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Abstract: Surprise is a property of recommender systems that has been receiving increasing attention owing to its links to
serendipity. Most of the metrics for surprise poorly agree with definitions employed in research areas that con-
ceptualise surprise as a human factor, and because of this, their use in the task of evaluating recommendations
may not produce the desired effect. We argue that metrics with the characteristics that are presumed by models
of surprise from the Cognitive Science may be more successful in that task. Moreover, we show that a metric
for surprise is sensitive to the choices of how items are represented and compared by the recommender. In this
paper, we review metrics for surprise in recommender systems, and analyse to which extent they align to two
competing cognitive models of surprise. For that metric with the highest agreement, we conducted an off-line
experiment to estimate the effect exerted on surprise by choices of item representation and comparison. We
explore 56 recommenders that vary in recommendation algorithms, and item representation and comparison.
The results show a large interaction between item representation and item comparison, which suggests that
new distance functions can be explored to promote serendipity in recommendations.

1 INTRODUCTION

The purpose of a Recommender System (RS) is to
enable its user to select an item within a universe of
items that is predominantly unknown by them. A rec-
ommender can suggest to its users any of the items
in its repository, and such items can represent any-
thing of interest to users, such as books, movies,
music, hotels, restaurants, or scientific articles. In
its most rudimentary form, a recommender produces
non-personalised recommendations by offering items
of popular interest to all users. In this case, an RS uses
descriptive statistics of the ratings given to the items
by the users to produce recommendations that con-
sist of items with higher expected rating. However,
numerous approaches have been proposed over time
to allow an RS to produce personalised recommen-
dations by making use of different sources of infor-
mation. To select the personalisation approach that is
the most appropriate for a given domain (e.g. movie
or music recommendation), it is necessary to define
an evaluation method that can be used to compare
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the performance of different approaches and to deter-
mine which one makes the recommender more or less
competent in that domain. It must be noted that the
evaluation method can assist the owner of the system
not only in selecting a personalisation approach but
also in tuning a recommender instance, assuming that
owner of the system has a method for seeking optimal
parameters according to the objectives imposed by the
application. It must be said that, for a long time, the
most common property associated to the competence
of a recommender was its predictive accuracy.

As the research area evolved, a consensus on
the inadequacy of adopting accuracy as the only rel-
evant property for an application emerged among
researchers (Herlocker et al., 2004; McNee et al.,
2006). Nowadays, beyond-accuracy properties of rec-
ommender systems is known to play a critical role
in user satisfaction and, among these properties, sur-
prise has recently been the subject of several studies
owing to its links to serendipity (Adamopoulos and
Tuzhilin, 2011; Kaminskas and Bridge, 2014; Silveira
et al., 2017) and the problem of over-specialisation
in content-based recommenders (de Gemmis et al.,
2015), as well as its importance in some application
domains (Mourão et al., 2017). The notion of surprise
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generally reflects the capacity to make recommenda-
tions that are dissimilar from the items known to a
given user (Kaminskas and Bridge, 2014; Adamopou-
los and Tuzhilin, 2011; Zhang et al., 2012).

However, the metrics in the literature show a low
level of conceptual agreement with models of surprise
being investigated in Cognitive Science, in which sur-
prise is framed as a human factor. These metrics ex-
plore intuitions about how to assess the surprise ex-
perienced by a user when they are exposed to a rec-
ommendation list. They differ in terms of how much
they can meet requirements imposed by the subjectiv-
ity inherent in the perceptions of surprise, by the dy-
namism of the perception of a user who is constantly
exposed to new experiences, and by the difficulty of
evaluating the discrepancy (or distance) between what
is expected and what is observed. Analysing the rela-
tionship of measures with such capacities is the first
step for those who intend to understand them. The
next step should be exploring the choice of models for
representing and comparing items, for instance, with
a view to evaluating a recommendation list in a rec-
ommender system (or to another application domain
of particular interest). Such choices are expected to
affect the performance of metrics. Since the knowl-
edge of which combinations of item representations,
item comparison and, in our case, recommender algo-
rithms have a greater or lesser impact on such metrics
generally comes from costly empirical experiments.
The documentation of results from experiments of
this nature is beneficial for the acceleration of future
studies.

