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Abstract: A locative inconsistency-tolerant hierarchical probabilistic computation tree logic (LIHpCTL) is introduced
in this paper to establish the logical foundation of a new model checking paradigm. This logic is an extension
of several previously proposed extensions of the standard temporal logic known as CTL, which is widely
used for model checking. The extended model checking paradigm proposed is intended to appropriately
verify locative (spatial), inconsistent, hierarchical, probabilistic (randomized), and time-dependent concurrent
systems. Additionally, a survey of various studies on probabilistic, inconsistency-tolerant, and hierarchical
temporal logics and their applications in model checking is conducted.

1 INTRODUCTION

In this paper, we introduce a locative inconsistency-
tolerant hierarchical probabilistic computation tree
logic (LIHpCTL), which is designed to form the log-
ical foundation of a new model checking paradigm.
This paradigm is intended to appropriately verify
locative (spatial), inconsistent, hierarchical, proba-
bilistic (randomized), and time-dependent concurrent
systems. LIHpCTL is an extension of several pre-
viously proposed locative, inconsistency-tolerant, hi-
erarchical, and probabilistic extensions of the stan-
dard temporal logic known as CTL (Clarke and Emer-
son, 1981), which is widely used for model checking
(Clarke and Emerson, 1981; Clarke et al., 1999; Holz-
mann, 2006; Clarke et al., 2018). Model checking is a
well-known formal and automated technique for ver-
ifying concurrent systems. Although the decidability
of model checking based on LIHpCTL has not been
determined yet, we present an illustrative example of
the novel LIHpCTL-based model checking paradigm.

In what follows, we present a brief explanation
of several standard and extended temporal logics and
their applications to model checking. The follow-
ing are well-known standard temporal logics typi-
cally used in model checking: computation tree logic
(CTL) (Clarke and Emerson, 1981), linear-time tem-

poral logic (LTL) (Pnueli, 1977), and full computa-
tion tree logic (CTL∗) (Emerson and Sistla, 1984;
Emerson and Halpern, 1986). The logic CTL (Clarke
and Emerson, 1981) is one of the most useful tem-
poral logics for model checking; it is based on the
branching-time paradigm, which uses computation
trees to represent the passage of time. The logic
LTL (Pnueli, 1977) is another form of temporal logic
widely used for model checking; it is based on the
linear-time paradigm, which uses linear order to rep-
resent the passage of time. The logic CTL∗ (Emer-
son and Sistla, 1984; Emerson and Halpern, 1986) is
more expressive than LTL and CTL; it is based on the
branching-time paradigm with path quantifiers to rep-
resent the passage of time.

To extend the above-mentioned temporal log-
ics, other useful non-classical logics must be com-
bined and integrated in a natural way. This is also
an important issue in mathematical logic (Carnielli
et al., 2008). The following logics can be utilized
for this purpose: probabilistic (probability) logics,
inconsistency-tolerant (paraconsistent) logics, hier-
archical (sequential) logics, and spatial (locative)
logics. By combining and integrating these log-
ics, we can extend and refine the existing standard
model-checking framework. Model checking has
been extended to probabilistic model checking (Aziz
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et al., 1995; Bianco and de Alfaro, 1995; Baier and
Kwiatkowska, 1998; Kwiatkowska et al., 2011; Baier
et al., 2018), inconsistency-tolerant model checking
(Easterbrook and Chechik, 2001; Chen and Wu, 2006;
Kaneiwa and Kamide, 2011b; Kamide and Endo,
2018), and hierarchical model checking (Kamide
and Kaneiwa, 2009; Kaneiwa and Kamide, 2011a;
Kamide, 2015; Kamide and Yano, 2017; Kamide,
2018).

Probabilistic temporal, inconsistency-tolerant
(paraconsistent) temporal, and hierarchical (se-
quential) temporal logics and their applications to
probabilistic, inconsistency-tolerant, and hierarchical
model checking, respectively, have been studied
by many researchers. In the following section, we
present a survey of these previously proposed logics
and their applications in model checking. However,
this survey is not comprehensive; information on
probabilistic temporal logics and their model check-
ing applications in greater detail can be found in
(Hanson, 1994; Hansson and Jonsson, 1994; Aziz
et al., 1995; Bianco and de Alfaro, 1995; Baier
and Kwiatkowska, 1998; Ognjanovic et al., 2011;
Kwiatkowska et al., 2011; Ognjanovic et al., 2012;
Kamide and Koizumi, 2016; Baier et al., 2018).
For inconsistency-tolerant temporal logics and their
model checking applications, information can be
found in greater detail in (Easterbrook and Chechik,
2001; Chen and Wu, 2006; Kamide, 2006a; Kamide
and Wansing, 2011; Kamide and Kaneiwa, 2010;
Kaneiwa and Kamide, 2011b; Kamide, 2015; Kamide
and Koizumi, 2016; Kamide and Endo, 2018). For
hierarchical temporal logics and their model checking
applications, information can be found in greater
detail in (Kamide and Kaneiwa, 2009; Kaneiwa
and Kamide, 2010; Kaneiwa and Kamide, 2011a;
Kamide, 2015; Kamide and Yano, 2017; Kamide,
2018).

