
Framework Node2FaaS: Automatic NodeJS Application Converter for
Function as a Service

Leonardo Rebouças de Carvalho and Aletéia Patrı́cia Favacho de Araújo
Computing Science Department, University of Brası́lia, Campus Darcy Ribeiro, Brası́lia-DF, Brazil

Keywords: Cloud Computing, FaaS, Function as a Service, NodeJS, Automatic Converter.

Abstract: Cloud computing emerged in the area of computer science as a means to achieve significant cost and time
savings when starting projects. Among the various cloud models available, this work highlights Function as
a Service - FaaS, and proposes the Node2FaaS framework for automatic conversion of applications written in
NodeJS to work in a transparent way with the FaaS model. The experiments demonstrated significant gains of
up to 170% at runtime for applications with high file I/O requirements. Applications with high CPU and RAM
consumption also have benefits in adopting FaaS after conversion, but only when a threshold of competing
processes is reached.

1 INTRODUCTION

With the goal of reducing cost and time expends in
new projects, cloud computing has gained significant
ground in computer science. Before this proposal be-
came reality, considerable investment was required
in the implementation of datacenters to support the
processing and storage necessary for projects that de-
mand intense computational resources (Yoo, 2011).

The concept of cloud computing is now a well-
established reality. Many providers offer a range of
services over the Internet, without major infrastruc-
ture investments. Thus the user of a cloud environ-
ment is able to have, in moments, access to a volume
of computational resources that was restricted, until
recently, to large organizations (Malathi, 2011).

The important economic differential of cloud
computing lies in the fact that payment occurs on de-
mand, that is, the customer pays only for the effective
use of resources, without the need to keep the invest-
ment allocated for long periods, as in the past with
investments in Datacenters. Now if an organization
wants to conduct a short survey that needs clusters
with hundreds of machines, simply hire a cloud ser-
vice for the time needed for processing, and pay only
a fraction of what the total infrastructure investment
would be.

In addition to the economic benefit, this operat-
ing model allows rapid responses to sudden changes
in the behavior of an application. At specific times
of the year, such as Mother’s Day and Christmas, it

is common for large retailer websites to experience
usage overload, causing slow response times and fail-
ure. However, responding quickly to these issues can
be the difference between making a sale or losing a
customer to a competing site. Cloud computing aids
in the prevention and resolution of this type of prob-
lem through elasticity, i.e., increasing and decreasing
computational capacity according to some pre-set pa-
rameter, such as CPU usage.

There are several service delivery models from in-
frastructure (IaaS) and platforms (PaaS) to complete
software (SaaS) (Mell and Grance, 2011). However,
cloud providers have constantly matured their ser-
vices, including promoting integration among them.
As service delivery grows, the boundaries envisaged
by NIST in 2011 are being redefined. Many providers
have renamed their services, especially SaaS, since
the term software is something very broad. Thus,
models such as database as a service (DBaaS), ma-
chine learning as a service (MLaaS), monitoring as a
service (MaaS), and others have emerged. In this con-
text, we have used the term XaaS, which expresses
”everything as a service” and represents several mod-
els implemented by providers (Duan et al., 2015).

In this scenario, applications developed using the
monolithic architecture have limitations that hinder
scalability gains. One way to mitigate this difficulty is
to use cloud services like FaaS (Chapin and Roberts,
2017) to process system segments. FaaS is a service
model in which the client loads a piece of code writ-
ten in a specific language, and the provider provides

Rebouças de Carvalho, L. and Favacho de Araújo, A.
Framework Node2FaaS: Automatic NodeJS Application Converter for Function as a Service.
DOI: 10.5220/0007677902710278
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 271-278
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

271



the processing of that code from a service call, usually
via a REST API (Amazon, 2018). This model hides
all the complexity involved in the infrastructure.

However, making use of the FaaS model is not
trivial because it requires the user to know the form
of consumption that each provider offers. In addition,
it is necessary for the developer to build the applica-
tions with the use of this model in mind, or to invest
considerable time adjusting applications already de-
veloped to work with FaaS.

In view of the above, this work presents the
Node2FaaS framework, whose objective is to au-
tomatically and transparently convert applications
written in NodeJS to work with the FaaS service
model using some of these services offered by public
providers. In this article the framework will convert to
Amazon’s AWS Lambda (Amazon, 2018). The use of
the proposed framework abstracts the complexity re-
quired for code publication, for example, in Lambda
and simplifies the service consumption process. This
way, the developer can focus his work on the applica-
tion’s features and not on the provider’s details.

