case modellers are prone to

committing modeling mistakes and applying antipatterns. As a result, misuse case models need to be

analysed to determine if they contain fallacious design decisions. Changes, known as refactoring, to the

misuse case diagrams are then required to remedy any design issues and such changes which would

normally be manually applied. However, manual application of such changes in misuse case models are

prone to human error, further compounding the design issues in a given misuse case model. To this end, this

paper presents a model transformation approach to systematically apply changes to misuse case models. A

case study related to a book store is presented to illustrate the application and feasibility of the approach.

1 INTRODUCTION

Security is an essential quality attribute that needs to

be considered during the requirements engineering

phase. Use case modeling (Booch et al., 2005;

Jacobson, 1992; Bittner and Spence, 2002; OMG,

2011) is already a very popular technique to elicit,

analyse and model functional requirements of a

system. Misuse case modeling (Sindre and Opdahl,

2005) is a technique, based on use case modeling,

that can be used to elicit, analyse and specify

security requirements. A misuse case describes

expected system behaviour similarly to a use case,

except they describe negative operational sequences

that can lead to a system being compromised.

Similar to use case modeling, a misuse case

model can be improperly designed containing errors

that may lead to critical security threats not being

addressed. Therefore, it is critical to create high

quality misuse case models. Certain problematic

designs aspects can be repeatedly committed when

modellers create their misuse case models, referred

to as antipatterns. One approach to remedy

fallacious designs in misuse case models is to detect

these structural antipatterns and refactor them.

Refactoring a misuse case model will alter its

structural design to eliminate potential problems

resulting from the original design and resetting the

misuse case models to properly specify security

requirements in the way security modellers have

intended.

In earlier work, an approach to assess and

improve the quality of misuse case diagrams based

on detecting antipatterns and apply refactorings was

presented (El-Attar, 2012). However, the approach

presented in (El-Attar, 2012) does not provide tool

support to automatically detect antipatterns and

apply the refactorings, entailing a manual

application. Detecting antipatterns and applying

modeling refactorings is far from straightforward

process. Hence, a manual application of the

approach presented in (El-Attar, 2012) can be prone

to many human errors, further compounding the

design issues in a faulty misuse case diagram. To

this end, this paper presented a model transformation

approach to detect antipatterns in misuse case

diagrams and to apply its corresponding

refactorings, preventing potential human errors.

The remainder of this paper is organized as

follows: Section 2 provides the necessary

background related to the misuse case diagram

notation. Section 2 also describes the approach of

improving misuse case diagrams by detecting

structural antipatterns and applying their

corresponding refactoring. In Section 3, an approach

to detect antipatterns in misuse case diagrams and

applying their refactorings using model

transformation is described. A case study is

El-Attar, M. and Nasser, N.
Refactoring Misuse Case Diagrams using Model Transformation.
DOI: 10.5220/0007675502490256
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 249-256
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

249

presented in Section 4 to demonstrate the application

and feasibility of the proposed model transformation

approach. Finally, Section 5 concludes and suggests

future work.

2 REFACTORING MISUSE CASE

MODELS BASED ON

ANTIPATTERNS

This section provides necessary background on the

misuse case modeling notation and the use of

antipatterns to drive misuse case diagram

refactorings.

2.1 Misuse Case Diagrams Notation

Misuse case diagrams subsumes the entire notational

set of use case diagrams (Sindre and Opdahl, 2005).

A misuse case describes harmful behaviour in the

form of step-based scenarios, similar to how use

cases describe business related functional behaviour.

A misuse case is depicted as a black oval, to signify

its inverse relationship with use cases. Misuse cases

can share original relationships such as the include,

extend and generalization relationships. In addition,

misuse case diagrams introduce the concept of a

misuser. A misuser is analogous to an actor. A

misuse case can only be associated with misuse

cases similar to how actor can only be associated

with a use case. A misuser is an external entity that

accessed a misuse case to execute behaviour that can

compromise a system. A misuse case can access the

misuse case with malicious intentions or

unintentionally. A misuser is depicted as a black

stickman figure, to signify its inverse relationship

with an actor. Finally, misuse case diagrams

introduce the concepts of the threatens and mitigates

relationship. A threatens relationship can only be

directed from a misuse case to a use case to indicate

that the harmful behaviour contain in the misuse

case can be executed to negatively affect the

business related behaviour contained in the use case.

