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Abstract: Application areas such as healthcare and insurance see many patients or clients with their lifetime record
spread across the databases of different providers. Record linkage is the task where algorithms are used to
identify the same individual contained in different datasets. In cases where unique identifiers are found, linking
those records is a trivial task. However, there are very high numbers of individuals who cannot be matched as
common identifiers do not exist across datasets and their identifying information is not exact or often, quite
different (e.g. a change of address). In this research, we provide a new approach to record linkage which also
includes the ability to detect relationships between customers (e.g. family). A validation is presented which
highlights the best parameter and configuration settings for the types of relationship links that are required.

1 INTRODUCTION

Customer Relationship Management (CRM) allows
companies to manage their interactions with current
and potential customers. CRM combines people, pro-
cesses and technology to try to understand a cus-
tomer’s needs and behaviour. Getting to know each
customer using data mining techniques and by adopt-
ing a customer-centric business strategy helps the or-
ganization to be proactive, offering more products
and services for improved customer retention and loy-
alty over longer periods of time (Chen and Popovich,
2003). By using data analysis on customer history,
the goal is to improve business relationships with
customers, specifically focusing on customer reten-
tion and ultimately improving sales growth. A met-
ric known as Customer Lifetime Value (CLV) can be
regarded as a sub-topic of CRM which focuses on pre-
dicting the net profit that can accrue from the future
relationship with a customer (Di Benedetto and Kim,
2016).

Tasks for data integration include data preparation
(Pyle, 1999), knowledge fusion (Dong et al., 2014),
in addition to matching the data (Bhattacharya and
Getoor, 2007; Cohen et al., 2003; Rahm, 2016; Yujian
and Bo, 2007; Roantree and Liu, 2014; Etienne et al.,
2016; Ferguson et al., 2018) and managing streaming
integration (Roantree et al., 2008). Knowledge fusion
is an information integration process which merges

∗Research funded by Science Foundation Ireland under
grant number SFI/12/RC/2289

information from repositories to construct knowledge
bases. Traditionally, the knowledge base is built using
existing repositories of structured knowledge. Record
linkage is a specific problem within integration which
has a unique computation problem. Matching all
records in a pairwise fashion requires 499,500 com-
parisons for just 1,000 records and 4,999,950,000
comparisons for 100,000 records. This presents a sig-
nificant challenge as the size of the dataset increases.
Early attempts to address this problem (Baxter et al.,
2003) included blocking where the matching space
could be significantly reduced by splitting data into
a large number of segments. By introducing blocking
predicates (Bilenko et al., 2006), this technique was
improved to exploit domain semantics for improved
segmentation. However, most of these efforts used
synthetic datasets e.g. (Mamun et al., 2016) or health-
care records e.g. (Bilenko et al., 2006). While trying
to use these techniques in a very specific domain - in-
surance datasets - we encountered issues with a higher
number of lost matches. Furthermore, we had a spe-
cific task of matching clients with family members,
an approach not discussed in current related research.

1.1 Contribution

The construction of a unified record for all customers
requires a fuzzy matching strategy, usually relying on
the construction of a similarity matrix across all cus-
tomers. However, this has two major challenges: the
construction and evolution costs of a similarity ma-
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trix are prohibitive and initial experiments showed
that a single similarity value across many attributes
had poor results in terms of matching accuracy. In
this work, we present a customer matching approach
which uses a modified form of Agglomerative Hier-
archical Clustering (AHC) that incorporates a method
for overlapping segments. This hybrid approach of
data mining, together with a companion ruleset to
detect and link: components of the same customer
record, clients with family members; and clients with
co-habitants who have also bought policies, allows
relatively fast matching while achieving high levels
of accuracy. An evaluation is provided to illustrate
the levels of matching that were achieved and a hu-
man assisted validation process. A longer version of
this paper can be found at (Nie and Roantree, 2019).
Paper Structure. The remainder of this paper is
structured as follows: in §2, we present a review
of related research in this area; in §3, we present
an overview of the system and the methodology that
we used to integrate data for constructing unified
client records; in §4, we introduce our segmentation
method. in §5, we specify the detail of matching us-
ing modified Agglomerative Hierarchical Clustering;
in §6 we present our experiments and an evaluation in
terms of high level user group queries; and finally, §7
contains our conclusions.

