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Abstract: In recent years smartphones have become essential in daily life. A user can perform several operations through
a smarthphone since they are increasingly similar to a personal computer. Furthermore, smartphones collect a
large number of sensitive information. The most widespread mobile operating system is Android, this is the
reason why malware writers target this platform. Malicious behaviours able to steal private information are
called spyware. This paper aims to detect this kind of threat in mobile environment: we present a preliminary
framework able to recognize Android spyware. It is based on model checking technique and it uses temporal
logic formulae to identify malicious behaviours. We evaluate the proposed framework using a synthetic dataset
obtaining a precision equal to 0.98 and a recall equal to 1.

1 INTRODUCTION

Mobile device currently permeate our every day acti-
vity. From back transaction, to update the status on
social networks, mobile devices allow us to perform a
variety of activities. As a matter of fact, smartphone
sales exceeded the current X86 PC platform in 2016,
and this trend is expected to grow up in 20181.

Mobile devices quickly attracted the interest of the
attackers, and it is easy to understand the reason why:
if compared with PC platforms, in our smartphones
are stored more and more sensitive and private infor-
mation. Furthermore, smartphones manage the SIM
card in which there is our credit, also for this reason
this is an appealing attack surface for malicious soft-
ware writers (Cimitile et al., 2018), (Mercaldo et al.,
2016a).

Mobile operating systems producers tried to re-
medy to this rampant spread of malicious software
targeting mobile platform.

For instance, Google with the aim to consent the
publication of a new app on Play Store (the official
market for Android users) requires a deep scan of
the app aimed to find possible malicious activities.
Indeed the new app must be submitted to Bouncer
(Oberheide and Miller, 2012), an automatic applica-

1https://www.gartner.com/newsroom/id/3876865

tion scanning system introduces in 2012 with follo-
wing distinctive features, including:

• static analysis in search of known threats;

• it runs the software in a virtual emulator (QEMU)
and identifies its behavior;

• it starts and tracks the behavior of the app for 5
minutes;

• it explores the app in every button.

Bouncer performs a static analysis using the an-
timalware provided by VirusTotal (a service able to
evaluate the application simultaneously with 60 dif-
ferent antimalware) but, considering the signature-
based detection approach offered by current antimal-
ware technologies, it is possible to mark a malicious
sample as malware only whether their signature is sto-
red into the antimalware repository (and consequently
it is not possible to detect zero-day threat).

With regard to the dynamic analysis, the app is
ran for a limited time window (5 minutes): in case the
app does not exhibit the malicious behaviour in this
period it passes this test. Furthermore, usually mal-
ware is able to understand whether it is executed on
a virtual environment (in this case it will not perform
the malicious action, to avoid the sandbox detection).

For these reasons, it is easy from malicious writers
to elude the current detection (Canfora et al., 2018;
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Cimitile et al., 2017; Mercaldo et al., 2016b; Canfora
et al., 2015b).

The preferred target of mobile malicious software
is represented by ourselves: this is the reason why
usually mobile malware is able to secretly record
phone calls, collect images, videos, text messages and
even the GPS coordinates of the victims and send
them to the attackers and, generally speaking, to spy
the infected users (this is the reason why this kind of
malicious software is called spyware).

This is the reason why in this paper we present a
framework able to detect Android spyware. In parti-
cular, we develop a model checking based framework
identifying this kind of threat. Our solution is behavi-
oural based since it is able to detect the malicious spy-
ware using temporal logic formulae. The considered
logic rules are the formal specification of the malici-
ous behaviour performed by a spyware sample. The
framework models an android application as a labeled
transition system starting from its bytecode. Then,
using a model checker tool, it verifies the specified
malicious behaviour against the model of the appli-
cation. The output of the model checker, and thus of
our framework, is binary: it is equal to true when the
formula is verified on the model and false otherwise.
Our method considers an application under analysis
as spyware if the output of model checker is equal to
true.

The paper proceeds as follows: next section
introduces background concepts related to Model
Checking and Mu-Calculus Logic exploited by the
proposed framework, Section 3 describes our method
aimed to detect Android spyware, Section 4 presents
the performance evaluation of the proposed frame-
work and, finally, conclusion and future work are dis-
cussed in Section 6.