A mitigates relationship can only be directed from a

use case to a misuse case to indicate that the security

related behaviour in the given use case can be

executed to mitigate the threated posed be the given

misuse case.

2.2 Refactoring Misuse Case Diagrams
based on Antipatterns

An antipattern is defined as a “literary form that

describes a commonly occurring solution to a

problem that generates decidedly negative

consequences”. In the context of software

engineering requirement-oriented and design-

oriented diagrams, an antipattern will describe an

unsound structure and its potential harmful

consequences downstream in the development

process. An antipattern also provides key

information on how it can be detected within a

diagram and how the diagram should be altered to

remedy the faulty design. Altering a diagram is

performed by applying one or more refactorings.

It should be noted that a detected antipattern

does not definitively prove the existence of a detect.

An antipattern detection will only prompt modellers

to re-evaluate their design. While assessing their

diagrams due to an antipattern detection, the

modellers will reference key information provided in

the antipattern description itself to determine if an

error indeed exists, prompting the application of one

or more refactorings.

An approach to improve the quality use case

diagrams based on antipatterns was presented in (El-

Attar and Miller, 2006, 2010, 2012; Khan and El-

Attar, 2016). The approach was then extended to

improve the quality of misuse case diagrams in (El-

Attar, 2012). A summary of the taxonomy of

antipatterns presented in (El-Attar, 2012) is shown

below in Table 1. Table 1 also presents the

corresponding refactorings for each antipattern. Due

to space restrictions, only antipatterns “a1.” and

“a2.” only will discussed in more details.

A1. Accessing a Generalized Concrete Misuse Case

This antipattern is concerned with the case that a

misuser is associated directed with a generalized

misuse case in order to enable one of its specializing

misuse cases. A generalized misuse case would

normally contain abstract and incomplete behaviour

that is common amongst all of its specializing

misuse cases. However, a direct association with a

concrete generalized misuse case may result in

executing this generalized misuse case without

executing any of its specializing misuse cases

resulting in incomplete meaningless behaviour being

executed.

This antipattern can be remedied by applying

one of two refactorings. Refactoring “r1.” entails

the concrete generalized misuse case to be set as an

abstract misuse case, forcing the execution of one of

its specializing misuse cases. The second refactoring

“r2.” requires that the direct association between the

misuser an the concrete generalized misuse case to

be dropped and replaced with direct associations

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

250

from the misuser to the misuse case’s specializing

misuse cases, once again, forcing the execution of

one of the specializing misuse cases.

Figure 1 presents an instance of antipattern

“a1.”. Figures 2 and 3 present that application of

refactorings “r1.” And “r2.”. respectively.

Figure 1: Antipattern “a1.” Example.

Figure 2: Applying refactoring “r1.”.

Figure 3: Applying refactoring “r2.”.

A2. Accessing an Extension Misuse Case

This antipattern is concerned with the case that a

misuser is associated directly with an extension

misuse case. A direct associated between a misuser

and a misuse case can lead to the execution of the

extension misuse case only. This is inappropriate

design since extension misuse cases are specifically

tailored to be an extension of its corresponding base

misuse case. Hence, an extension misuse case would

be rather meaningless if executed independently

from its base misuse case. This design applied by

modellers allow a misuser to provide information to

an executing extension misuse case. However, it is

the base misuse case that should receive information

required by the extension misuse case from the

misuser.

Antipattern “a3.” can be remedied by applying

either refactoring “r3.” or “r4.”. Refactoring “r3.”

requires the direct association between the misuser

and the extension misuse case to be removed, hence

preventing the possibility of the misuser executing

the extension misuse case independently from its

base misuse case. Meanwhile, refactoring “r4.”

requires the association relationship between the

misuser and the extension misuse case to be directed

from the extension misuse case to the misuser. A

direction association only allows the extension

misuse case to initiate the engagement with the

misuser, given that the base misuse case is properly

executed, while preventing the misuser from

initiating the engagement with the extension misuse

case whereby there is a potential that the extension

misuse case may be executed independently from its

base misuse case.

Figure 4 presents an instance of antipattern

“a2.”. Figures 5 and 6 present that application of

refactorings “r3.” And “r4.”. respectively.

Figure 4: Antipattern “a2.” Example.

Refactoring Misuse Case Diagrams using Model Transformation

251

Figure 5: Applying refactoring “r3.”.

Figure 6: Applying refactoring “r4.”.

