
UML Specification and Transformation of Safety Features for Memory
Protection

Lars Huning, Padma Iyenghar and Elke Pulvermüller
Institute of Computer Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

Keywords: Code Generation, Embedded Software Engineering, Embedded Systems, Functional Safety, Memory Protec-
tion, Model-driven Development, Model Transformations, Soft Errors.

Abstract: Standards such as IEC 61508 or ISO 26262 provide a general guideline on how to develop embedded systems
in a safety-critical context. However, they offer no actual support for the implementation of safety mecha-
nisms. This paper proposes such development support by employing Model Driven Development (MDD). For
this, we target the issue of soft errors, which may lead to silent data corruption due to radiation effects. We
propose an MDD workflow including a model representation and model transformations, which are able to
automatically generate memory protection for variables inside a program based on a model specification via
UML stereotypes.

1 INTRODUCTION

Embedded systems are used in a wide variety of
safety-critical contexts, such as cars, aircrafts or med-
ical devices (Armoush, 2010). In these contexts, em-
bedded systems are responsible for controlling parts
of the application, e.g., the brakes in an automobile
with a brake-by-wire system. Safety standards, such
as IEC 61508 (IEC 61508, 1998) or ISO 26262 (ISO
26262, 2011) have been developed to provide a guide-
line for the development of such safety-critical sys-
tems. However, they provide no actual support for the
implementation of safety mechanisms. IEC 61508 de-
fines several lifecycle phases for the development of
safety-critical systems. For some of these phases, sev-
eral approaches in the literature have been proposed.
However, phase ten of the safety lifecycle, which is
concerned with the actual realization of the system,
has received little attention in the literature.

On the other side, Model-Driven Development
(MDD) is an emerging development paradigm, in
which models are no longer seen as auxiliary byprod-
ucts, but rather as the central artifacts during soft-
ware development. This paradigm promotes several
engineering concepts that are recommended by IEC
61508, such as the use of semi-formal design methods
and automatic software generation. Thus, MDD is
an ideal candidate to realize developer support for the
automatic generation of safety features recommended
by IEC 61508.

Recent work in the literature has proposed the au-
tomatic generation of non-functional aspects, such as

timing and energy requirements for embedded sys-
tems via MDD (Iyenghar and Pulvermüller, 2018;
Noyer et al., 2016; Iyenghar et al., 2016). Inspired by
these approaches, we envision the automatic genera-
tion of selected software safety aspects recommended
by IEC 61508 via MDD.

For this, we present a model representation and
an MDD workflow for the automatic generation of
software-based memory protection mechanisms in
this paper. IEC 61508 recommends the use of mem-
ory protection approaches for the prevention of radia-
tion induced soft errors, as well as the use of monitor-
ing techniques. Our mechanisms protect against such
soft errors that may lead to silent data corruption (cf.
section 2). However, our approach may also be used
for the automatic generation of arbitrary checks on the
program’s variables, e.g., to ensure that the value of a
numeric variable is always within a specific range.

This paper is organized as follows: First, we
present some general background regarding mem-
ory protection and formulate several requirements
for our solution based on this background (cf. sec-
tion 2). Section 3 discusses modeling alternatives be-
fore proposing a UML (Unified Modeling Language)
profile for the representation of memory protection
mechanisms and other attribute checks. Based on this
representation, section 4 introduces an MDD work-
flow for the automatic generation of the respective
memory protection checks in source code. Finally, we
review related work on modeling and the automatic
generation of safety features via MDD in section 5.

Huning, L., Iyenghar, P. and Pulvermüller, E.
UML Specification and Transformation of Safety Features for Memory Protection.
DOI: 10.5220/0007688202810288
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 281-288
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

281



2 MEMORY PROTECTION

This work starts from the IEC 61508 standard and
the therein contained safety issues referring to mem-
ory protection. This section has a look at the ori-
gin of potential memory errors, classifies the protec-
tion techniques, analyzes the memory layout and the
mapping of memory to source code elements. Based
on this, we restrict our approach to a relevant set
of source code elements, choose a set of protection
mechanisms and derive the requirements our MDD
approach should fulfill.