2 FUNCTION AS A SERVICE

Programming models have evolved over time, aim-
ing at optimizing the software, as well as its mainte-
nance, evolution capacity and alignment to the busi-
ness (Basili et al., 2010). Initially, software was de-
veloped in a monolithic way, that is, the entire ap-
plication was contained in a single software block.
This model caused high coupling between the com-
ponents of the application, reducing maintainability.
Nowadays, it is common for system architects to de-
sign their applications in a modular way, separating
the different complexity blocks and grouping sets of
related functionalities (Larrucea et al., 2018).

The microservice architecture has gained evidence
for providing good scalability as well as improv-
ing the software maintenance process (Zimmermann,
2017). In this context, cloud providers have modeled
a type of service appropriate to this approach, using
FaaS.

The term microservices has been used since 2014
in agile development communities (Zimmermann,
2017). The standards and principles that permeate
the concept of microservices include (Zimmermann,
2017):

• Using RestFul API;

• Business-oriented and native cloud-based devel-
opment;

• Application of multiple paradigms of develop-
ment, like functional and imperative;

• Applications running on container light services,
such as Docker;

• Decentralized continuous delivery;

• Use of DevOps culture (development integrated
with the operation).

Therefore, for the construction of software, through
the principles of microservices, it is necessary to seg-
ment the development of the functionalities of the ap-
plication (Lewis J, 2018). Figure 1 shows the compar-
ison of the microservice approach with the monolithic
approach.

Figure 1: Microservices composition (Lewis J, 2018).

While in the monolithic approach the whole ap-
plication is placed within a single process, in the mi-
croservice approach, each functionality is placed in
a different service. Thus, in the monolithic approach
the entire application needs to be scaled up, in the case
of microservices, only those services with higher de-
mand will be scaled (providing greater rationality in
the consumption of resources) (Lewis J, 2018).

Considering that normally the use of the modules
is not uniform, that is, each module has a different
workload, it is possible that the monolithic model is
wasting resources. Although some modules are not
always used, they need to be instantiated to enable
the most overloaded modules to be scaled up. On
the other hand, a different effect occurs in the mi-
croservice oriented model, in which only the most
used modules will be effectively scaled up(Lewis J,
2018).

In order to meet the demand for infrastructure
for applications based on microservices, some cloud
providers have come to offer the Function as a Ser-
vice model. In it the client contracts the execution
of a predefined function, loads the code that wants to
execute, and receives an access address for the ser-
vice. Applications using this type of cloud service

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

272



have been called serverless applications, since the ap-
plication does not have a specific server and its oper-
ation is based on requests made to the provider’s API
(Savage, 2018).

Figure 2: FaaS Workflow.

Figure 2 shows the workflow of Functions as a
Service. This workflow demonstrates how the inter-
action between the developer and the FaaS service oc-
curs, whether it is effectively loading code, querying
the Provider Development Kit (SDK) API, or config-
uring triggers for invoking the service. In addition,
Figure 2 shows the elasticity of the service and its
pay-as-you-go model.

2.1 Advantages and Disadvantages

The FaaS services offer as main benefits of its adop-
tion (Amazon, 2018):

• Suppressing the need for server management;

• Automatic continuous elasticity;

• Payment on demand.

Other benefits include increased project flexibility
and reduced risk (Paula, 2018). Among these ben-
efits, elasticity stands out, since, in critical applica-
tions, high availability is a fundamental characteristic.
In addition, using FaaS, management focuses on the
application and not on the infrastructure (Microsoft,
2018), releasing resources to enhance business logic.

On the other hand, the drawbacks of adopting
FaaS-based models include the possible need for
adaptations in the application because of the inabil-
ity to customize features of the operating system (Bil-
lock, 2017). In addition, a delay in the response of the
first execution of the function may occur after some
unused time. This is due to the provider’s strategy
of leaving the instance that attends the linked func-
tion only powered up only for few minutes after the
last call (Billock, 2017). Another potential problem

is the limits set by the providers for the amount of
CPU, memory, and runtime (Spoiala, 2017). The la-
tency caused by the need to pass through the network
to perform the processing is another drawback of this
model (Paula, 2018).

In addition, one difficulty faced by developers in
adopting FaaS is the implementation. Properly un-
derstanding the operation of the service can mean the
difference between succeeding in adoption and aban-
doning the approach after some small failures. How-
ever, to reach this threshold, there may be enough of
a learning curve so as to discourage the adoption of
such a model. For this reason, this paper proposes a
way to mitigate this difficulty by reducing the gap be-
tween the developer and the best results through the
use of automated FaaS services, that is, automatically
and transparently converting monolithic applications
to Function as a Service ones.