The contents of this paper are then summarized
as follows. In Section 2, a survey of previously pro-
posed typical extended temporal logics and their ap-
plications to model checking is performed. In Section
3, the logic LIHpCTL is developed by extending sev-
eral existing typical extensions of CTL. In Section 4,
an illustrative example of model checking based on
LIHpCTL is presented. Section 5 presents the con-
clusion of this study with some remarks.

2 EXISTING LOGICS

2.1 Probabilistic Temporal Logics

In comparison with the standard non-probabilistic
temporal logics CTL∗, CTL, and LTL, probabilistic
temporal logics can be effectively used in random-
ized and stochastic situations. Thus, many studies re-
garding probabilistic temporal logics and their appli-
cations, including probabilistic model checking, have
been performed as discussed below. More informa-
tion can be found in (Hanson, 1994; Hansson and Jon-
sson, 1994; Aziz et al., 1995; Bianco and de Alfaro,
1995; Baier and Kwiatkowska, 1998; Ognjanovic
et al., 2011; Kwiatkowska et al., 2011; Ognjanovic
et al., 2012; Kamide and Koizumi, 2016; Baier et al.,
2018).

Probabilistic full computation tree logic (pCTL∗)
and its subsystem, probabilistic computation tree
logic (pCTL), have been investigated by Aziz et al.
(Aziz et al., 1995) and Bianco and de Alfaro (Bianco
and de Alfaro, 1995). The logics pCTL∗ and pCTL
are obtained from CTL∗ and CTL, respectively, by
adding the probabilistic or probability operator, P≥x.
Formulas with the form P≥xα can be interpreted as
follows: the probability that α holds in the future evo-
lution of the system is at least x. In (Bianco and
de Alfaro, 1995), pCTL∗ and pCTL are introduced
to verify the reliability and performance of systems
modeled by discrete Markov chains. These logics can
appropriately express the quantitative bounds on the
probability of system evolutions. The complexities of
model checking algorithms with respect to the logics
are clarified in (Bianco and de Alfaro, 1995). In (Aziz
et al., 1995), model-checking algorithms for various
extensions of the previous settings of the logics are
proposed to verify the probabilistic non-deterministic
concurrent systems in which probabilistic behavior
coexists with non-determinism. Further, these algo-
rithms are shown to exhibit polynomial-time com-
plexity depending on the sizes of the systems. The
main difference between the pCTL∗ settings by Aziz
et al. (Aziz et al., 1995) and those by Bianco and de
Alfaro (Bianco and de Alfaro, 1995) is the probability
measure settings in the probabilistic Kripke structure
of pCTL∗.

In (Hansson and Jonsson, 1994), PCTL, a proba-
bilistic and real-time extension of CTL, is investigated
based on an interpretation of discrete time Markov
chains. In contrast to the probabilistic frameworks
of pCTL and pCTL∗, the notion of probability in
PCTL is assigned to all of its temporal operators. For
example, a PCTL formula with the form G≤t

≥pα im-
plies that α holds continuously for t time units with
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a probability of at least p. In (Hanson, 1994), a
timed probabilistic concurrent computation tree logic
(TPCTL) is introduced and investigated. In (Baier and
Kwiatkowska, 1998), probabilistic branching time
logics (PBTL and PBTL∗) are introduced based on the
probabilistic temporal logics TPCTL, PCTL, pCTL,
and pCTL∗, and model-checking algorithms based on
PBTL and PBTL∗ are proposed to automatically ver-
ify randomized distributed systems. In (Ognjanovic
et al., 2011), a propositional discrete probabilistic
branching temporal logic (pBTL) is developed by ex-
tending CTL∗. There are two types of novel probabil-
ity operators in pBTL: Pp

≥r and Ps
≥r, where Pp

≥rα im-
plies that the probability that α holds on a randomly
chosen branch is at least γ, and Ps

≥rα means that the
probability that α holds on a particular branch is at
least γ. In (Ognjanovic et al., 2012), a propositional
probabilistic logic with discrete linear time is devel-
oped to handle the clinical reasoning with respect to
evidence. More recent developments in probabilistic
model checking based on probabilistic temporal log-
ics are reported in (Baier et al., 2018).

2.2 Inconsistency-tolerant Temporal
Logics

In comparison with the standard non-paraconsistent
temporal logics CTL∗, CTL, and LTL, inconsistency-
tolerant (paraconsistent) logics can be appropri-
ately used in inconsistency-tolerant situations (Priest,
2002; da Costa et al., 1995; Wansing, 1993). Typ-
ical examples of non-temporal paraconsistent logics
include Belnap and Dunn’s useful four-valued logic
(Belnap, 1977b; Belnap, 1977a; Dunn, 1976) and
Nelson’s paraconsistent four-valued logic (Almukdad
and Nelson, 1984; Nelson, 1949). Combining these
logics with CTL∗, CTL, and LTL has led to the in-
troduction of various inconsistency-tolerant tempo-
ral logics, and inconsistency-tolerant versions (exten-
sions) of CTL, CTL∗, and LTL have been developed
by many researchers.