2 RELATED RESEARCH

To integrate large amounts of source data, the authors
in (Rahm, 2016) developed an approach to integrate
schemas, ontologies and entities. Their purpose was
to provide an approach that could match large num-
bers of data sources not only for pairwise matching
but also for holistic data integration through many
data sources. For a complex schema integration, they
first used an intermediate result to merge schemas un-
til all source schemas have been integrated. For en-
tity integration, they first clustered data by seman-
tic type and class, where only entities in one cluster
were compared with each other. However, when clus-
tering very large datasets, the time consumption in-
creases rapidly. This is a well known problem and,
in our work, we have the same issue. Their approach
cannot be copied in our research as they use Linked
Open Data while insurance data does not have the
same properties as Linked Data. Furthermore, our
unified record must create a relationship graph (con-
nected families and co-habitants) between every cus-
tomer record. Thus, if we adopt their approach, a fur-
ther layer of processing is still required.

The authors in (McCallum et al., 2000) present

similar research to ours where they employ two steps
to match references. Firstly, they used a method
called Canopies, which offered a quick and dirty
text distance matrix to find the relevant data within
a threshold and put them in subsets. The fast dis-
tance matrix is to calculate the distance using an in-
verted index, which calculates the number of common
words in a pairwise reference. A threshold will be
applied to determine subsets and, similar to our ap-
proach, subsets may overlap. They then use greedy
agglomerative clustering to identify pairs of items in-
side Canopies. While there are similarities in our
two approaches, essentially they are limiting their ap-
proach to matching author names to detect the same
author. Our matching is multi-dimensional, with sim-
ilarity matrices across 9 attributes, and we are seeking
to detect 3 forms of relationships, and not simply the
author-author relationship in this work.

Many researchers like (Huang, 1998; Larsen and
Aone, 1999; Hotho et al., 2003; Sedding and Kaza-
kov, 2004; Bilenko et al., 2006; Mamun et al., 2016;
Ferguson et al., 2018) all provide methods for man-
aging text values while clustering where the common
method is to use blocking techniques with n-grams or
k-mer and convert strings to vectors. One applies tf
(term frequency) or tf-idf (term frequency by inverse
document frequency) to weight the vector, so that
clustering vectors calculate the distance using simi-
larities. All of these experiments use either semantic
datasets, reference datasets or text documents. In at-
tempting to use these approaches, we are facing many
mismatches as records for the same customer (or for
family members) were placed in separate segments.
However, string matching approaches as discussed in
this literature are often inadequate where we are try-
ing to determine if two entities (customers) are the
same. The nature of string matching will give many
false positives (for actual customers) and can miss -
or rank much lower - two entities which may refer to
the same customer.

3 MATCHING METHODOLOGY

Our methodology comprises 5 steps: pre-processing;
segmenting the recordset; application of the match-
ing algorithm; using a ruleset to improve matching
results; and validation.
Step 1: Pre-processing. This step involves cleaning
data before matching can commence. Firstly, all char-
acters are converted to lowercase to eliminate the dis-
similarity due to case sensitivity. Secondly, all non-
alpha-numeric characters are removed. Finally, the 4-
attribute address is concatenated but the most abstract
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level of granularity (normally country) is removed.
Step 2: Dataset Segmentation. Our validation
dataset contains 194,396 records and will require ap-
proximately 20 billion comparison operations for a
single evaluation using a single attribute. For this rea-
son, the first task is to segment the recordset with the
goal of minimizing the possibility of a customer hav-
ing records in separate segments, as those records will
never be matched. The most commonly used segmen-
tation methods are clustering with vectoring attributes
(Baxter et al., 2003). However, in almost all of these
research projects, they seek only to match the same
person which is referred to as Client-Client match-
ing using our approach. However, a separate goal is
to link family members and non-family member co-
habitants. Details are provided in §4.
Step 3: Clustering Client Records. We adopt a clus-
tering approach based on Agglomerative Hierarchi-
cal Clustering (AHC) (Day and Edelsbrunner, 1984),
where a similarity matrix is computed to represent the
distance between each pair of records. We do not con-
struct a single 2-dimensional matrix but instead com-
pute a multidimensional matrix which enables us to
examine distance measures across different variables.
We chose this method due to poor results obtained
when using a single aggregated distance measure
across all variables. There are nine dimensions in our
current similarity matrix as presented in Table 1, with
each dimension (matrix) given a specific label com-
prising SM and the name of the attribute. This ref-
erence to similarity dimensions (or matrices) is also
used in the rules presented in §5. The SM BirthDate
dimension captures the distance between dates of
birth; SM FirstName and SM LastName for the
first and last names; SM Address for the distance
between address strings; SM Email, SM Mobile,
SM HomePhone, SM WorkPhone and SM Fax for
the distance between each type of contact details.