2.2 Public Providers of FaaS

Currently, major public cloud providers have FaaS
services in their catalogs. The pioneer, Amazon, of-
fers AWS Lambda (Amazon, 2018). This service can
process Java, NodeJS, C# and Python, and provides a
free monthly processing package before charging for
the service. The provider has several partnerships for
deployment, monitoring, code management and secu-
rity.

Google offers the Cloud Functions service
(Google, 2018). This service can process functions
written in Python and NodeJS and, like Amazon’s
Lambda, provides an initial quota of requisitions and
starts charging only when that quota is exceeded.

Microsoft, through its Azure cloud service, pro-
vides the Azure Functions (Microsoft, 2018). This
service natively allows you to load functions in C#,
including using Microsoft’s own tools such as Vi-
sual Studio (Microsoft, 2018). The provider specifies
through its portal that the functions are only available
in a Windows environment, although this is transpar-
ent to the user. Despite this, there is a forecast of
availability for environments using Linux.

3 NodeJS

As computing evolves, software architectures need to
adjust to the needs of the applications in use at the
moment.

There was a time when gigantic machines took
care of all the processing, and the software ran mostly
on the big mainframes. With the popularization of

Framework Node2FaaS: Automatic NodeJS Application Converter for Function as a Service

273



personal computers, the computational power avail-
able in these machines became better used and then
the software processing was gradually executed in the
”fat clients”.

The client-side programming language that was
most prominent in this scenario was JavaScript. Ini-
tially used for small validations and simple inter-
actions, today this language has become a standard
and several frameworks have made use of it to in-
crease the interactivity of the applications on the Web.
The Institute of Electrical and Electronic Engineers
(IEEE) published a ranking that lists the most used
programming languages in 2018, and in that ranking
JavaScript occupies the eighth position (IEEE, 2018).

Due to the success of JavaScript, as early as
2009 Rayan Dahl presented the NodeJS to the World
(Mithun Satheesh, 2015). Not limited to being only
a JavaScript framework, and without the pretense
of being a new programming language, NodeJs is
defined as a JavaScript code execution environment
(Mithun Satheesh, 2015). The main challenge that
NodeJS intends to tackle is the high scalability that
Web applications demand today. To do this, it sup-
ports the asynchronous execution of processes, pre-
venting other processes from being blocked waiting
for the response of a call (Mithun Satheesh, 2015).

NodeJs uses JavaScript for processing on the
server side a language already consolidated in client-
side processing. With this, it adds a range of web de-
velopers to its set of potential users without the need
to overcome a new learning curve, as it happens in
the normal process of learning a new programming
language. In addition, it has a robust support com-
munity, which offers a large number of libraries for
reuse through its own package manager, NPM (Node
Package Manager) (NPM, 2018).

4 FRAMEWORK Node2FaaS

Given the popularization of NodeJS, several systems
have been built using this technology, and this is why
it was chosen to be used in the design of the proposed
framework. In order to use the available FaaS ser-
vices, the developer must know the details of the APIs
of each provider, as well as be able to segment the
functions of the applications and convert them into
appropriate calls to the service structure. This pro-
cess can become cumbersome, and discourage devel-
opers from adopting the FaaS-based approach. Many
professionals can give up the benefits that a cloud-
based architecture can offer, such as high availability,
resiliency, and cost savings, among others.

In view of the above, this work proposes the

Node2FaaS framework. A tool for automatic conver-
sion of monolithic applications, written in NodeJS,
to FaaS oriented applications. The tool reads the
original code of the target application and con-
verts it to an application whose functions are per-
formed on a FaaS service. The internal code
of the functions is converted to deployments ex-
ecuted in functions created automatically in the
provider. The service request is put in place of
the function call. The source code for this work,
as well as sample applications, can be found at
https://github.com/leonardoreboucas/node2faas. In
addition, the Node2FaaS framework can be installed
in the local environment using NPM by executing the
command: npm install node2faas.

4.1 Execution Flow

The flow of Node2FaaS is started from the execution
of the node2faas application. If the framework has
been installed via npm, this application will be reg-
istered in the machine path and can be executed di-
rectly from the command: node2faas [application to
be converted path]. The run stream scans .js files of
the original application running the conversion pro-
cess. At the end of the flow the resulting application
will be available in the output directory.