The multi-valued computation tree logic (χCTL)
was introduced by Easterbrook and Chechik (East-
erbrook and Chechik, 2001) as the base logic for
multi-valued model checking, the first framework for
inconsistency-tolerant model checking. The quasi-
classical temporal logic (QCTL) was introduced by
Chen and Wu (Chen and Wu, 2006) to verify in-
consistent concurrent systems using inconsistency-
tolerant model checking. The paraconsistent full
computation tree logic (4CTL∗) was proposed by
Kamide (Kamide, 2006a) to obtain a logical founda-
tion for inconsistency-tolerant model checking. The
paraconsistent linear-time temporal logic (PLTL)

was introduced by Kamide and Wansing (Kamide
and Wansing, 2011) to obtain a cut-free and com-
plete Gentzen-type sequent calculus. The alternative
paraconsistent computation tree logic (PCTL) was
introduced by Kamide and Kaneiwa (Kamide and
Kaneiwa, 2010; Kaneiwa and Kamide, 2011b) and
offered an alternative inconsistency-tolerant model
checking framework. Kamide (Kamide, 2015) intro-
duced the sequence-indexed paraconsistent computa-
tion tree logic (SPCTL), which can be obtained from
the CTL by adding the paraconsistent negation con-
nective, ∼, and a sequence modal operator, [b]. This
logic was used to verify clinical reasoning through
inconsistency-tolerant hierarchical model checking.

Kamide and Endo (Kamide and Endo, 2018) re-
cently developed pCTL and pLTL, which are alter-
native refined versions of the paraconsistent tempo-
ral logics PCTL and PLTL, respectively, to obtain
various simple and efficient translation methods for
inconsistency-tolerant model checking. These alter-
native refined logics adopt a simple single-satisfaction
relation. The alternative version of PCTL is pCTL,
which has the same name as the probabilistic com-
putation tree logic. Whereas PLTL (Kamide and
Wansing, 2011), PCTL (Kamide and Kaneiwa, 2010;
Kaneiwa and Kamide, 2011b), 4CTL∗ (Kamide,
2006a), and SPCTL (Kamide, 2015) have two types
of dual-satisfaction relations, |=+ (verification or jus-
tification) and |=− (refutation or falsification), pCTL
and pLTL (Kamide and Endo, 2018) have a simple
single-satisfaction relation, |=∗, which is highly com-
patible with the standard single-satisfaction relations
of LTL, CTL, and CTL∗. The single-satisfaction re-
lation can provide simple proofs for embedding theo-
rems, and the connective ∼ can be formalized simply
and handled uniformly.

To deal with open, large, and complex concurrent
systems, such as cloud-based systems and web appli-
cation systems, it is necessary to have extended log-
ics with model checking frameworks that can also si-
multaneously handle both inconsistency-tolerant and
probabilistic reasoning. To this end, in (Kamide
and Koizumi, 2015; Kamide and Koizumi, 2016), a
partial solution was obtained (i.e., an inconsistency-
tolerant extension of the probabilistic computation
tree logic, pCTL, was developed). The paraconsis-
tent probabilistic computation tree logic (PpCTL),
which can be obtained from the probabilistic compu-
tation tree logic, pCTL, by adding a paraconsistent
negation connective ∼, was constructed in (Kamide
and Koizumi, 2015; Kamide and Koizumi, 2016)
based on a probability-measure-independent transla-
tion of PpCTL into pCTL. The theorem for embed-
ding PpCTL into pCTL was proven using this trans-
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lation and entails the relative decidability of PpCTL
with respect to pCTL (i.e., the decidability of pCTL
implies the decidability of PpCTL). This result in-
dicates that we can reuse the existing pCTL-based
model-checking algorithms by Aziz et al. (Aziz et al.,
1995) and Bianco and de Alfaro (Bianco and de Al-
faro, 1995) for the PpCTL-based model-checking al-
gorithms.

2.3 Hierarchical Temporal Logics

In what follows, we present a survey of various hier-
archical (sequential) temporal logics and their appli-
cations. Various extended temporal logics employing
the sequence (hierarchical) modal operator [b], where
b represents a sequence of symbols, have been inves-
tigated to handle hierarchical information (Kamide
and Kaneiwa, 2009; Kaneiwa and Kamide, 2010;
Kaneiwa and Kamide, 2011a; Kamide, 2015; Kamide
and Yano, 2017; Kamide, 2018).

The sequence modal operator [b] can be used
to represent the concepts of hierarchical information
in the following manner: a sequence structure pro-
duces a monoid 〈M, ;, /0〉 with the following informa-
tional interpretation (Wansing, 1993): (1) M is a set
of pieces of ordered information (i.e., a set of se-
quences); (2) ‘;’ is a binary operator (on M) that com-
bines two pieces of information (i.e., it is a concate-
nation operator on sequences); (3) /0 is an empty piece
of information (i.e., an empty sequence). Then, for-
mulas with the form [b1 ; b2 ; · · · ; bn]α imply that α

is true with the sequence b1 ; b2 ; · · · ; bn of ordered
pieces of information. In addition, formulas with the
form [ /0]α, which coincide with α, imply that α is true
without any information (i.e., it is an eternal truth in
the sense of classical logic).