In this paper we present the effects of choices
related to item representation and item comparison
models on the results obtained by applying metrics
for surprise, considering combinations of: four item
representation models (count-based and prediction-
based distributional semantics models, sparse and fac-
torised user-item models); six distance functions to
implement item comparison models (Euclidean and
cosine distances as geometric intuitions, Jaccard dis-
tance as a combinatorial intuition, Kullback-Leibler
and Jensen-Shannon divergences as information in-
tuitions, and Aitchison distance as a statistical intu-
ition); and four algorithms to create recommendation
lists (factorisation and three variations of k-nearest
neighbours). The context of movies recommendation
was chosen to support the systematic experiment that
allowed the analysis of the effects. Thus, as contribu-
tions of this work we stand out:

1. proposition of an evaluation framework to support
analysis on the level of agreement of each metric
with two competing cognitive models of surprise:
the cognitive-evolutionary model (Meyer et al.,

1997) and the metacognitive explanation based
model (Foster and Keane, 2015). This framework
is introduced in section 3;

2. organisation and public availability of an extended
dataset which complements the MovieLens-1M
Dataset (Harper and Konstan, 2015) by explicitly
associating movies with their respective textual
short description obtained from online MovieLens
system. This extended dataset offers a richer ex-
perimentation environment to the academic com-
munity since it facilitates the conduction of ex-
periments with item content. Moreover, the pub-
lic availability improves the reproducibility con-
ditions related to the discussions developed in this
paper.

3. investigation on how a metric for surprise is af-
fected by choices of item representation (how
items are mapped to numerical representations)
and item comparison (what is the notion of sim-
ilarity that is captured), through a systematic ex-
perimentation that tests 56 recommenders exe-
cuted with the extended Movielens dataset.

This paper is organised as follows: Section 2
looks into the metrics of surprise proposed for rec-
ommender systems in the last decade, and the state-
of-the-art in off-line evaluation method for surprise.
Section 3 presents an analysis of the extent to which
each metric is in agreement with cognitive models of
surprise following a framework introduced in this pa-
per and justifies the adoption in our experiment of the
metric that achieves the highest agreement. Section
4 describes the results obtained from an experiment
conducted to estimate the effect of item representa-
tion and item comparison on the surprise of a recom-
mender system. Section 5 presents our conclusions.

2 BACKGROUND

This section begins by addressing the relationship be-
tween surprise and other desired properties of recom-
mender systems, and a terminology issue that this re-
lation raises. Then, a review of metrics for surprise
is presented. The section ends with a brief descrip-
tion of the one plus random evaluation method, with
which the metrics can be used and tested.

2.1 The Property of Surprise

The challenge of discovering new items that might be
useful to a user has been the focus of a many works in
the literature on recommender systems. In general,
the approach involves finding new items that bear
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some similarity to items which have been given good
ratings by a set of selected users. An even greater
challenge is to find new items that do not resemble
items known to a user, yet would still be useful to
them. This would be a serendipitous recommenda-
tion. In Herlocker et al. (2002), the authors intro-
duced a definition of serendipity now widely cited:
“A serendipitous recommendation helps the user find
a surprisingly interesting item he might not have oth-
erwise discovered.” In a sense, this definition sup-
ports a perspective whereby serendipity, as a system
property, results from the interaction of two other and
more fundamental properties: surprise and relevance.
In this view, being surprising and relevant (or useful)
to a user are the basic requirements of a serendipitous
recommendation.

It has been recently pointed out in Kaminskas and
Bridge (2016) that there is a conceptual overlap be-
tween the properties of novelty or unexpectedness and
the notion of surprise3. Thus, the same notion may
be associated with different names in the literature.
In this study, we subscribe to the categorisation sug-
gested by Kaminskas and Bridge (2016), in which (a)
novelty is related to the notion of an item being pop-
ular, and thus is not directly related to serendipity, (b)
unexpectedness usually conveys the same notion as
surprise, and (c) surprise can be regarded as a com-
ponent of serendipity. In view of this, our focus is
on the metrics for estimating surprise, and the met-
rics for serendipity or unexpectedness whose defini-
tions involve the notion of surprise. We claim that the
metrics in the literature, although clearly distinct from
each other, all address some factors commonly related
to scale construction. We select two of these factors
to serve as contrasts in our analysis:

• Intrinsic vs extrinsic evaluation: some metrics
only use data that are internal to the system un-
der evaluation (Akiyama et al., 2010; Zhang et al.,
2012; Kaminskas and Bridge, 2014); other met-
rics use data made available by an external sys-
tem4 in addition to data that is internal to the sys-
tem under evaluation (Murakami et al., 2008; Ge
et al., 2010; Adamopoulos and Tuzhilin, 2011).