2 MODEL CHECKING AND
Mu-Calculus LOGIC

Verification of a software or hardware system invol-
ves checking whether the system in question beha-
ves as it was designed to behave. Formal methods
have been successfully applied to safety-critical sys-
tems (Santone et al., 2013) and in other domains such
as biology (Ruvo et al., 2015; Ceccarelli et al., 2014).

One reason is the overwhelming evidence that for-
mal methods do result in safer systems. In this pa-
per we show that formal methods are extremely well-
suited to spyware detection. First of all, in this section
we recall some basic concepts.

Model checking is an formal method for determi-
ning if a model of a system satisfies a correctness spe-

cification (Clarke et al., 2001). A model of a system
consists of a labelled transition system (LTS). A spe-
cification or property is a logical formula. A model
checker then accepts two inputs, a LTS and a tempo-
ral formula, and returns true if the system satisfies the
formula and false otherwise.

A labelled transition system comprises some num-
ber of states, with arcs between them labelled by acti-
vities of the system. A LTS is specified by:

• a set S of states;

• a set L of labels or actions;

• a set of transitions T ⊆ S×L×S.

Transitions are given as triples (start, label,end).
In this paper, to express proprieties of the system

we use the modal mu-calculus (Stirling, 1989) which
is one of the most important logics in model checking.

The syntax of the mu-calculus is the following,
where K ranges over sets of actions (i.e., K ⊆ L) and
Z ranges over variables:

ϕ ::= tt | ff |Z | ϕ∧ϕ | ϕ∨ϕ | [K]ϕ |
〈K〉ϕ | νZ.ϕ | µZ.ϕ

A fixpoint formula may be either µZ.ϕ or νZ.ϕ
where µZ and νZ binds free occurrences of Z in ϕ. An
occurrence of Z is free if it is not within the scope of
a binder µZ (resp. νZ). A formula is closed if it con-
tains no free variables. µZ.ϕ is the least fixpoint of the
recursive equation Z = ϕ, while νZ.ϕ is the greatest
one. From now on we consider only closed formulae.

Scopes of fixpoint variables, free and bound va-
riables, can be defined in the mu-calculus in analogy
with variables of first order logic.

The satisfaction of a formula ϕ by a state s of a
transition system is defined as follows:

• each state satisfies tt and no state satisfies ff;

• a state satisfies ϕ1 ∨ϕ2 (ϕ1 ∧ϕ2) if it satisfies ϕ1
or (and) ϕ2. [K]ϕ is satisfied by a state which, for
every performance of an action in K, evolves to a
state obeying ϕ. 〈K〉ϕ is satisfied by a state which
can evolve to a state obeying ϕ by performing an
action in K.

For example, 〈a〉ϕ denotes that there is an a-
successor in which ϕ holds, while [a]ϕ denotes that
for all a-successors ϕ holds.

The precise definition of the satisfaction of a clo-
sed formula ϕ by a state s (written s |= ϕ) is given in
Table 1.

A fixed point formula has the form µZ.ϕ (νZ.ϕ)
where µZ (νZ) binds free occurrences of Z in ϕ. An
occurrence of Z is free if it is not within the scope of
a binder µZ (νZ). A formula is closed if it contains
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Table 1: Satisfaction of a closed formula by a state.

p 6|= ff

p |= tt

p |= ϕ∧ψ iff p |= ϕ and p |= ψ

p |= ϕ∨ψ iff p |= ϕ or p |= ψ

p |= [K]R ϕ iff ∀p′.∀α ∈ K.p α−→K∪R p′ implies p′ |= ϕ

p |= 〈K〉R ϕ iff ∃p′.∃α ∈ K.p α−→K∪R p′ and p′ |= ϕ

p |= νZ.ϕ iff p |= νZn.ϕ for all n
p |= µZ.ϕ iff p |= µZn.ϕ for some n

where:

• for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

where the notation ϕ[ψ/Z] indicates the substitution of ψ for every free occurrence of the variable Z in ϕ.

no free variables. µZ.ϕ is the least fix-point of the
recursive equation Z = ϕ, while νZ.ϕ is the greatest
one.

