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Abstract: A fully capable unmanned ship navigation requires full autonomous decision-making, large-scale decision 

model training data to answer for these conditions is essential. However, it is difficult to obtain enough scenes 

training data in a real sea navigation environment. In response to possible emergency situations even no shore-

station support, this paper proposes a method using conditional generative adversarial networks (CGAN) to 

generate the most executable large-scale target ships image set, which can be used to training various sea 

conditions autonomous decision-making model. In practice, most of the current research on unmanned ships 

are based onshore remote control or monitoring. Nonetheless, in some extremely special circumstances, such 

as communication interruption, or if the ship cannot be guided or remotely controlled in real time on the shore, 

the unmanned ship must make an appropriate decision and form new plans according to the encounter targets 

and the whole current situation. The CGAN model is a novel means to generate the target ships to construct 

the whole encounter sea scenes situation. The generated targets training image set can be used to train decision 

models, and explore a new way to approach large-scale, fully autonomous navigation decisions. 

1 INTRODUCTION 

The equipment used in modern ocean-going vessels 

can be roughly divided into two types: navigation aids 

that help the crew to make the right decisions and 

control equipment that the seafarer’s control. To 

reduce running costs and human factors in accidents, 

unmanned vessels with autonomous perception and 

decision-making are the future development 

direction. For this, a model or system is required to 

receive data from the navigation aids and make 

appropriate decisions for the obtained data through 

the control device to complete the autonomous 

navigation. The heavy sea environment may interrupt 

satellite communication and result in loss of remote-

control capacity. To achieve long-distance and 

completely autonomous, unmanned merchant ship 

transportation, the system must be able to make its 

own a  decisions at any time in response to 

emergencies, change the established strategy, and 

eliminate the danger.  

As shown in Figure 1 on the following page, the 

ship is sailing along the coast, the target ship 

represented by T1~T3, and T* represents the fishing 
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boat group that performs fishing operations in one 

area. Short-distance path replanning is possible, 

especially in extreme navigation environments, and 

without remote assistance from the shore, the 

unmanned ship must rely on the limited data 

information to make appropriate decisions (Liu and 

Bucknall, 2015). From the perspective of the bridge, 

the confirmation of the target ship and its trajectory 

are not easily presented in a three-dimensional 

manner. Furthermore, the relative positional 

relationship between the target ship and the ship is 

critical to the training of decision-making neural 

networks, so it is important to construct enough 

confrontation scenarios to train large-scale 

unsupervised decision models. Another problem of 

unsupervised learning is the determining of how to 

generate a new path for no-human participation in 

decision making; this problem sets high demands on 

the model. 

First, the available models built using 

unsupervised methods are reviewed. The most 

straightforward idea is to estimate the sample 

distribution p(x) from the training set and sample p(x) 

to generate a new sample “similar to the training set”.  
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Figure 1: Real sea encounter environment. 

For low-dimensional samples, a simple 

probabilistic model with only a few parameters (such 

as Gaussian) can be fitted to p(x), whereas high-

dimensional samples (such as images) are difficult to 

implement. In the extreme navigation environment, 

the input of the sensing device may be encoding low-

latitude information, or other high-latitude 

information such as images. A classic method is to 

construct an undirected graph by using the Restricted 

Boltzmann Machine (RBM). The energy values and 

node probability of the graph have an exponential 

relationship (Nair and Hinton, 2010). The training set 

is used to set the coefficients of nodes and edges in 

the graph to express the relationship between 

individual elements and connected elements in x. 

This method is cumbersome and computationally 

complex. The mixing speed of the Markov chain is 

very slow when sampling (Neal, 2000). Another 

method is the use of deep belief networks (DBNs), in 

which a single RBM and several directed layers are 

used to form a network. This method has the same 

computational complexity (Hinton et al., 2006). 

Another popular method is the use of convolutional 

neural networks (CNNs). Although CNNs show 

immediate results in supervised learning including 

classification and segmentation, how to conduct 

unsupervised learning has always been a problem 

(Wang and Gupta, 2015). Generative adversarial nets 

(GAN) can solve this problem systematically. 

2 PREVIOUS WORK 

2.1 Generative Adversarial Nets (GAN) 

GAN is a new method of training the generation 

model proposed by Goodfellow et al., (2014); the 

method includes the generation and discrimination of 

two “adversarial” models. The generated model (G) 

is used to capture the data distribution, and the 

discriminant model (D) is used to estimate the 

probability that a sample is derived from real data 

rather than generating samples. Both the generator 

and discriminator are common convolutional 

networks as well as fully connected networks. The 

generator generates a sample from the random vector, 

and the discriminator discriminates between the 

generated sample and training set sample. Both train 

simultaneously as shown in equation (1): 

When training the discriminator, discriminant 

model D is fixed, while the parameters of generator G 

are adjusted to minimize the expectation of log(1 −
 D(G(z)) as shown in equation (2): 

where model G is fixedly generated and the 

parameters of the D are adjusted to maximize the 

expectation of log (D(X))  +  log(1 −  D(G(z))). As 

shown in equation (3) 

This optimization process can be attributed to a 

“two-player minimax game” problem. Both purposes 

can be achieved through a backpropagation method. 