3 REFACTORING MISUSE CASE

DIAGAMS USING MODEL

TRANSFORMATION

A model transformation is an automated conversion

of a source model to a target model based on a set of

predefined transformation rules. A rule described the

mapping of source model elements to target model

elements. A rule also describes the conditions which

triggers the transformation of a source model (or a

sub-part of the source model) to become a target

model.

A metamodel for misuse case diagrams need to

be defined as a prerequisite to model

transformations. The target and source models are

the same (misuse case diagrams) and hence they are

represented using the same metamodel, hence an

endogenous model transformation is performed. The

metamodel developed utilizes many elements from

the official UML specifications document [OMG]

There exist many model transformation

languages that can be used and implemented with

various strengths and weaknesses. The model

transformation language used in this paper Is ATL

(ATL Transformation Language) (ATLAS

Table 1: Misuse case antipatterns and their respective

refactorings.

Group, 2006). ATL provides a very beneficial

advantage in that it provides declarative and

imperative programming capabilities to implement

transformations. The transformation implemented in

this research work using a combination of both

programming paradigms. Transformation algorithms

are defined as a set of ATL modules which are

comprised of a set of ATL rules and helpers. ATL

rules and helpers define how a target model instance

is generated from a source model instance. Due to

space restrictions, the remainder of this section

presents the ATL modules that were developed to

Antipattern Refactoring

a1. Accessing a

generalized concrete

misuse case

r1. Concrete to Abstract

r2. Drop Misuser-

Generalized MUC Association

a2. Accessing an

extension misuse case

r3. Drop Misuser -

Extension MUC Association

r4. Directed Misuser -

Extension MUC Association

a3. Using

extension/inclusion

misuse cases to

implement an abstract

misuse case

r5. Abstract Extended

MUC to Concrete

r6. Inclusion to

Generalization

a4. Functional

Decomposition: Using

the include relationship

r7. Drop Functional

Decomposition

r8. Drop Functional

Decomposition having

Inclusion

a5. Functional

Decomposition: Using

the extend relationship

r9. Split Extension MUC

r10. Extension to

Generalization

a6. Multiple

generalizations of a

misuse case

r11. Generalization to

Include

a7. Misuse cases

containing common and

exceptional functionality

r12. Drop Inclusion

r13. Drop Extension

a8. Multiple misusers

associated with one

misuse case

r14. Generalize Misusers

r15. Split MUCs

a9. An association

between two misusers

r16. Drop Misuser-Misuser

Association

a10. An association

between misuse cases

r17. Drop MUC-MUC

Association

a11. An unassociated

misuse case

r18. Drop Unassociated UC

a12. Two misusers

with same name

r19. Rename Misuser

a13. An misuser

associated with an

unimplemented abstract

misuse case

r20. Abstract to Concrete

r21. Add Concrete MUC

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

252

Listing 1: The ATL code to apply the refactoring using

explicit associations with specializing misuse cases.

implement the refactoring of antipattern “a1.” And

“a2.”, discussed previously in Section 2.

As discussed previously in Section 2, antipattern

“a1.” requires that the association between the

misuser and the generalized misuse case cases to be

replaced with associations between the misuser and

the specializing misuse case cases. Listing 1 presents

the ATL code which applies this refactoring. The

transformation commences by executing the rule

Package_To_Package as the package element is

considered to be the root node. The target diagram is

named umlP while the source diagram is named

umlAp. The Association_To_Association

rule is then invoked to perform the actual

refactoring. Invocation of this rules changes the

association end from the generalized misuse case to

one of the specializing misuse cases. Association

model elements are then created connecting the

misuser with the specializing misuse cases.

A second refactoring is subsequently executed.

The second refactoring is based on setting the

generalized misuse case as abstract. The second

refactoring is implemented using the

MisuseCase_To_MisuseCase rule. The rule

simply sets the isAbstract attribute of the

misuse case element to true (see Listing 2).

Listing 2: The ATL code to apply the refactoring by

setting the parent misuse case as abstract.