Table 1: Similarity Matrix usage in Relationship Matching.

Ref Similarity Matrix Client Family CoHab
1 SM BirthDate Y N N
2 SM FirstName Y N N
3 SM LastName Y Y N
4 SM Address O O Y
5 SM Email O O N
6 SM Mobile O O N
7 SM HomePhone O O N
8 SM WorkPhone O O N
9 SM Fax O O N

Step 4: Application of Rules. While using a mul-
tidimensional similarity matrix allows for a more
fine grained comparison of distance between client
records, the application of all dimensions was not

suited in all matching requirements. Furthermore, we
required a facility to apply different thresholds across
the dimensions. There are three types of matches re-
quired in our research: client matches (records for the
same client); family matches (family members for a
client); and domiciled (where non-family members
reside at the same address). The support dimensions
for each type of match with the label: Required (Y);
Not Required (N); Optional (O) shown in Table 1.

To count the number of matches for family, it is
necessary to exclude same-client matches and for the
domiciled matches is necessary to exclude family and
same-client matches.

4 DATASET SEGMENTATION

Similar to other approaches, we seek to match two
different records for the same client. However, we
must also identify family members as a parent or
spouse may buy a policy for their child or partner. It
is not unusual for this type of relationship to have a
higher matching score than for two records are the
same client. Our approach also matches (non-family
member) co-habitants. In this section, we present a
hybrid segmentation method which seeks to reduce
the matching (search) space between records.

While attempting record linkage for a large
dataset, most approaches (e.g. (Etienne et al., 2016;
Ferguson et al., 2018)) to perform segmentation adopt
a clustering approach that employs blocking and a
form of vectorization for fast processing of the large
pairwise matching required in their similarity matrix.
Blocking involves the selection of a block (always
small e.g. 3 chars) of consecutive characters which
are used for distance matching. This can be illustrated
using Table 2 which contains 5 sample records after
our pre-processing step. Customer records 1 and 5
refer to the same client where a mistake was made
for dimension BirthDate. Customer records 1, 2 and
3 are family members with shared Contact (Dimen-
sion 5 to 9) information. Additionally, customer 4
lives with customer 5. Figure 1 allocates the sample
records from Table 2 into their respective segments
(one of 18 possible segments) based on the block that
represents each segment. Our overlapping approach
is different to other approaches: if that block is found
in any attribute in the same record, it is placed into
that segment. Thus, a record can appear in more than
one segment, e.g. record #1 is placed into segments
1, 4, 8, 12, 13, 14 and 15.

This was necessary as, in early tests using the DB-
SCAN clustering method (Han et al., 2011), up to
30% of records for the same clients were in separate
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Table 2: Sample Records.
Record BirthDate FirstName LastName Address Email Mobile HomePhone WorkPhone Fax

1 12091990 anna hood 5capelst ahood21gmailcom 0876720000 013333280 null null
2 11051964 ann hood 5capelst ahood21gmailcom 0860802320 013333280 null null
3 07041993 robert hood 5capelst ahood21gmailcom 0897034523 013333280 null null
4 12301992 liam murphy 15silloguerdballymun liam2murphygmailcom 0867723408 null null null
5 12071990 anna hood 17sillogueroadballymun annahood1gmailcom 353876720000 null null null

Figure 1: Segmentation by Blocking using Table 2.

segments, meaning they could never be matched. On
the other end of the scale, setting the distance to 13,
all records were placed in the same cluster, meaning
the number of matching operations was too large to
compute.

In (Etienne et al., 2016), the authors em-
ployed prefix blocking for attributes FirstName and
LastName and other approaches included blocking
for Address, BirthDate and Email. Essentially, this
meant taking a block of n-characters from the start of
each string for comparison purposes. For contact at-
tributes, we employ suffix blocking. This meant tak-
ing a block of characters from the end of each string
for attributes (Mobile, HomePhone, WorkPhone and
Fax). This had the advantage of avoiding issues with
country and area codes where they may or may not
exist. The way (prefix or suffix) of blocking is consis-
tent for all experiments in §6.