A well-trained generation network can transform any 

noise vector into a sample similar to the training set. 

This noise can be seen as the encoding of the sample 

in a low dimensional space. The generator generates 

meaningful data based on random vectors. In contrast, 

the discriminator learns how to determine real and 

generated data, and then passes the learning 

experience to the generator, enabling the generator to 

generate more workable data based on random 

vectors. Such a trained generator can have many uses, 

one of them being environmental generation in 

automatic navigation. This paper proposes the 

feasibility of this method and applies it in image set 

generation to allow unmanned ships to achieve fully 

autonomous decision-making processes. 

2.2 Generated Image Set Data 

The acquiring of real data on critical sea conditions is 

difficult; therefore, acquiring data similar to real 

scenes is important, especially when data is scarce. 

When acquiring data for training the automatic 

driving system, according to the concept used in this 

study, the use of GAN can be extended to replace the 

real image according to the virtual image generated

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log(D(X))] + 𝐸𝑧~𝑃𝑧(𝑧)[log(1 −  D(G(z)))]𝐺         𝐷  
𝑚𝑖𝑛,𝑚𝑎𝑥

 (1) 

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log(D(X))] + 𝐸𝑧~𝑃𝑧(𝑧)[log(1 −  D(G(z)))]     𝐷  
𝑚𝑎𝑥  (2) 

𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑃𝑧(𝑧)[log(1 −  D(G(z)))]𝐺    
𝑚𝑖𝑛  (3) 
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from the generator. (Yang et al., 2018) used an 

opposing concept, in which the scene image obtained 

was directly acquired through real driving by using 

unsupervised learning to remove the details unrelated 

to the prediction of driving behavior. It was simplified 

to the refinement specification representation in the 

virtual domain. Accordingly, the ship-driving 

instructions were predicted to form a new training 

program that is more efficient and accurate. 

Unmanned surface navigation involves a type of 

driverless navigation. The deep Q-network (DQN) 

algorithm can be used to train the unmanned ship 

navigation model (Mnih et al., 2015); this is the 

embodiment of the wider application of GAN. 

Goodwin (Goodwin 1975) derived, training data from 

sensory data collected by the ship’s real navigation, 

and real navigation seafarers inevitably maintained 

sufficient safety distance. Therefore, when an 

unmanned ship encounters a dangerous situation, the 

experience replay utilized is actually not sufficient. 

This is because adopting appropriate decision-

making and behavioral judgment based on the 

previous data-training results is difficult when the 

unmanned ship actually encounters a sea state that is 

different from typical sea conditions (Schaul et al., 

2015).  

The purpose of the present study involves 

generating data containing more similar critical sea 

conditions through the GAN model by using a small 

number of maritime-navigation real data in critical 

situations. The aforementioned data potentially 

corresponds to pre-collision scenes encountered by 

two ships [including pictures, Automatic 

identification system (AIS) data, and radar data]. For 

example, the data can also correspond to a scene that 

occurred prior to when a ship is stranded in the waters 

with insufficient water depth (the most important 

factor corresponds to the water-depth data). The 

problem for which the DQN algorithm does not learn 

from experience in the case of the aforementioned 

data sparseness is solved using the GAN algorithm. 

3 VIRTUAL TRAINING IMAGE 

SET GENERATION MODEL 

3. 1 Conditional GANs 

Conditional GANs (CGAN) is an extension of the 

original GAN, in which both the generator and 

discriminator add additional information y to the 

condition. Here, y can be any information, such as 

category information or any other modality 

information data as shown equation (4). (Mirza and 

Osindero, 2014). If condition variable y is a category 

label, CGAN can be considered as an improved 

supervised model of the pure unsupervised GAN. 

This simple and straightforward improvement has 

proven to be very effective and widely used in 

subsequent related work (Denton et al, 2015; Radford 

et al., 2015). 

The conditional GAN is achieved by feeding 

additional information y to the discriminator and 

generator models as part of the input layer. In the 

generator model, the input a priori noise p(z) and 

condition information y are combined to form a joint 

hidden-layer representation. The adversarial training 

framework is relatively flexible in terms of the 

composition of the hidden-layer representation. 

Similarly, the objective function of conditional GAN 

is a “Conditional two-player minimax game.” 