Figure 3: Node2FaaS workflow.

Figure 3 shows the execution flow of Node2FaaS.
One can observe that there may be functions inside
each module of an application. Within these functions
there is code that performs some operation. Once sub-

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

274



mitted to Node2FaaS, this code will be published to
the cloud provider and instead, in the converted appli-
cation, a request to the cloud provider REST API will
appear. The original code of the functions is trans-
ferred to the cloud service and then consumed through
HTTP requests. The converted application maintains
the same signature of the original functions, allowing
its use to remain transparent to the requesters of the
functions. This avoids the need to make adjustments
to the application. For each request of a function, the
provider will be responsible for providing an instance
for the service.

The design of Node2FaaS does not define which
provider should be used, but this work experiments
used the Amazon FaaS service, AWS Lambda. Af-
ter all, Amazon was ranked in 2018 as the leader of
IaaS cloud solution in the established Gartner magic
quadrant (Gartner, 2018).

4.2 Conversion Process

Firstly, it is essential to have an active account in
the provider that will perform the function and the
framework searches for the access credentials for the
cloud. If it can‘t find the credential file, the appli-
cation prompts the user to enter their username and
token to access the cloud services. After this, the sys-
tem creates the credential file and no longer prompts
in future executions.

Once the credential has been obtained, and an ap-
plication for conversion is offered, it is submitted to
a conversion process that will analyze the application
code searching for definitions of functions to perform
the conversion, as shown in Figure 4. During the pro-
cess, if a file is included then the target file is also
searched for functions that are candidates for conver-
sion, and this process runs recursively until no new
included files are found.

When the application encounters a function, it ac-
cesses the cloud and creates a new FaaS function. Af-
ter receiving confirmation of the function creation, the
application obtains the service access URL and cre-
ates the request within the original function definition.
In this way, the function call remains unchanged and
its operation on the cloud platform is done in a totally
transparent way.

In the end, Node2FaaS will have generated all the
files that should make up the original application, but
with the original function code replaced by HTTP
calls to the cloud provider FaaS service.

Figure 4: Node2FaaS process.

5 RELATED WORKS

The work (Spillner, 2017) takes a python-written ap-
plication conversion approach to deployments python
in the Lambda AWS service. The application built
by Spillner, called Lambada, processes a python ap-
plication and converts it into the appropriate code to
be instantiated in the cloud. If the user has the AWS
client installed and properly configured on the ma-
chine, Lambada performs deploy automatically, but
the entire client configuration process is up to the user.
This limits the use of this converter to users who are
able to properly configure the provider’s client in their
local environments.

In addition, said article is limited to using Lam-
bada for converting applications with a single func-
tion. In productive environment applications it is
common to have multiple functions for the execution
of an application. The Node2FaaS, proposed in this
article, on the other hand, allows a better use in real
applications, not being limited to experimental envi-
ronments, such as Lambada.

Spillner and Dorodko (Spillner and Dorodko,
2017) apply the same approach adopted in Lambada,
but for applications developed in Java. In this pa-

Framework Node2FaaS: Automatic NodeJS Application Converter for Function as a Service

275



per the authors question the economic feasibility of
running a Java application entirely using FaaS, and
whether there is the possibility of automating the ap-
plication conversion process. They implemented a
tool called Podilizer and performed experiments us-
ing it. The results were classified as promising, but
only for academic purposes, and did not present ef-
fective application capacity, since the authors found
difficulties in using the applications resulting from the
conversion. On the other hand, Node2FaaS is not in-
tended simply for academic experimentation, but for
effective use by NodeJS developers.

6 METHODOLOGY

In order to exploit the potential of a NodeJS applica-
tion converted to FaaS, using the tool proposed by this
work, four test cases were constructed in NodeJS. The
first performs a simple addition operation (test 1), the
second exploits the server’s processing power, con-
suming CPU resources throw a sequence of nested
loops (test 2). The third one consumes significant
memory during its execution creating very large ar-
rays (test 3) and the fourth makes successive creations
of files in the machine, exploring I/O resources (test
4). Each test case was developed within a different
function and all are part of the same application.

The application containing the test cases (Not
Converted) was hosted on a t2.micro instance of the
AWS Elastic Compute Cloud service, EC2. This type
of machine has 1 gigabyte of RAM, 1 CPU and uses
the RedHat 7.6 operating system. The application
was submitted to Node2FaaS for conversion and then
the converted application (Converted) was hosted in a
second t2.micro instance of AWS (with the same con-
figuration). Thus, two applications were left running
the test cases. The first performing the processing di-
rectly on the EC2 instance, while the second uses the
AWS Lambda for processing, according to the archi-
tecture shown in Figure 5.