• Subjective vs objective view: some metrics as-
sume that surprise is subjective in nature, since
it depends on the user past experience, which usu-
ally is represented by the set of items known to a
user (Murakami et al., 2008; Adamopoulos and
Tuzhilin, 2011; Zhang et al., 2012; Kaminskas

3A similar overlap has been pointed out by Barto et al.
(2013) in the literature on cognitive science.

4Such a system is often referred to as baseline system or
PPM - Primitive Prediction Model.

and Bridge, 2014); other metrics view surprise as
a property of the item (Ge et al., 2010; Akiyama
et al., 2010) and, thus, is independent of the users.

2.2 Metrics for Surprise

In this section, we review six surprise-related metrics.
All of them involve some notion of distance, but they
do not agree on the subjectivity of surprise, neither
on the necessity of the information used in the assess-
ment to be internal to the system being evaluated. Fig-
ure 1 illustrates how they are positioned with regard
to these two factors. In the figure, the metrics are pre-
sented by year of publication, and the ellipses show
trends or changes in the factors. This review is not
meant to be exhaustive but rather aims to capture the
main approaches that have evolved over the years.

2.2.1 A Metric for Unexpectedness

In Murakami et al. (2008), it was proposed a metric to
evaluate serendipity. It relies on the ideas that (a) rec-
ommendations made by a PPM are prone to be obvi-
ous, and (b) a serendipitous recommendation must be
non-obvious. The metric is calculated from a recom-
mendation list L produced for a user u by the system
being evaluated (Equation 1).

The predicate5 rscore accounts for the predicted
relevance of an item Li to the user u, while isrel ac-
counts for surprise, and reflects the degree to which
an item Li is similar to items highly rated by the user
(a subjective view).

The metric performs an extrinsic evaluation be-
cause rscore (Equation 2) combines the relevance pre-
dicted by the system under evaluation (Pr) with the
relevance predicted by an external system (Pr∗).

unexp(L,u) =
1
|L|

|L|
∑
i=1

rscore(Li,u)× isrel(Li,u) (1)

rscore(Li,u) = max(Pr(Li,u)−Pr∗(Li,u),0). (2)

2.2.2 A Metric for Serendipity

In Ge et al. (2010), another metric was devised to as-
sess serendipity. As shown in Equation 3, srd p is ap-
plied to a list Lδ, and estimates the average usefulness
of its items, Lδ

i . In Equation 4, Lδ is obtained from the
difference between the list L, generated by the system
under evaluation for the user u, and the list L∗, drawn
up for user u by an external system. This means that

5The term predicate denotes a procedure that performs
some computation. It is similar to function except that its
domain and codomain are implicit, and thus no assurance
can be given about its success in completing a computation.
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Figure 1: Evolution of surprise-related metrics. A metric is classified as intrinsic if the data it uses are exclusively internal to
the system being evaluated, and it is classified as subjective if it explicitly identifies the user experience in its definition.

Lδ comprises non-obvious, unexpected items, and ac-
counts for surprise. Thus, srd p performs an extrinsic
evaluation. In addition, we argue that it operates in an
objective way, since the user experience is not consid-
ered when surprise is assessed.

srd p(Lδ,u) =
1
|Lδ|

|Lδ|
∑
i=1

usefulness(Lδ
i ,u) (3)

Lδ = L\L∗ (4)

2.2.3 A Metric for General Unexpectedness

In Akiyama et al. (2010), it was set out a metric called
“general unexpectedness” that explores a combinato-
rial intuition: an item that shows a rare combination
of attributes must be taken as unexpected. It assumes
that each item has some content combined with it, in
the form of a set of attributes. This usually is the case
with content-based recommenders (de Gemmis et al.,
2015). As shown in Equation 5, the unexp metric is
estimated for L, the recommendation list produced to
user u by the system being evaluated, and this aggre-
gates the uscore obtained for each item Li. The us-
core, defined in Equation 6, is the reciprocal of the
joint probability estimated for each possible pair of
attributes of Li. In this equation, A(Li) represents the
set of attributes that describe Li, Na denotes the num-
ber of items in the repository that have attribute a and
Na,b is the number of items that have both attributes
a and b. Thus an objective view is adopted since sur-
prise can be seen as a property of the content of an
item. Unlike the previously described metrics, this
one does not employ an external system, and, thus,
performs an intrinsic evaluation.