3.2 The Process of CGAN in  
Sea-Scene-Environment 
Construction 

The specific process to obtain various sea-condition 

scenarios is shown in Figure 2. First, condition 

information Y is entered into the generator and 

discriminator, and then a few random vectors are 

input to the generator network, and fake data are 

subsequently generated by the generator. These fake 

data can correspond to a few ship-state pictures or a 

few other navigation data, such as AIS data of nearby 

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log(D(x|y))] + 𝐸𝑧~𝑃𝑧(𝑧)[log(1 −  D(G(z|y)))]𝐺         𝐷  
𝑚𝑖𝑛,𝑚𝑎𝑥

 (4) 

 

Figure 2: Applying CGAN algorithm to generate encounter targets image training set. 
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Figure 3: Generated lifeboat from submarine by Big-GAN. 

ship or the path planning data after the ship route is 

updated. We inputted the fake data to the 

discriminator, which determines whether the input 

data are real or generated by the generator based on a 

random comparison with the real data. The similarity 

between the data by the generator and the real data 

from the discriminator progressively increases, thus 

increasing the discriminating ability required by the 

discriminator. Additionally, the generator and 

discriminator share a mutually competitive and 

adversarial relationship. The generated data are 

considered to sufficiently mirror real data when the 

fake data input by the generator appears sufficiently 

realistic, and the accuracy of the discriminator at this 

time is approximately 50%. This corresponds to the 

sea-scene data required in critical sea situations. 

3.3 A Case Study for Generated Image 

CGAN model image generation as shown in figure3. 

This section mainly demonstrates how to generate a 

lifeboat using images of submarines taken from 

different angles using the Big-GAN model. Big-GAN 

model proposed by Andrew Brock from Heriot-Watt 

University (Brock et al., 2018). The authors proposed 

a model (Big-GAN) with modifications focused on 

the following three aspects: a. improving 

conditioning by applying orthogonal regularization to 

the generator; b. The orthogonal regularization 

applied to the generator makes the model amenable to 

the “truncation trick” so that fine control of the trade-

offs between fidelity and variety is possible by 

truncating the latent space; c. stability is very 

significant for large-scale image generate. 

 

Figure 4: Generate lifeboat images by Big-GAN model. 

 

Figure 5: A portion of the generated lifeboat image set. 

 

Figure 6: A portion of the generated ocean liner image set. 

We can input different random vectors and 

combine the real data input by the discriminator to get 

a large number of Real enough image data sets. This 

study, we input random vectors are submarine. As 

shown in Figure 4, we get three different types of 

lifeboats, more importantly, the different background 

environments of lifeboats can also achieve various 

changes. It can be provided a large amount of training 

data for our unsupervised decision model. It is much 
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richer than the target ship data collected from real sea 

environment. 

4 APPLICATION 

4.1 Generated Target Image Set 

The most important part of this study is to obtain a 
data set of the target ship with sufficient quality and 
quantity. As shown in Figure 5, a portion of the entire 
large-scale lifeboat target image data set is shown. 
These images were not taken by the camera and were 
generated entirely from our GAN model. Using our 
model, we can generate various situations at sea 
scenes and the various forms that the own ship may 
encounter; even various types of accidents, such as 
collisions, stranding, fire, loss of goods, etc. Not only 
the training data set for lifeboats, but also the ocean 
liner data set shown in Figure 6, as well as data sets 
for various other types of marine moving targets. 

4.2 Generated Data for Unsupervised 
Decision Model Training 

GAN is easy to embed into the framework of 
reinforcement learning. For example, when using 
Deep Q-Network to solve collision avoidance 
problems, GAN can be used to learn the conditional 
probability distribution of an action. The agent can 
select reasonable images based on the response of the 
generated model to different actions. 

In the training of image recognition models of 
convolutional neural networks and the training of 
decision models such as deep reinforcement learning, 
the quality of the input data greatly affects the effect 
of the training results. The target image dataset 
generated by CGAN has the same image size and the 
same image density, which can easily solve the 
problem of inconsistent input data during the training 
process. In addition, the CGAN model solves many 
of the scene data that are difficult to obtain in a real 
navigation environment, making it possible to use 
large-scale data input for deep learning. 

5 CONCLUSIONS 

This paper using the Conditional Generative 
Adversarial Networks to generate image set of the 
available target ships and improve the quantity and 
quality of training data. The surrounding environment 
data of the own ship obtained by the sensors, mainly 
includes AIS data, radar data, and image data. Small 
vessels, especially those in some areas, do not have 

AIS data, radar data is greatly affected by the weather. 
Therefore, training automatic driving unmanned 
ships are inseparable from the support of image data 
sets, especially the image data of small ships in 
various states. This paper uses the image data of 
target ship as a sample, which obtained from the 
perspective of the ship’s bridge, using the CGAN 
algorithm to generate more, and the same type of the 
target ship image data to support model training. 
According to different condition information, through 
the CGAN model, it is possible to generate more 
different environmental states, such as different near-
shore backgrounds, different city lighting pollution, 
different weather conditions, and even different 
seasons, new images of different ocean wave levels. 
This method can greatly expand the quantity and 
quality of the training data set, therefore, easy for 
completing the construction of a better autonomous 
unsupervised decision model. 
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