Kamide and Kaneiwa (Kamide and Kaneiwa,
2009; Kaneiwa and Kamide, 2011a) introduced
CTLS∗, which is an extension of CTL∗, by adding
[b] to CTL∗. Similarly, the sequence-indexed linear-
time temporal logic (SLTL), which is an extension of
LTL, was introduced in (Kaneiwa and Kamide, 2010)
by adding [b] to LTL. A proof system for SLTL was
developed to verify certain specifications of secure
authentication systems. The sequence-indexed para-
consistent computation-tree logic (SPCTL), which is
an extension of CTL, was introduced by Kamide in
(Kamide, 2015) by adding [b] and ∼ to CTL. As
explained above, SPCTL was used to verify clini-
cal reasoning through inconsistency-tolerant hierar-
chical model checking. In (Kamide and Yano, 2017;
Kamide, 2018), thesequential linear-time temporal
logic (sLTL) and sequential computation-tree logic
(sCTL) were developed by extending LTL and CTL,

respectively, to obtain the logical foundation of hier-
archical model checking.

The hierarchical (sequential) temporal logics
sCTL and sLTL proposed by Kamide and Yano in
(Kamide and Yano, 2017; Kamide, 2018) adopted a
simple single-satisfaction relation to obtain various
simple and efficient translation methods for hierarchi-
cal model checking. Although the previously pro-
posed logics, CTLS∗ (Kamide and Kaneiwa, 2009;
Kaneiwa and Kamide, 2011a), SLTL (Kaneiwa and
Kamide, 2010), and SPCTL (Kamide, 2015), have
complex multiple sequence-indexed satisfaction rela-
tions, |=d̂ , sLTL and sCTL (Kamide and Yano, 2017;
Kamide, 2018) have a simple single-satisfaction rela-
tion, |=?, which is highly compatible with the stan-
dard single-satisfaction relations of LTL, CTL, and
CTL∗. Using this simple satisfaction relation, embed-
ding theorems can be easily proven, and the operator
[b] can be formalized simply and handled uniformly.

2.4 Locative Temporal Logics

Future studies should aim to extend the previously
proposed standard and extended temporal logics by
adding a location (locative) operator, [li]. By adding
this operator to previously proposed logics, locative
(spatial) properties within the model checking frame-
work can be appropriately handled. The location
operator was originally introduced by Kobayashi et
al. in (N. Kobayashi and Yonezawa, 1999) using
a structural congruence relation in the formalization
of a distributed concurrent linear logic programming
language. The location operator was also reformu-
lated by Kamide in (Kamide, 2005; Kamide, 2006b)
and the reformulated operator was a variant of the
original setting by Kobayashi et al. (N. Kobayashi
and Yonezawa, 1999). In fact, the framework of the
original operator was improved in (Kamide, 2005;
Kamide, 2006b) as a purely logical formulation with-
out any structural congruence relations. Formulas
with the form [li]α can be interpreted as follows:
proposition α holds at location li.

Various locative (spatial) temporal logics employ-
ing the location operator [li] have been investigated to
handle distributed concurrent systems. For example,
the locative paraconsistent probabilistic computa-
tion tree logic (LPpCTL) was introduced by Kamide
and Koizumi in (Kamide and Koizumi, 2016) by
adding [li] to the inconsistency-tolerant (paraconsis-
tent) probabilistic computation tree logic, PpCTL. By
integrating the findings of the above-mentioned stud-
ies with the findings in (Kamide and Koizumi, 2016),
we intend to establish a logical foundation for the pro-
posed framework of locative inconsistency-tolerant
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hierarchical probabilistic model checking based on
LIHpCTL employing [li].

Assuming a space domain Loc and operator [l]
with l ∈ Loc, the satisfaction relation (s, l) |=? α of
LPpCTL can be interpreted as follows: proposition
α holds at time state s and location l. Then, various
properties and situations with space and time can be
expressed using LPpCTL formulas. The following
liveness property is an example: “If we input the
login password of host computer Comp3 at one of
the mobile computers Comp1 and Comp2, then we
will eventually be able to log in to Comp3.” This can
be formally expressed as AG([comp1]password ∨
[comp2]password→EF[comp3]login), where the
space domain, Loc, is {comp1,comp2,comp3}.

3 PROPOSED LOGIC

Formulas of locative inconsistency-tolerant hierar-
chical probabilistic computation tree logic (LIH-
pCTL) are constructed from countably many propo-
sitional variables, → (implication) ∧ (conjunction),
∨ (disjunction), ¬ (classical negation), ∼ (paracon-
sistent negation), X (next), G (globally), F (eventu-
ally), U (until), R (release), A (all computation paths),
E (some computation path), P≤x (less than or equal
probability), P≥x (greater than or equal probability),
P<x (less than probability), P>x (greater than prob-
ability), [li] (location operator), and [b] (hierarchical
operator or sequence modal operator) where b is a se-
quence. Sequences are constructed from atomic se-
quences, /0 (empty sequence) and ; (composition).