unexp(L) =
1
|L|

|L|
∑
i=1

uscore(Li) (5)

uscore(Li) =

[
1

|A(Li)| ∑
a,b∈A(Li)

Na,b

Na +Nb−Na,b

]−1

(6)

2.2.4 A New Metric for Unexpectedness

In Adamopoulos and Tuzhilin (2011), the proposed
metric explores an intuition about user expectation:
an item is expected by a user if it can be anticipated.
The unexp metric (Equation 7) is calculated from L,
the recommendation list produced for user u, and Ls,
a list of obvious, expected items (Equation 8). The
recommendation list L∗ is produced for user u by an
external system, Eu represents the set of items that
have been rated by user u, and the predicate neigh-
bours represents the set of items in the system repos-
itory I that are similar to the items in Eu up to some
degree specified by threshold parameters in θ. Thus,
this metric performs an extrinsic evaluation, and sub-
scribes to the subjective view.

unexp(L,Ls) =
1
|L| |L\L

s| (7)

Ls(u) = L∗∪Eu∪neighbours(I,Eu,θ) (8)

2.2.5 The Unserendipity Metric

In Zhang et al. (2012), it was considered that a
serendipitous recommendation must be dissimilar to
items known to the user, in a semantic sense. It resem-
bles the metric proposed by Akiyama et al. (2010),
since it assumes that each item is combined with some
content, but in this case, this content is organised as
vectors in Rm. The metric is computed from the rec-
ommendation list L drawn up for user u (Equation 9),
and results in a score that is the average cosine simi-
larity obtained from the items in L and the set of items
known to the user, Eu. It does not use an external sys-
tem (intrinsic evaluation), and it adheres to a subjec-
tive view of surprise. It must be noted that the metric
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is scale-inverted: the lower the score, the more sur-
prising L is.

unsrd p(L,u) =
1

|L||Eu|∑i∈L
∑

j∈Eu

cossim(i, j) (9)

2.2.6 A Metric for Surprise

In a similar way to Zhang et al. (2012), in Kaminskas
and Bridge (2014), it was argued that a surprising rec-
ommendation must be dissimilar to items known to
the user, but does not require that this dissimilarity
should be semantic in nature. They also explore the
interplay between the notions of distance and simi-
larity6. The metric is calculated from the recommen-
dation list L produced for user u (Equation 10) and
assesses the average surprise obtained for each item
in L. The surprise of an item i in L is estimated as
the minimum distance between i and the set Eu con-
taining all items known to the user (Equation 11), or
as the maximum degree of similarity between i and
Eu (Equation 12). The function dist is defined as
the Jaccard distance between the set of attributes ex-
tracted from contents linked to items i and j, and sim
computes the normalised pointwise mutual informa-
tion score (NPMI) (Bouma, 2009) for the same items.
This metric does not use an external system (intrin-
sic evaluation), and supports a subjective view of sur-
prise, since it takes account of the user’s experience.

surprise(L,u) =
1
|L|∑i∈L

Si(i,Eu) (10)

Si(i,Eu) = min
j∈Eu

dist(i, j) (11)

Si(i,Eu) = max
j∈Eu

sim(i, j) (12)

2.3 Evaluation Method for Surprise

All the metrics described in Section 2.2 evaluate a sin-
gle recommendation list. Thus, an evaluation method
is required to obtain an estimate of how the system
performs with regard to surprise. Most studies follow
a statistical procedure: a sample of users is randomly
drawn, recommendation lists are produced to those
users, surprise evaluations are made, and the average
surprise is taken as the desired estimate.

To estimate the recall property of a recommender
instance in a top-N recommendation task, the off-line
evaluation method one plus random can be adopted
(Cremonesi et al., 2008; Bellogin et al., 2011). This
method follows the intuition that, in a sufficiently

6Given a distance function, a similarity can be derived
over the same domain (Deza and Deza, 2009).

large set L1 that consists of items unknown to user
u, most of these items are irrelevant to u.

In Kaminskas and Bridge (2014) this method was
adapted to estimate the degree of surprise of a recom-
mender system. The original intuition of the method
is retained and, in addition, to computing an estimate
for recall, it also computes the average surprise ob-
tained from the recommendation lists produced for a
sample of users.

3 THE PROPERTY OF SURPRISE
REVISITED

As seen in the previous section, metrics for surprise
explore diverse intuitions to model the relationship
between the surprise experienced by a user and the
recommendation list that was presented to them. In
fact, we argue that a metric for surprise would benefit
from, and should account for, the ideas that have been
explored in the field of Cognitive Science about how
humans experience surprise.