The charge state of a semiconductor device may
be influenced by radiation effects from the atmo-
sphere, e.g., due to cosmic rays, or due to alpha parti-
cles emitted by the packaging material of the device.
If the radiation charge is sufficiently high, a reverse or
flip in the data state of a memory cell, register, latch or
flip-flop may occur (Baumann, 2005). Such an event
is referred to as a soft error.

IEC 61508 part 2, table A.1 recommends the
protection of invariable and variable memory ranges
from such soft errors. The standard also proposes
several techniques how these errors may be detected.
The respective techniques may be broadly classified
into approaches that employ checksums or redundant
copies of the protected memory areas. Traditionally,
such approaches have been applied to the entire mem-
ory range via hardware techniques. However, recent
contributions, such as (Borchert et al., 2013; K. Pat-
tabiraman and Zorn, 2008), have remarked that often
only a selected subset of the memory range is actually
safety-critical. Thus, memory and runtime overhead
may be reduced if only these safety-critical memory
ranges are protected. This requires a certain amount
of flexibility and developer control that is difficult to
achieve with hardware-based memory protection ap-
proaches. For this reason, software-based approaches
have been proposed that enable the protection of se-
lected memory ranges. However, at present, none of
these approaches propose a model representation or
MDD support for software-based memory protection.

While the IEC 61508 standard refers to memory
in general we have to investigate what different kinds
of memory might be addressed in user programs and
what kind of protection might be suitable.

2.1 Memory Layout

We present a short overview of the logical and physi-
cal memory layout and a mapping to source code ele-
ments. Based on this background, we argue that cer-
tain kinds of memory are more suited for protection
than others and why our approach is limited to these.

From a logical perspective, the data of a program
may be stored in one of several virtual memory re-
gions. The text segment contains the binary machine
code and constant variables and is the only read-only
memory. The data segment contains global and static
variables, while the stack segment contains variables
declared inside functions, e.g., temporary variables or
function parameters. The last segment is the heap,
which contains dynamically allocated data e.g., cre-
ated with the new-operator in C++.

From a physical perspective, embedded systems
are often divided into Flash memory, and some form
of RAM, e.g., SRAM or DRAM. (Patterson and Hen-
nessy, 1990). The text-segments are usually mapped
to Flash memory, which is three to five times less sus-
ceptible to radiation than DRAM and SRAM (Fogle
et al., 2004). All other segments are usually stored
in RAM. As Flash is less susceptible to radiation, we
limit ourselves to the protection of RAM and, thus,
the program elements stored in RAM memory re-
gions.

IEC 61508 part 2, table A.3 also recommends
some limitations on the use of programming lan-
guages forbidding the use of unsafe or error-prone
language constructs. One such set of limitations for
the C++ programming language is proposed by the
MISRA standard (MISRAC++2008, 2008). MISRA
forbids the use of dynamic memory allocation in
safety-critical systems. Thus, we choose to not con-
sider the heap-segment in our approach. This leaves
the data- and stack-segments that need to be pro-
tected by our approach. Both segments consist of
non-constant variables. Thus, we choose to build our
model representation at the level of individual vari-
ables.

2.2 Protection Mechanisms

IEC 61508 provides several requirements for hard-
ware integrity. For instance, in order to achieve a di-
agnostic coverage of 90% or more, the standard man-
dates the protection of safety-critical memory ranges
from soft errors (cf. IEC 61508 part 2, table A.1). Ta-
ble A.5 and A.6 of part 2 also propose the following
techniques how such a protection may be achieved:

• Checksums may be employed in conjunction with
an error detecting code in order to protect the
memory. A checksum is calculated whenever
the protected memory is updated. A consis-
tency check of the protected memory compares
the stored checksum to the checksum of the cur-
rent memory. If these values differ, an error has
been detected.

• The protected memory may be replicated one or

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

282



several times. The replicas have to be updated
each time the protected memory is updated. A
check compares the values of the replicas with
the value of the protected memory for consis-
tency. These approaches are often referred to as
M-out-of-N approaches, where at least M out of N
replicas have to contain the same value (Armoush,
2010).