The set of sequences (including the empty se-
quence /0) is denoted as SE. Lower-case letters b,c, ...
are used to denote sequences. An expression [ /0]α
means α, and expressions [ /0 ; b]α and [b ; /0]α mean
[b]α. The symbol Φ is used to denote a non-empty set
of propositional variables, the symbol Φ

∼ is used to
denote the set {∼p | p ∈Φ}, and the symbol Φ

∼[d] is
used to denote the set {[d]γ | γ ∈Φ∪Φ

∼}.
Definition 3.1. Let Loc be a finite non-empty set of lo-
cations, and assume l ∈ Loc, and x ∈ [0,1]. Formulas
α and sequences b of LIHpCTL are defined by the fol-
lowing grammar, assuming p and e represent proposi-
tional variables and atomic sequences, respectively:

α ::= p | α∧α | α∨α | α→α | ¬α | ∼α |
AXα | EXα | AGα | EGα | AFα | EFα |
A(αUα) | E(αUα) |A(αRα) | E(αRα) |
P≤xα | P≥xα | P<xα | P>xα | [l]α | [b]α.

b ::= e | /0 | b ; b.

An expression [d] is used to represent
[d0][d1] · · · [di] with i ∈ ω, di ∈ SE and d0 ≡ /0.

The expression [d] can be the empty sequence and is
not uniquely determined.

Definition 3.2. A structure (Loc,S,S0,R,µs,L?) is
a locative inconsistency-tolerant hierarchical proba-
bilistic model iff

1. Loc is a finite non-empty set of locations,
2. S is the set of states,
3. S0 is a set of initial states and S0 ⊆ S,
4. R is a binary relation on S which satisfies the con-

dition: ∀s ∈ S ∃s′ ∈ S [(s,s′) ∈ R],
5. µs is a certain probability measure concerning s∈

S: a set of paths beginning at s is mapped into a
real number in [0,1],

6. L? is a mapping from S to the power set of⋃
d∈SE Φ

∼[d].

A path in a hierarchical probabilistic model is an
infinite sequence of states, π = s0,s1,s2, ... such that
∀i≥ 0 [(si,si+1) ∈ R].

Definition 3.3. (LIHpCTL). A locative
inconsistency-tolerant hierarchical probabilistic
satisfaction relation (M,〈s, l〉) |=? α for any formula
α, where M is a locative inconsistency-tolerant hier-
archical probabilistic model (Loc,S,S0,R,µs,L?), s
represents a state in S, and l represents a location in
Loc, is defined by:

1. for any γ ∈ Φ
∼[d] (d ∈ SE), (M,〈s, l〉) |=? γ iff γ ∈

L?(s),

2. for any p ∈ Φ, (M,〈s, l〉) |=? [d]∼p iff (M,〈s, l〉) |=?

∼[d]p,

3. (M,〈s, l〉) |=? [d][b]α iff (M,〈s, l〉) |=? [d ; b]α,

4. (M,〈s, l〉) |=? [d](α ∧ β) iff (M,〈s, l〉) |=? [d]α and
(M,〈s, l〉) |=? [d]β,

5. (M,〈s, l〉) |=? [d](α ∨ β) iff (M,〈s, l〉) |=? [d]α or
(M,〈s, l〉) |=? [d]β,

6. (M,〈s, l〉) |=? [d](α→β) iff (M,〈s, l〉) |=? [d]α implies
(M,〈s, l〉) |=? [d]β,

7. (M,〈s, l〉) |=? [d]¬α iff (M,〈s, l〉) 6|=? [d]α,

8. for any k ∈ Loc, (M,〈s, l〉) |=? [d][k]α iff (M,〈s,k〉) |=?

[d]α,

9. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]P≤xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]α})≤ x,

10. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]P≥xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]α})≥ x,

11. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]P<xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]α})< x,

12. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]P>xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]α})> x,

13. (M,〈s, l〉) |=? [d]AXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
(M,〈s1, l〉) |=? [d]α],
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14. (M,〈s, l〉) |=? [d]EXα iff ∃s1 ∈ S [(s,s1) ∈ R and
(M,〈s1, l〉) |=? [d]α],

15. (M,〈s, l〉) |=? [d]AGα iff for all paths π≡ s0,s1,s2, ...,
where s ≡ s0, and all states si along π, we have
(M,〈si, l〉) |=? [d]α,

16. (M,〈s, l〉) |=? [d]EGα iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for all states si along
π, we have (M,〈si, l〉) |=? [d]α,

17. (M,〈s, l〉) |=? [d]AFα iff for all paths π≡ s0,s1,s2, ...,
where s ≡ s0, there is a state si along π such that
(M,〈si, l〉) |=? [d]α,

18. (M,〈s, l〉) |=? [d]EFα iff there is a path π≡ s0,s1,s2, ...,
where s ≡ s0, and for some state si along π, we have
(M,〈si, l〉) |=? [d]α,

19. (M,〈s, l〉) |=? [d]A(αUβ) iff for all paths π ≡
s0,s1,s2, ..., where s ≡ s0, there is a state s j along
π such that (M,〈s j, l〉) |=? [d]β and ∀0 ≤ k < j
(M,〈sk, l〉) |=? [d]α,

20. (M,〈s, l〉) |=? [d]E(αUβ) iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for some state s j

along π, we have (M,〈s j, l〉) |=? [d]β and ∀0 ≤ k < j
(M,〈sk, l〉) |=? [d]α,

21. (M,〈s, l〉) |=? [d]A(αRβ) iff for all paths π ≡
s0,s1,s2, ..., where s≡ s0, and all states s j along π, we
have (M,〈s j, l〉) |=? [d]β or ∃0 ≤ k < j (M,〈sk, l〉) |=?