5 RULE ASSISTED MATCHING

In constructing similarity matrices, we treat all at-
tributes as strings and generate Levenshtein distance
(Kruskal, 1983) measures. The end goal is a unified
customer record containing three different relation-
ships: records for the same client; records of family
members; and those of cohabitants (domicile). We
begin with construct the multi-dimensional similarity
matrix with a similarity measure for each attribute.
Rules are applied to set distance thresholds accord-
ing to each relationship. Finally, we merge the related
records into unified client records.

While null values are very common in a real-world
customer dataset, it makes it even more difficult to
deal with the problem of evaluating similarity be-
tween two customers. If a value of null is present
for the same attribute in both records, the distance
will be 0, means that providing no information will

result in an exact match. Thus, null values distort
our methodology and therefore, we punish null values
during construction of the similarity matrix. This was
initially managed in two ways: using the average dis-
tance or the maximum distance value for this attribute
which is similar to single link and complete link cal-
culations (Day and Edelsbrunner, 1984). However,
we are using a multidimensional similarity matrix.
The results of experiments showed that any number
greater than the maximum distance threshold we ap-
ply will fulfill the requirement of punishing the null
value. In our case, we assigned 6 to a similarity ma-
trix if this attribute in both records are null during the
construction process.

We have 3 categories of rules, Client, Family and
Domicile, which are applied according to the type of
match required. The size of the similarity matrices de-
pend on the length of the block and the number of the
attributes. We describe the different configurations of
blocking and attributes in §6.

5.1 Client Rule

Definition 1. Client-Client Rule
[DOB Check] and
([Full Name Check]∗ or ) and
[Contact Detail Check]

In Definition 1, we introduce the Client-
Client Rule as a rule which must have 3 separate
clauses, each separated by a logical and operator.
All conditions must evaluate to true if records
are to be clustered (matched). The condition
([Full Name Check]∗ or ) will contain one or more
than one clause of Full Name Check separated by a
logical or operator.

Definition 2. DOB Check
SM BirthDate[i, j]≤ TDOB
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In Definition 2, the DOB Check clause is specified
as a Boolean statement. In this case, the similarity
for records i and j are tested using the SM BirthDate
similarity matrix against a specified threshold value
TDOB.

Definition 3. Full Name Check
[FirstName Check] and
[LastName Check]

In Definition 3, the Full Name Check clause
is a Boolean statement with two conditions
FirstName Check and LastName Check sepa-
rated by a logical and operator.

Definition 4. FirstName Check
SM FirstName[i, j]≤ TFName

In Definition 4, the FirstName Check clause is
specified as a Boolean statement. In this case, the
similarity for records i and j are tested using the
SM FirstName similarity matrix against a specified
threshold value TFName.

Definition 5. LastName Check
SM LastName[i, j]≤ TLName

In Definition 5, the LastName Check clause is
specified as a Boolean statement. In this case, the
similarity for records i and j are tested using the
SM LastName similarity matrix against a specified
threshold value TLName.

There are two similarity matrices SM FirstName
and SM LastName along with their specified thresh-
old values TFName and TLName in Full Name Check
clauses need to be tested together. The threshold
applied to this clause may present in multiple ways
such that the sum of TFName and TLName is equal to
the given number.

Definition 6. Contact Details Check
[Address Check] or
[Contact Check]

In Definition 6, the Contact Details Check
clause is a Boolean statement with two clauses
Address Check and Contact Check separated by a
logical or operator.

Definition 7. Address Check
SM Address[i, j]≤ TAD

In Definition 7, the Address Check clause is

specified as a Boolean statement. In this case, the
similarity for records i and j are tested using the
SM Address similarity matrix against a specified
threshold value TAD.

Definition 8. Contact Check
SM Email[i, j]≤ TEM or
SM Mobile[i, j]≤ TMO or
SM HomePhone[i, j]≤ THP or
SM WorkPhone[i, j]≤ TWP or
SM Fax[i, j]≤ TFax

The Contact Check checks the similarity for
records i and j against a list of contact similarity
metrics: SM Email; SM Mobile; SM HomePhone;
SM WorkPhone; SM Fax. Each similarity matrix
had its assigned threshold TEM for SM Email; TMO
for SM Mobile; THP for SM HomePhone; TWP for
SM WorkPhone and TFax for SM Fax.