A transition system T satisfies a formula φ, writ-
ten T |= φ, if and only if q |= φ, where q is the initial
state of T .

In the sequel we will use the following abbreviati-
ons:

〈α1, . . . ,αn〉 φ = 〈{α1, . . . ,αn}〉 φ
〈−〉 φ = 〈L〉 φ
〈−K〉 φ = 〈L−K〉 φ

[α1, . . . ,αn] φ = [{α1, . . . ,αn}] φ

[−] φ = [L] φ

[−K] φ = [L−K] φ

We provide some examples of logic properties.
The simplest formulae are just those of modal logic:

〈a〉 tt

means that “there is transition labelled by a”.
With one fixpoint, we can talk about termination

properties of paths in a transition system. The for-
mula:

µZ. [a]Z

means that “all the sequences of a-transitions are
finite”.

The formula:
νY.〈a〉Y

means that “there is an infinite sequence of a-
transitions”. newpage

We can then add a predicate p, and obtain the for-
mula:

νY.p∧〈a〉Y

saying that “there is an infinite sequence of a-
transitions, and all states in this sequence satisfy p”.

With two fixpoints, we can write fairness formu-
lae, such as:

νY.µX .(p∧〈a〉Y )∨〈a〉X

meaning that “on some a-path there are infinitely
many states where p holds”.

Changing the order of fixpoints we obtain:

µX .νY.(p∧〈a〉Y )∨〈a〉X

saying “on some a-path almost always p holds.”
In this paper we use CAAL (Concurrency Work-

bench, Aalborg Edition) (Andersen et al., 2015) as
formal verification environment. It is one of the most
popular environments for verifying systems. In the
CAAL the verification of temporal logic formulae is
based on model checking (Clarke et al., 2001).

3 A FORMAL FRAMEWORK
FOR SPYWARE DETECTION

In this section we describe our approach aimed to
detect spyware Android applications. The approach
models the Android application under analysis as a
labelled transition system capturing the behaviour of
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Figure 1: The proposed framework for mobile spyware de-
tection and localization.

the app, and evaluates security temporal properties di-
rectly on this LTS. Figure 1 shows the workflow of the
proposed approach.

The proposed framework considers as inputs an
Android application and a set of properties mobile
spyware related. Through the model checker it is pos-
sible to check whether one or more properties are ve-
rified on the model representing the app under analy-
sis: whether at least one property is verified, the pro-
posed framework will mark the Android app as spy-
ware, otherwise the app will be marked as not spy-
ware (i.e., legitimate).

More specifically, the formal model of an Android
application is a labeled transition system. It is built
starting from the bytecode of the application and mi-
mics the behaviour of the code. More precisely, every
instruction is translated in a label and corresponds a
transition between two states. Thus, the automaton si-
mulates the normal execution of the instructions and a
state transition is how to execute an instruction of the
code. The if statement is modeled as an unconditional
choice. Using a labeled transition system is also sim-
ple to model a cycle, in fact, it is modeled as a branch
(a transition) directed to a previous state of the code.

The construction of the labeled transition system
is completely automatic. We have developed a trans-
formation function able to convert the bytecode of an
application into an automaton. This function is writ-
ten in Java an is completely integrated in the frame-
work.

Furthermore, our framework is also able to auto-
matically calls the model checker tool in order to ve-
rify the specified logic formulae on the formal mo-
del. Summarizing, the workflow of the proposed fra-
mework shown in Figure 1 is completely automatic.
Starting from an Android application the framework
automatically labels it as spyware or not, depending
on the truth of the formula on the model.

3.1 Spyware Characterization through
Temporal Logic Formulae

Temporal logic allows us to reason about changes in
the behavior of a system over time, without explicitly
mentioning specific instances of time. In particular,
a formula may specify that some property eventually
turns true, or always holds, or never turns true. In this
section we use the mu-calculus logic to specify the
spyware behaviour occurring in Android applications.

We consider the model checking technique to de-
tect spyware application for the following main rea-
sons:

• The checking process is automatic. There is no
need to construct a correctness proof.