Reisenzein et al. (2017) examined the extent to
which the experimental evidence supports current
models of surprise, in particular: the cognitive-
evolutionary model (Meyer et al., 1997), and the
metacognitive explanation-based model (Foster and
Keane, 2015)7.

According to the cognitive-evolutionary model,
the feeling of surprise emerges as a response to “un-
expected (schema-discrepant) events” that convey a
change in the environment. In contrast, the metacog-
nitive explanation-based model approaches surprise
as a response to a failure to track the cause of a change
in the environment. However, despite of any diver-
gences, the two theories converge about the subjective
nature of surprise, and, to some extent, both models
are aligned with the definition of surprise as a dis-
tance, as has been proposed in Itti and Baldi (2009).

As the first contribution of this paper, we propose
a simple framework to assess the degree of coherence
between a metric for surprise and the set of charac-
teristics presumed by the cognitive models, and apply
it to the metrics for surprise reviewed in the previous
section. The result of this assessment is summarised
in Table 1, and, by adopting this framework, we argue
that the metric proposed by Kaminskas and Bridge
(2014) is in higher agreement to the cognitive models
of surprise because:

(a) it adopts a subjective view, unlike Ge et al. (2010);
Akiyama et al. (2010), and it does not depend on

7This study reviews several models, but these two mod-
els are particularly useful to this analysis.
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Table 1: Metrics for surprise in recommender systems and their adherence to characteristics presumed by the two cognitive
models. A metric is adherent to the notion of subjectivity if it considers that surprise not only depends on the user experience
(column “is subjective”), but also that this experience must be exclusively internal to the user (column “is intrinsic”).

Subjectivity Sensitivity to user experience

Metric Is subjective? Is intrinsic? Is dynamic?

(Ge et al., 2010) no — —
(Akiyama et al., 2010) no — —

(Murakami et al., 2008) yes no —
(Adamopoulos and Tuzhilin, 2011) yes no —

(Zhang et al., 2012) yes yes lower
(Kaminskas and Bridge, 2014) yes yes higher

information that resides externally to the system
being evaluated, unlike Murakami et al. (2008);
Adamopoulos and Tuzhilin (2011);

(b) it accounts for changes in the surprise of an un-
observed item, as the growth of the set of items
known to the user (Eu), and is more sensitive in
this regard than the metric proposed by Zhang
et al. (2012);

(c) it is proportional to the degree of dissimilarity be-
tween a recommended item i and the items known
to the user, which embeds notions of distance.

However, this metric pursues a naı̈ve intuition
about surprise and only gives a superficial account of
the real user experience. For example, it can be seen
as an exhaustive search in the user memory Eu for
similar events. From this perspective, it assumes that
every individual can recall every past event equally
well, and thus fails to account for known cognitive
biases, such as recall and retrievability biases. The
former refers to the relative ease to recall recent and
vivid events in relation to events that were observed
in a remote past or were unemotional (Tversky and
Kahneman, 1974; Bazerman and Moore, 2009). The
latter refers to how the subjective context can modify
the relative salience to our perception of the features
of an object, and the role that this salience plays in
our judgment of similarity (Tversky, 1977; Gershman,
2017).

Despite of these limitations, and in the absence of
metrics of higher fidelity, we argue that this metric is
still useful to estimate surprise in recommender sys-
tems, and we adopt it in our experiment.

4 EXPERIMENTAL RESULTS

The second and third contributions of this paper re-
fer respectively to the extended dataset and to the
systematisation of an experiment that aim to analyse

the effects of item representation and item compari-
son models on the measures for surprise in a recom-
mender system. Both are presented in this section.

4.1 Experiment Setup

This section presents the dataset, method, models and
algorithms used in the experiment.

4.1.1 Dataset

The MovieLens-1M Dataset (Harper and Konstan,
2015) was used to build the repository of the recom-
mender system instance. The dataset contains 3,883
items (title of movies and a set of genres in which
each movie fits), 6,040 users (demographic data) and
just over 1 million ratings (tuples containing a user, a
movie, the rating given by the user to the movie and
a temporal reference to when the rating was created).
To investigate the effect of item representation in the
metrics for surprise, the dataset was extended to com-
bine a short textual description to each movie.