IEC 61508 does not mandate the use of a spe-
cific approach within these categories. For example,
an error detecting code may be realized via a Ham-
ming code or Cycling Redundancy Checks (CRC).
Moreover, even these more specific approaches may
be further configured: The number of bits for a CRC
checksum may vary, or, the configuration may differ
in whether the implementation should optimize run-
time or memory overhead (Sarwate, 1988). Further-
more, IEC 61508 does not mandate at which point in
time the protected memory should be checked for er-
rors. Other approaches in the literature check either
periodically (Shirvani et al., 2000) or before every ac-
cess of the protected memory (Borchert et al., 2013).

Besides the memory protection of a program’s
variable via consistency checks as described above
IEC 61508 part 2, table A.13 recommends another
safety feature. This is the support for on-line moni-
toring mechanisms, e.g., in order to detect sensor fail-
ures. One example for a monitoring mechanism ap-
plied to variables is a numeric range check, that de-
tects if a numeric value is outside a predefined nu-
meric boundary (Trindade et al., 2014).

2.3 Requirements for MDD based
Protection

This section discusses the requirements an MDD
workflow and a corresponding model representa-
tion for the specification and automatic generation
of software-based memory protection should fulfill.
These requirements have been derived from the safety
standard and from modeling practice:

(R1) Protection of variables: As described in sec-
tion 2.1, the model representation of memory pro-
tection should target the variables in a program.

(R2) Limitation to UML: There are several compet-
ing MDD tools, e.g., (Rhapsody, 2018) and (Mat-
lab, 2018), as well as open-source alternatives,
such as (Papyrus, 2018). In order to maximize the
application of the developed approach, it is im-
portant that the employed modeling language is
supported by a wide variety of tools. The afore-
mentioned tools have in common that they support
modeling and code generation based on UML.

Related concepts to UML, such as OCL, are not
supported by every tool. The approach, therefore,
should be limited to UML without further addi-
tions.

(R3) Configuration of applicable protection mecha-
nisms: As discussed in section 2.2, there are sev-
eral memory protection techniques and each one
may have different configuration options. Thus,
besides specifying which protection approach is
used for a variable, the model representation has
to enable the configuration of these approaches.

(R4) Use of multiple checks: A model representation
that supports to specify safety information should
allow to mark a variable with different protection
techniques or options, respectively, and, thus, sup-
port multiple checks at the same time. A devel-
oper might want to protect a variable with a CRC
memory check and, at the same time, a numeric
range check, for instance.

3 MODEL REPRESENTATION

The goal of this work is to give the developer the op-
portunity to decide which variables need what kind
of safety protection and monitoring. This section dis-
cusses some alternatives for the model representation
of the attribute checks in UML (cf. requirements R1,
R2, R3, R4). This is followed by the introduction of
an appropriate UML profile for memory protection.

3.1 Modeling Elements

Section 2.1 identifies non-constant variables as the
code elements in need for memory protection. These
encompass member variables, method parameters and
local variables, e.g., temporary integer variables in-
side a for-loop. In this work we focus on the pro-
tection of member variables, which are referred to
as attributes in UML. The reason behind this chosen
limitation is that local variables are usually not mod-
eled in UML diagrams. Further, temporary variables
and method parameters are relatively short-lived com-
pared to member variables, thus decreasing the likeli-
hood for them being affected by a soft error. Provided
a variable has a representation in the UML model, our
approach might be easily extended to those variables
in addition.

In order to specify that an attribute is subject to
one or more attribute checks, the attribute in question
has to be associated with additional semantic infor-
mation. In UML, this is commonly achieved by using
stereotypes (cf. figure 1). While the name of a stereo-
type may be used to specify which attribute check

UML Specification and Transformation of Safety Features for Memory Protection

283



Figure 1: Model representation for specifying an attribute
check that employs an eight bit CRC checksum which is
checked periodically.

should be employed for an attribute, stereotypes also
contain an arbitrary number of so-called tagged val-
ues that may be used to specify a set of configura-
tion values. These tagged values may be represented
graphically inside a UML comment (cf. (uml, 2017),
p.263). The tagged values applicable to a stereotype
and their types may be defined by means of a so-called
UML profile (cf. section 3.3). Many MDD tools, such
as (Rhapsody, 2018; Papyrus, 2018), provide graphi-
cal support for setting the values of tagged values of
an applied stereotype. Additionally, multiple checks
may be easily specified by applying multiple stereo-
types to the attribute. Thus, stereotypes provide the
best support to represent the multiple configuration
values and multiple checks required by R3 and R4 and
are the means of choice for our approach.