[d]α,

22. (M,〈s, l〉) |=? [d]E(αRβ) iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for all states s j

along π, we have (M,〈s j, l〉) |=? [d]β or ∃0 ≤ k < j
(M,〈sk, l〉) |=? [d]α,

23. (M,〈s, l〉) |=? [d]∼∼α iff (M,〈s, l〉) |=? [d]α,

24. (M,〈s, l〉) |=? [d]∼[b]α iff (M,〈s, l〉) |=? [d ; b]∼α,

25. (M,〈s, l〉) |=? [d]∼(α∧ β) iff (M,〈s, l〉) |=? [d]∼α or
(M,〈s, l〉) |=? [d]∼β,

26. (M,〈s, l〉) |=? [d]∼(α∨β) iff (M,〈s, l〉) |=? [d]∼α and
(M,〈s, l〉) |=? [d]∼β,

27. (M,〈s, l〉) |=? [d]∼(α→β) iff (M,〈s, l〉) 6|=? [d]∼α and
(M,〈s, l〉) |=? [d]∼β,

28. (M,〈s, l〉) |=? [d]∼¬α iff (M,〈s, l〉) 6|=? [d]∼α,

29. for any k ∈ Loc, (M,〈s, l〉) |=? [d]∼[k]α
iff (M,〈s,k〉) |=? [d]∼α,

30. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]∼P≤xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]∼α})> x,

31. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]∼P≥xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]∼α})< x,

32. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]∼P<xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]∼α})≥ x,

33. for any x ∈ [0,1], (M,〈s, l〉) |=? [d]∼P>xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? [d]∼α})≤ x,

34. (M,〈s, l〉) |=? [d]∼AXα iff ∃s1 ∈ S [(s,s1) ∈ R and
(M,〈s1, l〉) |=? [d]∼α],

35. (M,〈s, l〉) |=? [d]∼EXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
(M,〈s1, l〉) |=? [d]∼α],

36. (M,〈s, l〉) |=? [d]∼AGα iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for some state si along
π, we have (M,〈si, l〉) |=? [d]∼α,

37. (M,〈s, l〉) |=? [d]∼EGα iff for all paths π ≡
s0,s1,s2, ..., where s ≡ s0, there is a state si along π

such that (M,〈si, l〉) |=? [d]∼α,

38. (M,〈s, l〉) |=? [d]∼AFα iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for all states si along
π, we have (M,〈si, l〉) |=? [d]∼α,

39. (M,〈s, l〉) |=? [d]∼EFα iff for all paths π≡ s0,s1,s2, ...,
where s ≡ s0, and all states si along π, we have
(M,〈si, l〉) |=? [d]∼α,

40. (M,〈s, l〉) |=? [d]∼A(αUβ) iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for all states s j along
π, we have (M,〈s = j, l〉) |=? [d]∼β or ∃0 ≤ k < j
(M,〈sk, l〉) |=? [d]∼α,

41. (M,〈s, l〉) |=? [d]∼E(αUβ) iff for all paths π ≡
s0,s1,s2, ..., where s≡ s0, and all states s j along π, we
have (M,〈s j, l〉) |=? [d]∼β or ∃0≤ k < j (M,〈sk, l〉) |=?

[d]∼α,

42. (M,〈s, l〉) |=? [d]∼A(αRβ) iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for some state s j along
π, we have (M,〈s j, l〉) |=? [d]∼β and ∀0 ≤ k < j
(M,〈sk, l〉) |=? [d]∼α,

43. (M,〈s, l〉) |=? [d]∼E(αRβ) iff for all paths π ≡
s0,s1,s2, ..., where s ≡ s0, there is a state s j along
π such that (M,〈s j, l〉) |=? [d]∼β and ∀0 ≤ k < j
(M,〈sk, l〉) |=? [d]∼α,

44. (M,〈s, l〉) |=? ∼[d]∼α iff (M,〈s, l〉) |=? [d]α,

45. (M,〈s, l〉) |=? ∼[d][b]α iff (M,〈s, l〉) |=? ∼[d ; b]α,

46. (M,〈s, l〉) |=? ∼[d](α∧ β) iff (M,〈s, l〉) |=? ∼[d]α or
(M,〈s, l〉) |=? ∼[d]β,

47. (M,〈s, l〉) |=? ∼[d](α∨β) iff (M,〈s, l〉) |=? ∼[d]α and
(M,〈s, l〉) |=? ∼[d]β,

48. (M,〈s, l〉) |=? ∼[d](α→β) iff (M,〈s, l〉) 6|=? ∼[d]α and
(M,〈s, l〉) |=? ∼[d]β,

49. (M,〈s, l〉) |=? ∼[d]¬α iff (M,〈s, l〉) 6|=? ∼[d]α,

50. for any k ∈ Loc, (M,〈s, l〉) |=? ∼[d][k]α
iff (M,〈s,k〉) |=? ∼[d]α,

51. for any x ∈ [0,1], (M,〈s, l〉) |=? ∼[d]P≤xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? ∼[d]α})> x,

52. for any x ∈ [0,1], (M,〈s, l〉) |=? ∼[d]P≥xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? ∼[d]α})< x,