This extension enables the adoption of data rep-
resentation models that rely on textual content to
produce item vectors. Thus, we enhanced the
MovieLens-1M dataset by combining a short textual
description to each item. These short descriptions
were collected from the online MovieLens system in
September 2017. Items whose description was not
available, too short, or not written in English were
rejected, as well as items with no rating. These con-
straints aim at controlling the variability between our
experiment specifications at the price of a small re-
duction in the number of items and ratings: 3,643 and
997,136, respectively. The extended dataset adopted
the same format that is employed by the MovieLens
datasets8.

8The code and dataset can be downloaded from
https://github.com/andreplima/surprise-in-recsys.
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4.1.2 Method

A controlled environment was created6. It has three
components: the experiment specification (config), a
recommender system instance, and an evaluator. The
config specifies: (a) a recommendation algorithm, (b)
an item representation scheme (i.e. how item vectors
are created), (c) an item comparison scheme (i.e. a
distance function that can be applied to item vectors),
and (d) a sample of users. The recommender system
produces a single recommendation list to each user
in the sample by means of the recommendation algo-
rithm specified in the config. The evaluator assesses
surprise in the lists by means of a surprise metric (Sec-
tion 3) and the one plus random method (Section 2.3).
The metric always uses the item representation and
distance function specified in the config. The sample
of users was drawn once and reused across all con-
figs, and its size (n = 362) was selected to obtain a
mean surprise estimate with a 5% error margin and
95% confidence.

Given a target config, the evaluator assesses the
average degree of surprise of the recommendation
lists produced by the recommender system to the
users in the sample. The surprise obtained from each
recommendation list is collected, and the system-level
estimate is taken as the observed average. As detailed
next, each config specifies one of four item represen-
tation schemes, one of six distance functions, and one
of four recommendation algorithms.

4.1.3 Item Representation

We selected four models, including models employed
in content-based and collaborative approaches: Mod-
els C and D are distributional semantics models
(DSM) based on the document-term matrix, and Mod-
els U and V are based on the user-item matrix:

• Model C (Count-based DSM) is a vector space
model of semantics (Baroni et al., 2014; Tur-
ney and Pantel, 2010). It uses the short tex-
tual description linked to the items to produce
a document-term matrix, from which the item
vectors are extracted. Tokens were stemmed by
means of the Snowball algorithm (Porter, 2001;
Loper and Bird, 2002) before computing tf-idf
scores for each short description (Manning et al.,
2008). Since this is a sparse model, item vectors
have 13,797 dimensions (the number of terms in
the corpus vocabulary).

• Model D (Predictive DSM) is another vector
space model of semantics. The Paragraph Vector
algorithm (Mikolov et al., 2013; Řehůřek and So-
jka, 2010) is applied on the short descriptions to

extract item vectors. This model can be seen as a
factorised model induced from the document-term
matrix (Levy and Goldberg, 2014). Item vectors
with 100 dimensions were extracted.

• Model U (Sparse UI) is a sparse user-item model
(Ning et al., 2015). Each item i is represented as
a vector ri of length equal to the number of users
in the repository (6,040 users). A vector element
rui is taken as either the rating the user u has at-
tributed to item i, or zero if the item i was not rated
by the user u.

• Model V (Factorised UI) is a factorised user-item
model (Ning et al., 2015). Each item i is a column
vector qi ∈Q, which is obtained by the PureSVD
algorithm, that is detailed ahead. Item vectors
with 100 dimensions were extracted.

4.1.4 Item Comparison

Six distance functions were selected. They explore
distinct intuitions about separation when comparing
item vectors: Euclidean and cosine distances (ge-
ometric intuition), the Jaccard distance (combinato-
rial), the Kullback-Leibler and Jensen-Shannon di-
vergences (informational), and the Aitchison distance
(Egozcue et al., 2011) (statistical).

However, their application to item vectors from
some representation models is hindered owing to dif-
ferences in their domains: the Jaccard and Aitchi-
son distances, as well as the Kullback-Leibler and
the Jensen-Shannon divergences, require vectors with
non-negative elements, which means that they can
only be safely applied to vectors from Models C and
U; and the Kullback-Leibler and Jensen-Shannon di-
vergences, as well as the Aitchison distance, are not
defined for item vectors with zero-valued elements.
This limitation was overcome by smoothing the item
vectors with the Bayesian Multiplicative Treatment
with Perks prior when needed (Egozcue et al., 2011).
In the config, distances are coded as follows: 0- Eu-
clidean, 1- cosine, 2- Jaccard, 3- Kullback-Leibler, 4-
Jensen-Shannon, and 5- Aitchison.