3.2 Multiple Attribute Checks per
Attribute

In some use cases, several attribute checks for a single
attribute may be required (cf. requirement R4). For
example, a developer may decide that a specific at-
tribute may be protected with a CRC check for mem-
ory protection and, at the same time, with a numeric
range check for monitoring purposes. This may be
modeled by applying two independent stereotypes to
the attribute, one for the CRC check and one for the
range check (cf. figure 2(a)).

However, applying two attribute check stereotypes
to one and the same attribute results in a new de-
sign challenge. Some safety features and configura-
tion options have dependencies to each other. For
instance, some configuration decisions are common
among several attribute checks (common in type but
maybe different in the specific configuration value or,
sometimes, even common in the value). An example
for such common configuration on the type level is
the specification of the checking time: Each attribute
check needs a specification for the point in time it is
executed. For memory protection, this is usually be-
fore every access of the protected attribute (Borchert
et al., 2013) or periodically (Shirvani et al., 2000).

(a) Multiple stereotypes with conflicting
model information.

(b) Inheritance from a top-level stereotype
with common values.

Figure 2: Representation challenges of multiple checks.

Such values that are common in type may be effi-
ciently represented by introducing a top-level stereo-
type from which all other stereotypes that represent
the actual attribute checks inherit (cf. stereotype «At-
tributeCheck» in figure 2(b)).

The common tagged values of the top-level stereo-
type may be divided into two categories. The first
category contains values that refer only to the specific
check and that are independent of the specific pro-
tected attribute. An example for this is the aforemen-
tioned timing of the check. The other category en-
compasses values that are connected to the protected
attribute, but are relatively independent of the actual
checking mechanism. For example, this may be a cer-
tain number of replicas of the protected attribute that
are used for error correction approaches. The values
in this category have to be equal for all assigned at-
tribute checks, else the model contains conflicting in-
formation in the respective attribute (stereotype) spec-
ification. This situation is displayed in figure 2(a).
Two stereotypes, «RangeCheck» and «CRCCheck»,
both specify the use of replicas for error correction.
However, in this example, the «RangeCheck» spec-
ifies two replicas, while the «CRCCheck» specifies
only a single replica. It is unclear, whether there are
a total of three replicas, or whether the highest num-
ber of replicas (two in this case) are employed for this
attribute.

Thus, we propose the design of the stereotypes by
means of inheritance (cf. figure 2(b)) and to include

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

284



the common tagged values in the top-level stereo-
type. The tagged values inherited from the top-level
stereotype (in our example, this is the stereotype «At-
tributeCheck») have to be set to equal values for all
stereotypes applied to the same attribute. While this
prevents certain configurations, such as using one
check periodically and another check before every ac-
cess for the same attribute, it also prevents the afore-
mentioned conflicts in the model representation. Al-
though UML provides no adequate support for this
limitation, this be may implemented as simple equal-
ity checks before the code generation of an MDD tool.

3.3 Example: AttributeCheck Profile

Figure 3 presents a novel and exemplary UML profile
for the model representation of attribute checks. The
UML profile defines a set of stereotypes together with
their tagged values. The elements of the UML profile
are briefly described in the following:

Figure 3: Exemplary AttributeCheck profile.

• «AttributeCheck:» This is the top-level stereotype
introduced already in section 3.2. It extends the
metaclass “Property”, which is the metaclass of
attributes in the UML metamodel. The stereotype
contains values that are relevant for all attribute
checks applied to an attribute. For example, the
tagged value “errorId” may be used to provide a
custom error message in case an error or a safety
issue has been detected. A specified number of
replicas may be used for error correction in a vot-
ing process. A correction is possible if at least a
specified number (stored in the tagged value with
name “restoreThreshold”) replicas have the same
value. IEC 61508 also recommends that replicas

are stored in inverted form, which may be mod-
eled as well. Finally, the stereotype contains val-
ues that specify when the check is executed.