53. for any x ∈ [0,1], (M,〈s, l〉) |=? ∼[d]P<xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? ∼[d]α})≥ x,

54. for any x ∈ [0,1], (M,〈s, l〉) |=? ∼[d]P>xα iff µs({w ∈
Ωs | (M,〈s, l〉) |=? ∼[d]α})≤ x,

55. (M,〈s, l〉) |=? ∼[d]AXα iff ∃s1 ∈ S [(s,s1) ∈ R and
(M,〈s1, l〉) |=? ∼[d]α],
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56. (M,〈s, l〉) |=? ∼[d]EXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
(M,〈s1, l〉) |=? ∼[d]α],

57. (M,〈s, l〉) |=? ∼[d]AGα iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for some state si along
π, we have (M,〈si, l〉) |=? ∼[d]α,

58. (M,〈s, l〉) |=? ∼[d]EGα iff for all paths π ≡
s0,s1,s2, ..., where s ≡ s0, there is a state si along π

such that (M,〈si, l〉) |=? ∼[d]α,

59. (M,〈s, l〉) |=? ∼[d]AFα iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for all states si along
π, we have (M,〈si, l〉) |=? ∼[d]α,

60. (M,〈s, l〉) |=?∼[d]EFα iff for all paths π≡ s0,s1,s2, ...,
where s ≡ s0, and all states si along π, we have
(M,〈si, l〉) |=? ∼[d]α,

61. (M,〈s, l〉) |=? ∼[d]A(αUβ) iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for all states s j along
π, we have (M,〈s j, l〉) |=? ∼[d]β or ∃0 ≤ k < j
(M,〈sk, l〉) |=? ∼[d]α,

62. (M,〈s, l〉) |=? ∼[d]E(αUβ) iff for all paths π ≡
s0,s1,s2, ..., where s≡ s0, and all states s j along π, we
have (M,〈s j, l〉) |=?∼[d]β or ∃0≤ k < j (M,〈sk, l〉) |=?

∼[d]α,

63. (M,〈s, l〉) |=? ∼[d]A(αRβ) iff there is a path π ≡
s0,s1,s2, ..., where s ≡ s0, and for some state s j along
π, we have (M,〈s j, l〉) |=? ∼[d]β and ∀0 ≤ k < j
(M,〈sk, l〉) |=? ∼[d]α,

64. (M,〈s, l〉) |=? ∼[d]E(αRβ) iff for all paths π ≡
s0,s1,s2, ..., where s ≡ s0, there is a state s j along
π such that (M,〈s j, l〉) |=? ∼[d]β and ∀0 ≤ k < j
(M,〈sk, l〉) |=? ∼[d]α.

A formula α is valid in LIHpCTL iff
(M,〈s, l〉) |=? α holds for any locative inconsistency-
tolerant hierarchical probabilistic model
M := (Loc,S,S0,R,µs,L?), any s ∈ S, any l ∈ Loc,
and any locative inconsistency-tolerant hierarchical
probabilistic satisfaction relation |=? on M.
Remark 3.4.
1. LIHpCTL is regarded as an extension of the

following temporal logics: probabilistic CTL
(called pCTL) studied in (Aziz et al., 1995;
Bianco and de Alfaro, 1995), inconsistency-
tolerant CTL (also called pCTL, but different
from the above-mentioned probabilistic one) pro-
posed in (Kamide and Endo, 2018), and hierar-
chical CTL (called sCTL) proposed in (Kamide
and Yano, 2017; Kamide, 2018).

2. There are some possibilities of defining a prob-
ability measure µs. For example, two probabil-
ity measures µ+s and µ−s , which were defined on
a Borel σ-algebra Bs, were proposed in (Bianco
and de Alfaro, 1995). A probability measure µs,
which is concerned with some discrete Markov
processes, was proposed in (Aziz et al., 1995).

3. The model checking problem for the probabilistic
CTL with the probability measures µ+s and µ−s was
shown to be decidable in (Bianco and de Alfaro,
1995). The model checking problem for the prob-
abilistic CTL with the probability measure µs was
shown to be decidable in (Aziz et al., 1995).

4. The setting of the conditions concerning the
negated implication and negated negation in LIH-
pCTL is based on the axiom schemes∼(α→β)↔
¬∼α ∧ ∼β and ∼¬α ↔ ¬∼α. These axiom
schemes were originally introduced by De and
Omori in (De and Omori, 2015) wherein these are
shown to be natural and plausible from the point
of view of many-valued semantics.

5. The setting of the location operator is the same
as that of the locative paraconsistent probabilis-
tic computation tree logic (called LPpCTL) intro-
duced in (Kamide and Koizumi, 2016). The de-
cidability of the model checking problem for LP-
pCTL has not yet been proved.

6. The single-satisfaction relation |=? of LIHpCTL
is highly compatible with the standard single-
satisfaction relations of CTL. By using this satis-
faction relation, we can simply formalize and uni-
formly handle ∼ and [b].

We then have the following conjecture.

Conjecture 3.5 (Decidability).
1. (Relative decidability for LIHpCTL): If the

model-checking, validity, and satisfiability prob-
lems for the purely probabilistic fragment of LIH-
pCTL (i.e., it is obtained from CTL by adding the
probability operators) with a certain probability
measure are decidable, then the model-checking,
validity, and satisfiability problems for LIHpCTL
with the same probability measure as that of the
fragment are also decidable.