5.2 Family Rules

Definition 9. Client-Family Rule
[LastName Check] and
[Contact Detail Check]

In Definition 9, we introduce the Family Rule as a
rule which must have two separate clauses, each sep-
arated by a logical and operator. In this rule, the two
clauses included are Definition 5 and Definition 8.

5.3 Domicile Rules

Definition 10. Client-Domicile Rule
[Address Check]

In Definition 10, we introduce the Domicile Rule
as a rule which tests the domiciled clients using clause
Definition 7.

6 EVALUATION

In order to provide a validation as in-depth as possi-
ble, we ran 3 different sets of experiments, with dif-
ferent configurations and thresholds. Experiment 1
used all of the similarity matrices presented in Table
1. Exp1.1 used a blocking method with a length of
3 for BirthDate (DOB), FirstName (FN), LastName
(LN); for all contact details (Contact) - Address,
Email, Mobile, HomePhone, WorkPhone and Fax -
the length of blocking is 6.

Experiment 2 used similarity matrices 3 to 9 (a
combination of last name and all contact details) from
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Table 1, using 2 different blocking configurations.
Exp2.1 used a blocking of length of 3 for LastName
and length of 5 for all contact details while Exp2.2
used a length of 6 for all contact details. Finally, ex-
periment 3 used similarity matrices 4-9 (contact de-
tails only) with 3 different blocking configurations. In
Exp3.1, the length is 4; in Exp3.2, the length is 5; and
finally, in Exp3.3, the length of blocks is 6.

6.1 Results

We use 2 tables to present our results: Table 3 presents
the configuration details for each of 6 experiments
while Table 4 presents the total matches and accuracy
for different thresholds across all 6 experiments. The
accuracy is calculated depending on the labeled real-
matches provided by the industry partner.

The first column in Table 3, Exp, is the label for
the 3 sets of experiments, each with different config-
urations for the block length (Block Length) and n/a
indicates that this attribute was not used in the seg-
mentation experiment.

The Dims column lists the number of similarity di-
mensions used in the segmentation process. Records
refers to the size of the recordset involved in that ex-
periment with the total number of segments created
listed in the Segment column. The total number of
records compared for a single dimension of the simi-
larity matrix are shown in Comparison. The number
of records in the largest segment is shown in Max and
finally, the Time presents the running time in hours
consumed for each experiment while using 7 cores in
parallel during pairwise comparison.

The goal of our research is to achieve the maxi-
mum number of matches while identifying any limi-
tations caused by threshold values for each rule. Thus,
our evaluation is focused on measuring matching ac-
curacy, as validated by our industry partner. In certain
cases, they require very high levels of accuracy while
in other cases, they are happy with a reduced level if
we can provide far higher numbers of matches. The
results in Table 3 show that decreasing the length dur-
ing blocking will decrease the number of segments
created but an increase in segment size will see an
increase in the number of comparisons required. Ex-
periment running time is dependent on the number of
comparisons in each experiment.

For all 6 experimental configurations, we ran 4
client matching experiments, 3 client-family experi-
ments and 1 experiment for co-habitants, as shown
in Table 4. Rows 2 to 5 (labelled with rules CC0,
CC1, CC2 and CC3) show the results of matching by
the Client-Client Rule with threshold values from 0
to 3 for every clause. Rows labelled CF0, CF1 and

CF2 show the result of the Client-Family Rule with
threshold values of 0, 1 and 2 respectively for the two
clauses in this rule. The last row CD0 is the result for
Client-Domicile Rule, always with a threshold value
set to 0.

The last row Total represents the total number of
matches (Match) for all matching experiments (sum
of CC3, CF2 and CD0) within the listed Exp. The
Accuracy (Acc %) for the total is the true accurate
matches in all matching experiments divided by the
Total.

• As expected, applying a very low threshold (dis-
tance value) will result in very high accuracy. In-
creasing the threshold will match more records
but will, as a result, reduce the accuracy. In gen-
eral terms, the number of matches increases, row
by row, within each matching category.

• A higher distance threshold also captures those
matches found using a lesser threshold. For exam-
ple, the 35,856 matches detected in Exp2.2 using
threshold CF1 includes the 30,330 matches for
CF0 together with the additional 5,526 detected
using the higher distance value of CF1.