• «CRCCheck:» This stereotype models a memory
protection approach that uses CRC checksums, as
introduced in section 2.2. It contains tagged val-
ues regarding the number of bits of the check-
sum and whether the implementation should op-
timize runtime or memory. Additionally, it pro-
vides the option to store multiple checksums, be-
tween which a voting process may be conducted.
The number of required checksums is specified
in the tagged value “nrChecksums”. Only if a
sufficient number of checksums agrees with each
other (“votingThreshold”), the check is consid-
ered passed.

• «MNCheck:» An M-out-of-N pattern (cf. sec-
tion 2.2) is modeled by this stereotype, which may
also be used for memory protection. If at least M
out of N versions of the protected attribute agree
with each other, then the check is passed. As
the number of replicas is already implicitly con-
tained in this stereotype by inheritance from «At-
tributeCheck», only the number of required agree-
ments has to be specified.

• «RangeCheck»: This stereotype models a moni-
toring check that detects if a numeric attribute is
outside specific numeric bounds (cf. section 2.2).
Consequently, the tagged values model the lower
and upper bound.

4 MDD WORKFLOW

While the previous section introduces a model rep-
resentation for attribute checks (based on stereotypes
and UML profiles), this section discusses a corre-
sponding MDD workflow that enables the automatic
generation of the specified safety features into source
code. A UML activity diagram of the workflow is
shown in figure 4.

The input is a UML class diagram created by the
user or developer, respectively. In order to enable the
automatic generation of source code from this user
model, several actions are required. These are ac-
tions 1 to 6 of figure 4. Some of these have to be
executed manually, while others may be executed au-
tomatically.

4.1 Manual Actions

The manual actions of the model-level workflow en-
compass actions 1 to 2 in figure 4. They are mainly

UML Specification and Transformation of Safety Features for Memory Protection

285



Figure 4: Overview of the proposed solution at model- and
code-level (notation UML 2.5 activity diagram).

concerned with specifying which attribute should be
protected by which protection mechanism.

• Action 1: At the start of the workflow, users need
to specify which attributes they want to protect by
applying one or multiple stereotypes from the At-
tributeCheck profile to the attribute.

• Action 2: The applied attribute checks may be fur-
ther configured via the tagged values of the chosen
stereotypes. By specifying the tagged values, the
developer decides about safety configuration de-
tails and, thus, the resulting resource consumption
and safety-specific overhead of the application.

4.2 Actions that May be Automated

The actions which may be automated in the model-
level workflow as part of an MDD tool’s code gen-
eration process are related to model transformations
and the generation of source code. They encompass
actions 3 to 6 in figure 4.

• Action 3: Before source code is generated from
the user model, the model is checked for valid-
ity. This may include the detection of modeling
conflicts which may appear if multiple stereotypes
are applied to one attribute, for instance (cf. sec-
tion 3.2).

• Action 4: Model-to-model transformations are
employed. For each attribute that is marked with
at least one stereotype from the AttributeCheck
profile, corresponding safety mechanisms need to
be generated. For example, this may be achieved

by replacing the stereotyped attribute with a wrap-
per class that performs the required safety opera-
tions. The result of this action is an intermedi-
ary model that already contains all required safety
mechanisms.

• Action 5: This step generates the source code
from the intermediary model via model-to-text
transformations. As the intermediary model al-
ready contains all required safety mechanisms,
existing code generation mechanisms from stan-
dard MDD tools may be used.

• Action 6: The source code generated in action 5 is
compiled with a suitable compiler. The result is a
binary program that may be executed on the target
platform.

5 RELATED WORK

MDD has already been successfully employed for en-
suring non-functional properties other than functional
safety (Noyer et al., 2016; Iyenghar et al., 2016;
Iyenghar and Pulvermüller, 2018), showing promis-
ing results.