4.1.5 Recommendation Algorithms

Four algorithms were selected, encompassing collab-
orative filtering or content-based approaches, and also
neighbourhood and factorisation techniques. It must
be noted that the choices of item representation and
comparison adopted by these algorithms move from
being independent of those used in surprise assess-
ment (algorithm FP) towards using the same defini-
tions adopted by the surprise metric (algorithm N3):
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• PureSVD (FP) (Cremonesi et al., 2010): the pre-
dicted score, r̂ui, accounts for the main effects
of and interactions between user and item fac-
tors, and is exclusively computed from ratings:
r̂ui = ru ·Q ·qT

i , with the matrix Q being obtained
by factorising the user-item matrix (see Model U).
The score r̂ui is not influenced by the item repre-
sentation and distance function in the config.

• Item-kNN with shared distance (N1) (Koren and
Bell, 2015): in a similar vein, the predicted
score is exclusively computed from ratings using
a neighbourhood approach, and also accounts for
main effects and interactions between user and
item factors:

r̂ui = bui +

∑
j∈Sk(i,u)

si j (ru j−bu j)

∑
j∈Sk(i,u)

si j
,with (13)

bui = µ+bu +bi, and si j =
ni j−1

ni j−1−λ
ρi j.

The neighbourhood Sk(i,u) is the set that contains
the k-nearest neighbours of i that have been rated
by u (k = 50). The predicted score is not influ-
enced by the item representation in the config, but
depends on its distance function: the similarity
weight ρi j, as well as the neighbourhood Sk(i,u),
are obtained by applying the distance function in

the config to item vectors (invariably) obtained
from the Q matrix (see Model V).

• Item-kNN with shared representation (N2): the
predicted score is obtained by Equation 13. How-
ever, now the score is influenced by the item rep-
resentation in the config, but does not depend on
its distance function: the similarity weight ρi j, as
well as the neighbourhood Sk(i,u), are obtained
by (invariably) applying the cosine similarity to
item vectors encoded as specified in the config.
As a result, the predicted score may result from
ratings and content data.

• Item-kNN with shared config (N3): the predicted
score r̂ui is computed by Equation 13. Now, the
score depends on the item representation and dis-
tance function in the config: the similarity weight
and the neighbourhood are obtained by applying a
distance function to item vectors encoded as spec-
ified in the config. Thus, the predicted score may
combine ratings and content data.

4.2 Results

The process was applied to the 56 configs obtained by
combining recommendation algorithms (FP, N1, N2,
or N3) with compatible pairs of item representation
(C, D, V, or U) and distance function (0 to 5). Fig-
ure 2 shows the median and the interquartile range of

Figure 2: The results obtained from the 56 configs in the experiment: in the first row are the results from Model C; in the
second row, from Model U; and from Models D and V in the third row, left and right, respectively. The notches around the
median represent its confidence interval. The scale (abscissa) may differ across and within distances.
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the surprise obtained from these configs. In summary,
these statistics showed that:

1. from the neighbourhood-based algorithms (N1 to
N3), the median surprise estimates that were ob-
tained are statistically indiscernible from one an-
other (exceptions in C0, V0, U1, U3, U4, and U5);

2. the median surprise obtained from the factorisa-
tion algorithm (FP) is lower than that obtained
from the neighbourhood algorithms (exceptions in
U0, V0, and U5).

To ensure soundness in the statistical analysis, the
configs were arranged into eight groups (Figure 3). In
each group, the shaded area delimits a 2×6 (Groups
1, 5 and 7) or 4× 2 (Groups 2, 4, 6 and 8) factorial
experiment design. Owing to particular incompatibil-
ities9 that arise in Group 3, it becomes a subset of the
Group 4 and, for that reason, it is not separately con-
sidered in the analysis.

To support the discussion of the next findings,
consider the pairwise distance distributions shown in
Figure 4; they vary in response to the item repre-
sentation and distance function specified in a con-
fig. It must be noted that some distributions are nega-
tively skewed (cosine, Jaccard, Kullback-Leibler, and
Jensen-Shannon), and others are positively skewed
(Euclidean and Aitchison).