• For all blocking experiments (1.1 to 3.3), where
the threshold is set to 0 (CC0, CF0 and CD0),
identical records are matched and thus, the same
level of accuracy is achieved. Setting the thresh-
old to zero will override all experimental config-
urations: neither blocking algorithms nor matrix
usage has any effect.

• If we look across the experiments, when the
matching criteria is more strict (reduction in at-
tribute comparisons), matches decrease, with the
accuracy improving. For Client-Client match-
ing with distance threshold of 2, Exp1.1 detects
10,434 matches with an accuracy of 98.7%. How-
ever, with a similar accuracy of 99%, Exp3.3 loses
95 records (10,339). This appears to indicate a
strong case for using contact details only.

• Overall, Exp2.2 was chosen as best because it
included all the accurate matches and is effi-
cient while constructing the similarity matrix.
The number of true matches can be calcu-
lated by multiplying the number of matches
(Match) by the accuracy percentage (Acc %).
The total of true matches in Exp2.2 is 35,848
(Total × Acc%). Across three matching rules:
10559 (CC3 × Acc%) accurate matches identi-
fied by the Client-Client Rule (C-C); there are
23,220 (CF2 × Acc%) true matches identified
from Client-Family Rule (C-F) and 2,069 (CD0×
Acc%) from Client-Domicile Rule (C-D).
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Table 3: Experiment Configurations and Matching Requirements.

Block Length
Exp DOB FN LN Contact Dims Records Segment Comparison Max Time
1.1 3 3 3 6 9 1,168,406 311,150 843,109,791 17,292 28.5
2.1 n/a n/a 3 5 7 808,396 137,177 185,526,138 8,026 6.2
2.2 n/a n/a 3 6 7 778,666 271,215 137,298,018 4,469 5
3.1 n/a n/a n/a 4 6 583,776 42,016 186,793,296 13,090 6.4
3.2 n/a n/a n/a 5 6 583,924 141,549 94,824,563 8,026 3.3
3.3 n/a n/a n/a 6 6 584,290 268,451 46,904,079 4,455 2.1

Table 4: Results of Experiments by Threshold.

Exp1.1 Exp2.1 Exp2.2 Exp3.1 Exp3.2 Exp3.3
Rules Match Accuracy Match Acc % Match Acc % Match Acc % Match Acc % Match Acc %
CC0 9609 99.95 9609 99.95 9609 99.95 9609 99.95 9609 99.95 9609 99.95
CC1 10146 99.70 10144 99.72 10144 99.72 10116 99.73 10113 99.73 10109 99.73
CC2 10434 98.73 10422 98.84 10418 98.88 10373 98.92 10354 99.04 10339 99.10
CC3 14649 72.08 13688 77.14 13493 78.26 12379 84.86 12054 87.09 11776 89.06
CF0 30330 72.14 30330 72.14 30330 72.14 30330 72.14 30330 72.14 30330 72.14
CF1 36057 64.12 35877 64.44 35856 64.48 32924 68.59 32692 68.99 32533 69.24
CF2 58754 39.52 57330 40.50 56695 40.96 40311 56.24 38775 58.39 37656 60.04
CD0 13270 15.59 13270 15.59 13270 15.59 13270 15.59 13270 15.59 13270 15.59
Total 86673 41.36 84288 42.53 83458 42.95 65960 53.43 64099 54.93 62702 56.08

The result for the unified records is shown in Ta-
ble 5. Columns 2-4 represent the 3 types of matches:
the C-C match, C-F match and C-D match. Y indi-
cates if there are one or more matches for that match
type and N for no relationship in this type. Records
shows the number of records for that combination. In
brief, there are 8 combinations and we can highlight
some findings from the data regarding all the com-
binations. Combination 1 for clients who are single
policy holders; Combination 2 to Combination 4 are
clients who have multiple policies for themselves or
one for themselves and one or more policies for fami-
lies or co-habitants; Combination 5 to Combination 7
are the clients involved in two types of relationships;
finally, Combination 8 are clients who had all three
types of relationship.

Table 5: Unified Client Records.

Combination C-C C-F C-D Records
1 N N N 137,114
2 Y N N 6,780
3 N Y N 14,174
4 N N Y 1,383
5 Y Y N 2,936
6 Y N Y 335
7 N Y Y 148
8 Y Y Y 59

In total there are 162,929 unified client records for
a validation dataset of 194,396. Additionally, 30% of
clients satisfied at least one of the relationship types.