A variety of approaches that combine modeling
with aspects of functional safety have been proposed.
However, these are often focused on an earlier part
of the safety lifecycle, e.g., targeting the traceability
of functional safety requirements throughout the de-
velopment process (Tanzi et al., 2014; Beckers et al.,
2014; Yakmets et al., 2015). In contrast, this paper
proposes the generation of safety mechanisms in a
semi-formal way from a model directly into source
code. In (Trindade et al., 2014), a similar idea is
proposed. However, they define their own domain-
specific language instead of building atop a common
and standardized modeling language such as UML.

There are also several commercial tools that aim
to incorporate modeling and functional safety con-
cepts, e.g., (Elektrobit Tresos, 2018; PrEEVision,
2018). However, they focus on protecting the em-
ployed operating systems, rather than the devel-
oped user software. Further research projects, such
as (SAFEADAPT, 2016) and (SAFURE, 2018), try to
increase safety in cyber-physical systems or electric
vehicles. Neither of them introduces a model-driven
approach for the automatic generation of safety fea-
tures.

An approach for the representation of selected
safety design patterns is introduced in (Antonino
et al., 2012). It is specifically intended as a base for
future model driven development approaches that try
to generate these patterns automatically into source

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

286



code. However, such future approaches building on
the profile have not been introduced up to now.

The issue of software-based memory protection
has been the subject of several publications, e.g.,
(Borchert et al., 2013; K. Pattabiraman and Zorn,
2008; Chen et al., 2001; Subasi et al., 2016). None
of these approaches enables the modeling of safety
features in a UML model nor the automatic genera-
tion of these safety model elements into safety-aware
source code.

In summary, in contrast to existing work our ap-
proach provides the following innovative contribu-
tions:

1. Language support to specify safety requirements
(and, thus, influence the resulting overhead) for
each individual variable directly in the developer
model (UML).

2. An exemplary UML profile to express safety re-
quirements for individual variables in compliance
with the safety standard IEC 61508.

3. An MDD transformation approach to turn safety
specifications into action during the system’s run-
time (e.g., checking the validity of values stored
in variables during runtime).

6 CONCLUSION

In this paper we take a step to bring the safety stan-
dard IEC 61508 into practice. For that, we propose
an extension of UML to specify protection for safety-
critical attributes. The novel model elements enable
the developer to specify memory protection require-
ments and techniques on the model level using stereo-
types with tagged values. To turn the specification
into productive design elements, we have presented
an MDD workflow that enables the generation of low
level source code from the specified safety properties.

While this paper focuses on the model represen-
tation and an MDD workflow for safety-protected at-
tributes, future work may be in designing an efficient
software architecture at the source code level together
with further evaluation concerning the trade-off be-
tween runtime and safety. Furthermore, this paper has
introduced model representations and transformations
for only a small subset of the safety techniques rec-
ommended by IEC 61508. Future work may embed
other safety techniques in the MDD process, such as
recovery mechanisms, for instance.

ACKNOWLEDGMENTS

This work was partially funded by the German Fed-
eral Ministry of Economics and Technology (Bun-
desministeriums fuer Wirtschaft und Technologie-
BMWi) within the project “Holistic model-driven de-
velopment for embedded systems in consideration of
diverse hardware architectures” (HolMES). The au-
thors are responsible for the contents of this publica-
tion.

REFERENCES

(2017). OMG Unified Modeling Language (OMG UML)
Version 2.5.1. Technical report, Object Management
Group.

Antonino, P. O., Keuler, T., and Nakagawa, E. Y. (2012).
Towards an approach to represent safety patterns. In
Proceedings of the Seventh International Conference
on Software Engineering Advances.

Armoush, A. (2010). Design Patterns for Safety-Critical
Embedded Systems. PhD thesis, RWTH Aachen Uni-
versity.

Baumann, R. C. (2005). Radiation-induced soft errors in
advanced semiconductor technologies. IEEE Trans-
actions on Device and Materials Reliability, 5(3).

Beckers, K., Cote, I., Frese, T., Hatebur, D., and Heisel, M.
(2014). Systematic derivation of functional safety re-
quirements for automotive systems. In Proceedings of
the 33rd International Confrence on Computer Safety,
Reliablity and Security, Florence, Italy.