For the experiment a shell script was developed in
order to execute simultaneous requests for each test
case and collect the results, especially the execution
time. Each test case was run simultaneously on both
servers. Once the test cases were executed, the data
regarding the execution time of the calls were tab-
ulated and graphs were constructed to allow better
analysis of the behavior of the applications on each
approach.

Figure 5: Experiment architecture.

7 RESULTS

The analysis of the graphs allows to infer that as
shown in Figure 6 in the first test case (Simple load),
for most requests, the application running local pro-
cessing performed better when the execution time was
considered. While the average execution time of re-
quests for the Not Converted application was 0.46
seconds, the mean of the Converted application was
1.45 seconds. That’s a difference of 215%. Thus, it is
clear that for simple applications the adoption of FaaS
does not represent improvement to the execution time.

Figure 6: Execution of the simple load test.

The second test case, CPU load, has its output
shown in Figure 7. It is possible to observe that the
converted application maintained stability in the exe-
cution time, varying between 1.12 seconds and 3.37
seconds, while the other application presented con-
tinuous degradation, beginning in 0.30 seconds and
ending at 2.69 seconds, as presented in Table 1. This
demonstrates that for CPU consumption, from a cer-
tain point, an application using FaaS presents running
times lower than the same application running locally.

The memory-loaded test case, shown in Figure 8,
obtained a similar result to the CPU load test. While
the application time variation using FaaS remained
stable, the application curve without FaaS pointed up-

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

276



Figure 7: Execution of the CPU load test.

wards. However, the crossing of the curves occurred
faster when compared to the CPU test. This shows
that the high memory consumption degrades more
significantly the execution time than the CPU con-
sumption, in this case.

Figure 8: Execution of the memory load test.

In the last test case, shown in Figure 9, the same
scenario of tests involving CPU and memory is veri-
fied. Even though the execution time of the applica-
tion without FaaS is initially close to the results ob-
tained by the converted application, its degradation is
significantly accentuated. In Table 1 it is possible to
verify that the worst results observed with FaaS and
without FaaS were 20.43 seconds and 55.64 seconds,
respectively. This shows that in the I/O test, there was
a difference of 172% in the worst case.

Figure 9: Execution of the I/O load test.

Table 1 presents the consolidated comparison of

the results obtained in each type of test. It is pos-
sible to observe that the tests with simple load and
CPU obtained inferior average times of execution in
the server without FaaS. Already the execution with
memory overhead and I/O were, on average, faster in
servers using FaaS.

Table 1: Node2FaaS execution times.

App Test Best Worse Average
no FaaS 1-Simple 0,71 3,96 0,43

with FaaS 1-Simple 0,10 1,48 1,45
no FaaS 2-CPU 0,30 2,69 1,22

with FaaS 2-CPU 1,12 3,37 1,89
no FaaS 3-Memory 0,40 7,65 3,99

with FaaS 3-Memory 2,02 5,86 3,59
no FaaS 4-I/O 0,93 55,64 27,54

with FaaS 4-I/O 5,19 20,43 11,04

The analysis of the results allows one to infer, in
general, that for a few requests the response time of
the application running without FaaS tends to be bet-
ter (test 1). For applications that consume a lot of
CPU resources (test 2) with low competition, appli-
cations without FaaS have better results. However
beyond a certain threshold, which in the test experi-
ments was around 80 simultaneous requests, FaaS use
benefits the runtime. For applications with high mem-
ory and I/O consumption (tests 3 and 4), the benefits
of using FaaS are real, for any volume. It happens be-
cause in monolithic applications the consumption of
such type of resource causes processing locks and it
delays execution. On the other hand, in FaaS-oriented
applications, there is a high parallelism in the con-
sumption of these resources, reducing the effect of the
locks. Thus, this type of application presents itself as
a candidate for the adoption of the FaaS model for use
in the cloud environment.

8 CONCLUSION

Function as a Service itself to be a cloud service
model adherent to the current needs. However, the
difficulties of structuring and consuming this service
model drive the development of tools to improve this
adoption process.

Therefore, the framework proposed by this work,
Node2FaaS, proved to be efficient in the task of con-
verting monolithic NodeJS applications to work with
FaaS. The experiments showed that there were signif-
icant gains in the execution time of applications using
FaaS, after conversion by Node2FaaS.