6.2 Analysis

From Table 4, experiments 1.1, 2.1 and 2.2 performed
best in terms of detecting most matches. The total fig-
ure, calculating by adding the best performing thresh-
old experiments (CC3, CF2 and CD0) ranges between
83,458 and 86,673 although accuracy drops when de-
tecting high numbers of matches. Of these, Exp2.2
is the most efficient due to the far lower number of
comparisons required (see Table 3). This is to be ex-
pected as the blocking length increases and number
of attributes reduced. Note that the overall accuracy
is affected by the low accuracy for co-habitants (dis-
cussed later).

It is useful to note the numbers of dimensions
used for matching (as opposed to segmenting) when
discussing these results. In Client-Client matching,
3 clauses (9 dimensions) are used; in Client-Family
matching, 2 (7 dimensions) are used and for match-
ing co-habitants only 1 clause (1 dimension) is used.
Thus, the quality of matching will inevitably decrease
as we discuss the different types of matches.

Our related research highlights the many ap-
proaches to record linkage and it is no surprise that,
using a combination of these techniques, the Client-
Client Rule performance has the best accuracy across
matches. The 0.05% (5) false matches that occurred
in CC0, were as a result of the poor data quality for
the Address attribute. When providing address in-
formation, only 49% of clients provided the address
detailed to door number and thus, all clients on the
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same street would be matched. The same quality is-
sue for Address will result in false hits across all types
of matches even where the distance threshold is set to
0.

The Client-Family Rule is generally not part of
record linkage research. As expected, in sparse
datasets (datasets with low numbers of client-client
matches), the system detected more Client-Family
matches. Interestingly, the optimum distance thresh-
old is different. While we still have a significant
change with threshold setting 2 and 3, there is enough
deterioration in results between 1 and 2 to select a
threshold setting of 1 (CF1). However, in Exp1.1,
there were 30,330 matches detected with an accuracy
of 72.14%. By increasing the distance threshold to 1,
while this detects an extra 5,727 records, only 1,239
were accurate resulting in a drop in overall accuracy
to 64.12%. For this category, it is not definitive if CF0
(all experiments produce the same number of matches
so we choose 3.3 as the most efficient) or CF1 had
more matches, but more checking and false positives
(choose 2.2 as the most efficient combined with the
higher matches).

The Client-Domicile Rule did not perform well ei-
ther on accuracy nor on the number of true matches.
The accuracy for co-habitants is very low even though
the threshold was set to 0. The poor quality of
Address is problematic for this match type, because
SM Address is the only similarity matrix used in
this rule. Our fuzzy matching (threshold greater
than 0) can handle abbreviations like ’rd’ for ’road’,
’st’ for ’saint’ in the Client-Client Rule and Client-
Family Rule only because those rules required a
higher dimensionality (used additional similarity met-
rics). In summary, while the number of false hits is
high, it succeeded in providing a new dimension to
the relationship graph for our industry partner.

7 CONCLUSIONS

Strategic business knowledge such as Customer Life-
time Values for a customer database cannot be de-
livered without building full customer records, which
contain the entire history of transactions. In our work,
we use real world customer datasets from the insur-
ance sector with the goal of uniting client records by:
connecting all records (various policy data) for the
same client; connecting clients to family members
(where both have policies); and connecting clients
with co-habitants (where the co-habitant is also a
client). As data is never clean, this is a significant
task, even for relatively large datasets.

In this research, our goal was to segment the over-

all dataset so as to reduce matching complexity but
to do so in a manner that kept ”matching” records in
the same segment. Early experiments were quite clear
that an aggregated similarity matrix did not provide
the required matching granularity to deliver accurate
results. For this reason, we create a multidimensional
similarity matrix and applied a set of rules to assist the
matching process. Our results show very good match-
ing results when comparing client-to-client data; quite
good results when matching clients with family mem-
bers and mixed results when trying to detect cohabit-
ing policy holders. Evaluation was provided by our
industry partner who, as a result of our work, are
building far larger customer graphs (customer pro-
files) than was previously possible. For future work,
our goal is to develop an auto-validation method sim-
ilar to (McCarren et al., 2017) to remove anomalies
while replacing the current human checking process
performed by our industry partners. This work will
also incorporate precision and recall in larger datasets.
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