2. (Decidability for the probability-free fragment
of LIHpCTL): The model-checking, validity,
and satisfiability problems for the probability-
operator-free fragment of LIHpCTL (i.e., it is ob-
tained from LIHpCTL by deleting the probability
operators) is decidable.

4 ILLUSTRATIVE EXAMPLE

In what follows, we present an illustrative example
of verifying the reasoning process behind diagnosing
multiple sclerosis (MS), a rare disease, using the pro-
posed LIHpCTL-based model checking. The aim is
to verify mission-critical clinical reasoning with dis-
ease ontology using an extended formal method, such
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Figure 1: An ontological reasoning process model for multiple sclerosis.

as that in our proposal. We consider the scenario pre-
sented in Figure 1, in which a person suffers from MS.
The cause of this disease is not clear and there is no
known cure for it. For more information about MS,
see (Wikipedia, 2018) and the references therein.

MS is more common in people who live far-
ther from the equator; in particular, it is more com-
mon in regions with northern European populations.
Thus, the location operator [li] in LIHpCTL can be
effectively used to describe this fact. Furthermore,
MS is typically diagnosed based on presenting signs
and symptoms in conjunction with supporting medi-
cal imaging based on Magnetic Resonance Imaging
(MRI) results and laboratory testing. It can be dif-
ficult to confirm, especially in early stages because
the signs and symptoms can be similar to those of
other medical conditions. Thus, the inconsistency-
tolerant (paraconsistent) negation connective ∼ in
LIHpCTL can be effectively used to describe such
symptoms and a patient’s health. For example, if it
cannot be determined whether someone is healthy,
then an ambiguous concept, healthy, can be repre-
sented by asserting the inconsistent formula healthy∧
∼healthy. This is well formalized because (healthy∧
∼healthy)→⊥ is not valid in LHIpCTL.

The United States National Multiple Sclerosis So-
ciety and the Multiple Sclerosis International Fed-
eration describe four types of MS as follows: clin-
ically isolated syndrome (CIS), relapsing-remitting
MS (RRMS), primary progressive MS (PPMS), and
secondary progressive MS (SPMS). The hierarchy of
these types can be effectively described by the se-

quence modal operator [b] in LIHpCTL.
RRMS is characterized by unpredictable relapses

followed by periods of months to years of remission
with no new signs of disease activity. Deficits that
occur during attacks may either resolve or leave per-
manent damage, the latter being the case in approxi-
mately 40% of attacks and being more common the
longer a person has the disease. This process de-
scribes the initial course of 80% of individuals with
MS, and it usually begins with CIS. In CIS, a person
has an attack suggestive of demyelination but does
not fulfill the criteria for multiple sclerosis. Of the
individuals experiencing CIS, 30–70% later develop
MS. PPMS occurs in approximately 10–20% of in-
dividuals, with no remission after the initial symp-
toms. SPMS occurs in approximately 65% of indi-
viduals with initial RRMS and involves a progressive
neurologic decline between acute attacks without any
definite periods of remission. These probabilistic phe-
nomena concerning MS can be effectively expressed
by the probabilistic operators in LIHpCTL.

We can verify the following statements using LIH-
pCTL:

1. “Is there a state in which a person is both healthy
and unhealthy with CIS?”

2. “Is there a state in which a person is both healthy
and unhealthy with RRMS or PPMS?”

The first statement is true, while the second statement
is not. These statements are expressed as follows:

1. [Disease ; CIS]EF(healthy∧∼healthy),

2. [Disease ; MS ; RRMS]EF(healthy∧∼healthy) ∨
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[Disease ; MS ; PPMS]EF(healthy∧∼healthy).

We can also verify the following statement using
LIHpCTL:

“If a person living in the USA has CIS and
no lesion has been detected by the MRI, then
there is an approximately 80% chance that the
person will be cured in the near future.”

This statement is true and is expressed as follows:

[USA][Disease ; CIS] (AG(∼healthy ∧
¬MRIdetectedLesion) → EF(P≤0.85 cure ∧
P≥0.75 cure)).

5 CONCLUSION

In this paper, we have introduced a new extended tem-
poral logic, LIHpCTL, to establish the logical founda-
tion of a new model checking paradigm. This model
checking paradigm is called locative inconsistency-
tolerant hierarchical probabilistic CTL model check-
ing, and is intended to effectively verify locative, in-
consistent, hierarchical, probabilistic (randomized),
and time-dependent concurrent systems. LIHpCTL
is an extension of previously proposed locative,
inconsistency-tolerant, hierarchical, and probabilistic
extensions of the standard temporal logic known as
CTL. We have also presented a survey of various stud-
ies on probabilistic, inconsistency-tolerant, and hi-
erarchical temporal logics and their applications to
model checking. Although the decidability of the
model checking problem for LIHpCTL has not yet
been determined, we have presented an illustrative
example for verifying the clinical reasoning process
for a disease, MS, using the LIHpCTL-based model
checking paradigm. We have thus shown that LIH-
pCTL and its model checking framework, which is an
extension of existing frameworks, are useful for a va-
riety of existing and novel applications in computer
science and artificial intelligence.
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