For applications that consume a lot of memory
and/or perform a lot of I/O files gains after conver-
sion have reached 170%. In addition, FaaS gain

Framework Node2FaaS: Automatic NodeJS Application Converter for Function as a Service

277



did not require investment in application tuning since
Node2FaaS did all the code conversion and publish-
ing work on the cloud provider.

However, as shown in the experiments, there are
application types that do not benefit from the use of
FaaS. The developed tool does not make an evaluation
of the inner workings of the original application func-
tions, but rather just reads and converts them. A future
task would be to include an analysis in the conversion
phase to decide whether to convert the function or to
let it run locally.

Another future work is to allow the developer
to define functions that should not be converted to
FaaS. This increases the flexibility of Node2FaaS, and
makes it more suitable for a wider range of applica-
tions.

In addition, since the experiment in this work was
conducted using Amazon’s Lambda service, it is im-
portant to conduct experiments with FaaS services
from other providers such as Google’s Cloud Func-
tions and Microsoft’s Azure Functions.

REFERENCES

Amazon (2018). Aws. https://aws.amazon.com/. Accessed:
2018-11-25.

Basili, V. R., Lindvall, M., Regardie, M., Seaman, C., Hei-
drich, J., Münch, J., Rombach, D., and Trendowicz, A.
(2010). Linking software development and business
strategy through measurement. Computer, 43(4):57–
65.

Billock, M. (2017). The pros and cons of aws
lambda. https://dzone.com/articles/the-pros-and-
cons-of-aws-lambda. Accessed: 2018-12-01.

Chapin, J. and Roberts, M. (2017). What is Serverless. Or-
eilly.

Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., and
Hu, B. (2015). Everything as a service (xaas) on the
cloud: Origins, current and future trends. In 2015
IEEE 8th International Conference on Cloud Comput-
ing (CLOUD), volume 00, pages 621–628.

Gartner (2018). Western europe context: Magic quadrant
for cloud infrastructure as a service, worldwide.
https://www.gartner.com/doc/3876869?ref=mrktg-
srch. Accessed: 2018-11-25.

Google (2018). Google cloud. https://cloud.google.com.
Accessed: 2018-11-25.

IEEE (2018). Interactive: The top programming languages
2018. https://spectrum.ieee.org/static/interactive-the-
top-programming-languages-2018. Accessed: 2018-
11-25.

Larrucea, X., Santamaria, I., Colomo-Palacios, R., and
Ebert, C. (2018). Microservices. IEEE Software,
35(3):96–100.

Lewis J, F. M. (2018). Microservices—a def-
inition of this new architectural term.

http://martinfowler.com/articles/microservices.html.
Accessed: 2018-11-25.

Malathi, M. (2011). Cloud computing concepts. In 2011
3rd International Conference on Electronics Com-
puter Technology, volume 6, pages 236–239.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing. National Institute of Standards and Tec-
nology.

Microsoft (2018). Azure functions.
https://azure.microsoft.com/pt-br/services/functions/.
Accessed: 2018-11-25.

Mithun Satheesh, Bruno Joseph D’mello, J. K. (2015). Web
Development with MongoDB and NodeJS. Packt Pub-
lishing.

NPM (2018). About npm. https://docs.npmjs.com/about-
npm/. Accessed: 2018-11-25.

Paula, G. S. d. (2018). Avaliação de serviços
serverless: um experimento piloto.
http://repositorio.roca.utfpr.edu.br/jspui/handle/1/10033.
Accessed: 2018-12-01.

Savage, N. (2018). Going serverless. Commun. ACM,
61(2):15–16.

Spillner, J. (2017). Transformation of python applica-
tions into function-as-a-service deployments. CoRR,
abs/1705.08169.

Spillner, J. and Dorodko, S. (2017). Java code analysis and
transformation into AWS lambda functions. CoRR,
abs/1702.05510.

Spoiala, C. (2017). Pros and cons of serverless com-
puting. https://assist-software.net/blog/pros-and-
cons-serverless-computing-faas-comparison-aws-
lambda-vs-azure-functions-vs-google. Accessed:
2018-12-01.

Yoo, C. S. (2011). Cloud computing: Architectural and
policy implications. Springer Science and Business
Media.

Zimmermann, O. (2017). Microservices tenets: Agile ap-
proach to service development and deployment. Com-
put Sci Res Dev, 32:301.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

278