Listing 3: Implementation of the first refactoring for

antipatterns “a1.”

module MUC_AP_2_R1;

create umlP: UML refining umlAp: UML;

--helper for accessing the misuse

helper def: actor : UML!Misuser =

 UML!Misuser ->allInstances()->first();

--helper for accessing the specialized misuse

cases

helper def: specializedMUCs :

Sequence(UML!MisuseCase)

 = UML!MisuseCase-> allInstances()->select

(a|a.generalization->size()>0);

--helper for accessing the first specialized

misuse cases

helper def: firstSpecializedMUC : UML!MisuseCase

 = thisModule.specializedMUCs->first();

--helper for accessing the second specialized

misuse cases

helper def: secondSpecializedMUC :

UML!MisuseCase

 = thisModule.specializedMUCs->last();

--Declarative matched rule for refining package

rule Package_To_Package {

 from s: UML!Package in umlAp

 to t: UML!Package in umlP (

 packagedElement<-Sequence

 {s.packagedElement , a2}

),

 a2: UML!Association in umlP (

 memberEnd <- a2p1,

 navigableOwnedEnd <- a2p2,

 ownedEnd <- Sequence{a2p1, a2p2}

),

 a2p1: UML!Property in umlP (

 name <- 'src',

 association <- a2,

 type <- thisModule.misuser

)

 a2p2: UML!Property in umlP (

 name <- 'dst',

 association <- a2,

 type <- thisModule.secondSpecializedMUC

)

}

--Declarative matched rule for refining

Assocations

rule Association_To_Assocation {

 from a: UML!Association in umlAp

 to a1: UML!Association in umlP (

 name <- a.name,

 ownedEnd <- a.ownedEnd

)

}

--Declarative matched rule for refining

Association Properties

rule Property_To_Property {

 from s: UML!Property in umlAp

 to t: UML!Property in umlP (

name <- s.name,

type <- if s.name = 'src'

 then thisModule.misuser

else

 if s.name = 'dst'

 then thisModule.firstSpecializedMUC

 else

s.debug('Error')

 endif

endif

)

}

module MUC_AP_2_R2;

create umlP: UML refining umlAp: UML;

rule MisuseCase_To_MisuseCase {

 from s: UML! MisuseCase in umlAp (

 s.generalization->size() = 0

)

 to t: UML! MisuseCase in umlP (

 isAbstract <- true

)

}

rule DropMisuseCase {

 from s: UML!MisuseCase (

 not(s.isAssociated() or s.isIncluded() or

s.isIncluder() or s.isExtended()

 or s.isGeneralization() or

s.isSpecialization()) and s.extend->size()>1;

)

 to drop

 do {

 for(ex in s.extend) {

thisModule.AddBaseMisuseCaseforExtension(ex);

 }

 }

}

Refactoring Misuse Case Diagrams using Model Transformation

253

Antipattern “a2.” relates to the improper usage of

the extend relationship as discussed previously in

Section 2. This antipatterns instance is remedied by

applying two refactorings. The first refactoring is

implemented by the rule DropMisuseCase in

Listing 3. Rule DropMisuseCase checks for

extension misuse cases that are shared by multiple

base misuse cases, then proceeds to delete them

when found. An invocation to AddMisuseCase
adds specific extension misuse cases into the misuse

case model for each of the base misuse cases. The

name of the newly generated misuse cases is

appended with the name of its corresponding base

misuse case.

The second refactoring required to remedy the

“a2.” antipatterns instance is implemented by the

rule DropExtend shown in Listing 4. Rule

DropExtend check for extend relationships who

extension misuse case is shared with multiple base

misuse cases and then proceeds to delete them when

found. A call to AddGeneralization results in

generating a generalization relationship from the

extension misuse case to its corresponding base

misuse case.

Listing 4: ATL rule for applying Extension to

Generalization refactoring.

4 ONLINE STORE CASE STUDY

The Online Store (OS) system allows its customers

to submit online orders and to send and receive

email from store personnel. The security threats that

were identified in the requirements phase include

stealing a customer’s credit card information,

spreading malicious code and email interceptions.

To mitigate against these threats, the system is

supplemented with an encryption based defensive

mechanism as countermeasure. The misuse case

diagram developed is shown in Figure 7.

Figure 7: The original misuse case diagram of OBS.

rule DropExtend {

 from s: UML!Extend (

 not (s.getExtension().isAssociated() or

s.getExtension().isIncluded() or

 s.getExtension().isIncluder() or

s.getExtension().isExtended() or

 s.getExtension().isGeneralization() or

s.getExtension().isSpecialization()) and

 s.getExtension().extend->size() > 1

)

 to drop

 do {

 thisModule.AddGeneralization(s);

 }

}

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

254

Figure 8: The misuse case diagram of OBS after applying the refactorings in response to addressing the antipattern matches.