Borchert, C., Schiermeier, H., and Spinczyk, O. (2013).
Generative software-based memory error detection
and correction for operating system data structures.
In Proc. of the 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), Budapest, Hungary.

Chen, D., Messer, A., Bernadat, P., Fu, G., Dimitrijevic,
Z., Lie, D., Mannaru, D., Riska, A., and Milojicic, D.
(2001). JVM susceptibility to memory errors. In Proc.
of the 2001 Symposium on JavaTM Virtual Machine
Research and Technology Symposium, Berkeley, CA,
USA.

Elektrobit Tresos (2018). Elektrobit Tresos functional
safety products.

Fogle, A. D., Darling, D., Blish, R. C., and Daszko, E.
(2004). Flash memory under cosmic and alpha irra-
diation. IEEE Transactions on Device and Materials
Reliability, 4(3):371–376.

IEC 61508 (1998). IEC 61508. functional safety for electri-
cal/electronic/programmable electronic safety-related
systems.

ISO 26262 (2011). ISO 26262 Road vehicles – Functional
safety.

Iyenghar, P. and Pulvermüller, E. (2018). A model-driven
workflow for energy-aware scheduling analysis of
IoT-enabled use cases. IEEE Internet of Things Jour-
nal.

UML Specification and Transformation of Safety Features for Memory Protection

287



Iyenghar, P., Wessels, S., Noyer, A., and Pulvermüller, E.
(2016). Model-based tool support for energy-aware
scheduling. In Forum on Specification and Design
Languages, Bremen, Germany.

K. Pattabiraman, V. G. and Zorn, B. G. (2008). Samurai:
protecting critical data in unsafe languages. In Proc. of
the 3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems, New York, NY, USA.

Matlab (2018). Matlab/simulink.
MISRAC++2008 (2008). MISRA C++2008 Guidelines for

the use of the C++ language in critical systems.
Noyer, A., Iyenghar, P., Engelhardt, J., Pulvermüller, E.,

and Bikker, G. (2016). A model-based framework en-
compassing a complete workflow from specification
until validation of timing requirements in embedded
software systems. Software Quality Journal.

Papyrus (2018). Papyrus.
Patterson, D. A. and Hennessy, J. L. (1990). Computer Ar-

chitecture: A Quantitative Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

PrEEVision (2018). PrEEVision tool for functional safety
modeling.

Rhapsody (2018). IBM Rational Rhapsody. Access:
03.04.2018.

SAFEADAPT (2016). SAFEADAPT EU-project, Safe
Adaptive Software for Fully Electric Vehicles.

SAFURE (2018). SAFURE EU-project, Safety and Se-
curity by Design for Interconnected Mixed-Critical
Cyber-Physical Systems.

Sarwate, D. V. (1988). Computation of cyclic redundancy
checks via table look-up. Communications of the
ACM, 31(8).

Shirvani, P. P., Saxena, N. R., and McCluskey, E. J.
(2000). Software-implemented EDAC protection
against SEUs. IEEE Transactions on Reliability,
49(3).

Subasi, O., Unsal, O., Labarta, J., Yalcin, G., and Cristal,
A. (2016). CRC-based memory reliability for task-
parallel HPC applications. In Proceedings of the 2016
IEEE International Parallel and Distributed Process-
ing Symposium, Chicago, Illinois, USA.

Tanzi, T. J., Textoris, R., and Apvrille, L. (2014). Safety
properties modeling. In Proceedings of the 7th Inter-
national Conference on Human System Interactions,
Costa da Caparica, Portugal.

Trindade, R. F. B., Bulwahn, L., and Ainhauser, C.
(2014). Automatically generated safety mechanisms
from semi-formal software safety requirements. In
Proceedings of the International Conference on Com-
puter Safety, Reliability, and Security, Florence, Italy.

Yakmets, N., Perin, M., and Lanusse, A. (2015). Model-
driven multi-level safety analysis of critical systems.
In Proceedings of the 2015 Annual IEEE Systems
Conference, Vancouver, BC, Canada.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

288