• The possibility of using the diagnostic counte-
rexamples. If the specification is not satisfied,
the model checker will produce a counterexample
execution trace that shows why the specification
does not hold. The counterexamples are invalua-
ble in analyzing an application, since they can be
use to understand where the spyware behaviour is
in the application under analysis.

• Temporal logic can easily and correctly express
the behaviour of a spyware application.

• There is no problem with partial specifications. It
is unnecessary to completely specify all the appli-
cation before beginning to model check proper-
ties. Thus, model checking can be used only to
verify part (methods) of the application.

• Formal verification allows evaluating all possible
scenarios, the entire state space all at once. Mo-
del checking allows checking if, in each state, the
system obeys certain properties. In particular, it
allows verifying if the system under analysis ex-
poses a certain behaviour expressed using a tem-
poral logic formula. Spyware is a malware able to
perform harmful actions in order to steal sensitive
information. Basically, it is a software exposing
in its code some malicious behaviours. Roughly
speaking, in its code, there are some instructi-
ons performing these actions. We can imagine
this like a software specification: the software is
designed to do something malicious. Now, ap-
plying formal verification we investigate whether
the software exhibits this malicious behaviour.

Table 2 shows an example of temporal logic
formula written in mu-calculus logic. It catches
the reading phone contacts suspicious behaviour.
In Android environment the Content Provider al-
lows reading phone contacts. In order to access to
all contact information a ContentResolver object
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must be used. In our logic formula this operation
is specified by the action invokegetContentResol-
ver. After that it is necessary to communicate
with the contacts applications performing a query
to the URL of the contacts table (URI: Contact-
sContract.Contacts.CONTENT URI). This step is
specified in our logic formula by the sequence of
actions:
getstaticandroidproviderContactsContractContacts
and invokequery. Finally the action invokegetString
returns the contacts information as contact name,
contact number, etc.

In order to better understand the behaviour speci-
fied in our logic formula, we report the corresponding
Java code snippet in Figure 2. In particular, the line
highlighted in yellow shows the query to Content Pro-
vider and the lines corresponding to get the contact in-
formation (i.e., invocation of the getString method in
Figure 2). Our logic formula specifies in mu-calculus
logic the instructions show in Figure 2.

It should be underlined that we have formulated
also the formula able to catch read phone contact for
Android application with an API level less than or
equal to 5. We have specify also the formula consi-
dering the URI: Contacts.Phones, deprecated in API
level 5. The formula verified on the applications is κ.
It is the logical disjunction between the formula con-
sidering the API levels greater than the API level 5 (ξ)
and the formula considering the other ones less than
or equal to API level 5 (γ). In the following manner
the formula covers all the Android API levels.

4 EXPERIMENTAL EVALUATION
AND ASSESSMENT

In the following section, we detail how we generated
the experimental dataset and we discuss the perfor-
mances obtained by the proposed framework. In order
to evaluate the effectiveness of the proposed method,
we generated a set of Android spyware exploiting a
framework able to automatically generate malicious
samples: the Android Framework for Exploitation.

4.1 Android Framework for
Exploitation

The Android Framework for Exploitation (i.e., AFE)2

is an open-source python-based project aimed to eva-
luate Android vulnerabilities. It is composed by se-
veral modules, we exploit the Malware Creator and
the Stealer (able to inject code with the ability to steal

2https://github.com/appknox/AFE

information from the attacked device including con-
tacts, call logs, text messages and files from SD card).

Basically the Malware Creator module in order
to inject the malicious behaviour implemented in the
Steal module, it considers a pre-defined template able
to embed the malicious payload (provided by the Steal
module) and call it from a Service (declared in the An-
droid Manifest file): the Service will be call when the
Main activity is called (i.e., when the application is
launched on the infected mobile device).

Basically, AFE considers following steps to auto-
matically inject the malicious code into a legitimate
applications: (i) it decompiles it into the smali lan-
guage, (ii) the malicious payload is added and (iii)
the app with the spyware behaviour is rebuilt.

Figure 3 depicts the difference between an An-
droid application before and after the AFE injection.