In its current state, the OS misuse case model suffers

from a number of problems hampering its quality

and reducing the comprehension of the security

threats. Table 2 below presents the antipatterns that

were detected in the OBS misuse case model. A total

of 8 antipatterns instances were detected.

The proposed model transformation approach

automatically detected these antipatterns and applied

its corresponding refactorings. The results are

reflected in the misuse case diagram shown in

Figure 8.

Table 2: OS misuse case model antipattern matches.

Match

No.

Antipattern

Matched

Elements involved

1

a8. Functional

decomposition:

using pre and

postconditions

Misuse Cases: Steal
Credit Card Information,
Steal Billing Address,
Steal Card Number and

Steal Expiry Date

2

a5. Functional

decomposition:

using the include

relationship

Misuse Cases: Reveal
Email and Intrusion
Detected

3

a5. Functional

decomposition:

using the extend

relationship

Misuse Cases: Intrusion
Detected, Steal Credit
Card Information,
Spread Malicious Code

4

a5. A non-

threatening base

misuse case

Misuse Cases: Steal
Billing Address, Steal
Card Number, Spread
Malicious Code and

Spread Virus

5

a5. Multiple

misusers

associated with

one misuse case

Misuse Cases: Spread
Malicious Code
Misusers: Crook and
Virus Creator

6

a4. A misuse case

that is not

associated with

any misusers

Misuse Cases: Spread
Virus

7

a6. An

unmitigated base

misuse case

Misuse Cases: Spread
Virus, Reveal Email,
Steal Billing Address,
Steal Card Number and

Steal Expiry Date

8

a6. A described

misuser that is not

depicted in the

diagram

Misuser: Get Admin
Privileges

5 CONCLUSIONS AND FUTURE

WORK

Misuse case modeling is one of the more commonly

known security modeling techniques that can be

deployed at the requirements engineering phase. The

Refactoring Misuse Case Diagrams using Model Transformation

255

quality of misuse case diagrams produced

significantly affects the security addressing efforts

of a development team. Many misuse case diagrams

contain design defects that can mislead the

development team. A taxonomy of these defects has

been developed in previous work entailing the

detection of structural antipatterns and a number of

refactorings to be applied based on detected

antipatterns. This paper proposes a model

transformation approach to detect antipatterns and

apply refactorings to eliminate the potential of

human error when performing these two main

activities manually. The proposed approach was

applied to a generic online store case study that

demonstrated its application and feasibility.

Future work can be directed towards created

extending the exiting taxonomy of misuse case

modeling and to provide model transformation-

based implementations of their associated antipattern

detection and refactoring activities. Other future

work can be directed towards utilizing model

transformation to refactoring other requirements and

design phase models.

REFERENCES

ATLAS Group, 2006. ATL User Manual. [online]

Available at:. <

http://www.eclipse.org/m2m/atl/doc/ATL_User_Manu

al[v0.7].pdf> [Accessed: 1 February 2012]

Bittner, K. and Spence, I., Use Case Modeling. Addison-

Wesley, 2002.

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified

Modeling Language User Guide, Second Edition.

Addison-Wesley, 2005.

El-Attar, M. and Miller, J., "Matching antipatterns to

improve the quality of use case models," in

Requirements Engineering, 14th IEEE International

Conference, 2006, pp. 99-108.

El-Attar, M. and Miller, J., “Improving the Quality of Use

Case Models Using Antipatterns,” J. of Software and

Systems Modeling, 2010.

El-Attar, M. “A Framework for Improving Quality in

Misuse Case Models.” Business Proc. Manag. Journal

18(2): 168-196 (2012).

El-Attar, M. and Miller, J., "Constructing high quality use

case models: a systematic review of current practices,"

Requirements Engineering, vol. 17, pp. 187-201, 2012.

Jacobson, I. et al.: Object-Oriented Software Engineering.

A Use Case Driven Approach. Addison-Wesley (1992)

Khan, Y. and El-Attar, M., “Using Model Transformation

to Refactor Use Case Models Based on Antipatterns”.

Information Systems Frontiers 18(1): 171-204 (2016)

Object Management Group (OMG), 2011. OMG Unified

Modeling Language (OMG UML) Superstructure.

<https://www.omg.org/spec/UML/2.4.1/About-

UML/> [Accessed: 19 October 2018]

Sindre, G., Opdahl, A., Eliciting security requirements

with misuse cases, Requirements Engineering Journal,

vol 10, pp. 34-44 (2005)

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

256