A repeated-measures ANOVA performed on the
results from Groups 1, 5, and 7 allowed us to explore
variances related to distance functions. At a signifi-
cance level of p < 0.05, all main effects and interac-
tions were significant, and contrasts revealed that:

1. the effect of distances with negatively skewed dis-
tributions (compared to other forms) in increas-
ing surprise was significant; for the FP algorithm,
this increase was larger for Model C (r = 0.197),
whereas for algorithms N2 and N3 the increase
was larger for Model U (r = 0.211 and 0.264, re-
spectively);

2. for negatively skewed distances, no signifi-
cant difference in surprise between informational
(Kullback-Leibler and Jensen-Shannon) and the
other distances (cosine and Jaccard) was obtained;

3. for informational distances, no significant differ-
ence was obtained between the Kulback-Leibler
(asymmetric) and the Jensen-Shannon (symmet-
ric, based on the former).

A similar analysis performed on the results from
Groups 2, 4, 6, and 8 allowed us to explore variances

9As the N1 algorithm uses item vectors from the Q ma-
trix, which has negative elements, some distances can not
be safely applied.

related to item representation. At p < 0.05, all main
effects and interactions were significant, and contrasts
revealed that:

1. the effect of factorised models (compared to
sparse models) in decreasing surprise was signif-
icant only for the FP algorithm and was smaller
for Euclidean distance than for cosine distance
(r = 0.223);

2. for sparse models (C and U), the effect of using
content data (compared to ratings data) in increas-
ing surprise was significant for algorithm FP, and
smaller for Euclidean distance than for cosine dis-
tance (r = 0.252);

3. for factorised models (D and V), the effect of
using content data (compared to ratings data)
in increasing surprise was significant for the
neighbourhood-based algorithms N1, N2, and N3
(r = 0.492, 0.461, and 0.483, respectively), and
smaller for cosine than for Euclidean distance.

5 DISCUSSION AND
CONCLUSION

The aim of this work was to assess the effect that
item representation and item comparison models ex-
ert on surprise in recommender systems. We started
by devising a systematic procedure to (a) identify a
set of essential characteristics shared by two compet-
ing models of surprise in the literature on cognitive
science, (b) find conceptual correlates of these char-
acteristics in the metrics for surprise of recommender
systems, and (c) select the surprise metric that is in
higher agreement to the cognitive models of surprise.
We then applied the selected metric to empirically as-
sess the effects that distinct models of item represen-
tation and comparison (i.e. how item vectors are ob-
tained and how the similarity between them is com-
puted), as well as recommendation algorithms, exert
on surprise.

Our findings indicate that configs with item com-
parison models (distance functions in Section 4.1.4)
that produce negatively skewed pairwise distributions
obtained higher levels of surprise in recommenders
that employ sparse representation models (Models C
and U in Section 4.1.3). In addition, employing con-
tent data in the neighbourhood-based algorithms (N1
to N3 in Section 4.1.5) increased surprise in recom-
menders with factorised models. It seems that the dis-
criminative power of a distance function, which is re-
flected in the skew of its pairwise distribution, directly
relates to the level of surprise of the system. An im-
plication of this relationship is that the pairwise dis-
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Figure 3: Eight arrangements of configs. The codes indicate item representations (1st character, see Item representation) and
distance functions (2nd character, see Item comparison). Incompatible combinations are marked with a “-”.

Figure 4: Histograms of pairwise distances for compatible configs (i.e. combinations of an item representation model and
an item comparison model). In the first row there are the results from Model C; in the second row, from Model U; and from
Models D and V in the third row, left and right, respectively. The distributions were obtained by computing the distance
between all pairs of items. The ordinate is in log scale and shows the number of pairs that keep the distance in the abscissa.

tribution can be used to predict the level of surprise of
a system. For example, factorisation approaches are
generally assumed to achieve higher accuracy and re-
call when compared to neighbourhood approaches, at
the cost of obtaining lower serendipity. However, as
the results show, recommenders with factorised mod-
els achieved higher surprise than neighbourhood ap-
proaches under certain conditions (positively skewed
distance in configs U0, V0, and U5). If one accepts
the definition of serendipity as being an interaction

between surprise and relevance, then strategies to in-
crease surprise, at an acceptable cost in other proper-
ties, may foster serendipity in recommendations.

In summary, this study corroborates the idea that,
in offline experiments, the assessment of how much
surprise a recommender embeds in its suggestions
heavily depends on how the similarity between items
is modelled. In other words, it may be the case that
the current metrics for surprise are not able to pro-
vide good estimates of the performance of the system.
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Finally, it should be noted that the contributions pre-
sented here could also benefit other research areas that
investigate surprise. We hope this work can show that
recommender systems might be a fruitful resource in
the investigation of surprise in other research areas.
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