As shown in Figure 3 in the injected version there
is the xybot package added by AFE containing the
spyware malicious payload.

Figure 4 shows the classes included in the xybot
package.

The main class responsible for the malicious be-
haviours is com.xybox.infect.class (highlighted from
a red circle in Figure 4): a java byte-code snippet be-
longing to this class is shown in Figure 5.

From the snippet in Figure 5 it is possible to see
the device contact gathering malicious action: as a
matter of fact, basic contact information in Android
are stored in Contacts table with detailed informa-
tion stored in individual tables. The snippet shows
a query to retrieve the records stored in Contact-
sContract.Contacts.CONTENT URI3 (the instruction
is highlighted by the red arrow).

4.2 Dataset Building

In order to evaluate the effectiveness of the propo-
sed framework, a dataset composed by legitimate and
spyware Android applications is considered. We col-
lected 80 freely applications belonging to 26 diffe-
rent categories from Google Play Store (i.e., Books
and Reference, Lifestyle, Business, Live Wall- paper,
Comics, Media and Video, Communication, Medi-
cal, Education, Music and Audio, Finance and News,
Magazines, Games, Personalization, Health and Fit-
ness, Photography, Libraries and Demo, Productivity,
Shopping, Social, Sport, Tools, Travel, Local and
Transportation, Weather, Widgets). Their dimensions
are ranging from 24 kB to 37 MB. We have selected
an equal number of applications belonging to each

3https://developer.android.com/reference/android/
provider/ContactsContract.Contacts
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Figure 2: Code snippet able to access to contact information.

Table 2: Temporal logic formulae for Spyware detection.

prop ξ = ϕ∨ψ

prop ϕ = µX .〈invokegetContentResolver〉ϕ1∨〈−invokegetContentResolver〉X
prop ϕ1 = µX .〈getstaticandroid providerContactsContractContacts〉ϕ2∨

〈−getstaticandroid providerContactsContractContacts〉X
prop ϕ2 = µX .〈invokequery〉ϕ3∨〈−invokequery〉X
prop ϕ3 = µX .〈invokegetString〉 tt∨〈−invokegetString〉X

prop ψ = µX .〈getstaticandroid providerContactsContractContacts〉ψ1∨
〈−getstaticandroid providerContactsContractContacts〉X

prop ψ1 = µX .〈invokegetContentResolver〉ψ2∨〈−invokegetContentResolver〉X
prop ψ2 = µX .〈invokequery〉ψ3∨〈−invokequery〉X
prop ψ3 = µX .〈invokegetString〉 tt∨〈−invokegetString〉X

prop γ = β∨η

prop β = µX .〈invokegetContentResolver〉β1∨〈−invokegetContentResolver〉X
prop β1 = µX .〈getstaticandroid providerContactsPhones〉β2∨

〈−getstaticandroid providerContactsPhones〉X
prop β2 = µX .〈invokequery〉β3∨〈−invokequery〉X
prop β3 = µX .〈invokegetString〉 tt∨〈−invokegetString〉X

prop η = µX .〈getstaticandroid providerContactsPhones〉η1∨
〈−getstaticandroid providerContactsPhones〉X

prop η1 = µX .〈invokegetContentResolver〉η2∨〈−invokegetContentResolver〉X
prop η2 = µX .〈invokequery〉η3∨〈−invokequery〉X
prop η3 = µX .〈invokegetString〉 tt∨〈−invokegetString〉X

prop κ = ξ∨ γ

category. The applications were downloaded in the
time-window between March 2018 and April 2018.

We submitted the Play Store apps to the VirusTo-
tal4 service: whether the 59 antimalware provided by
VirusTotal marked as clean the application, we label
the application as trusted.

To embed into the legitimate applications the spy-
ware malicious behaviour we considered the AFE
framework. For each applications downloaded from
Play Store, through AFE a spyware version of the ap-
plication was generated. We labeled the applications
generated by AFE as spyware.

4https://www.virustotal.com/#/home/upload

Furthermore, we generated an obfuscated version
for each application submitted to the AFE framework
using DroidChameleon tool (Rastogi et al., 2013).
DroidChameleon applies code transformations to the
smali code of the application under analysis. We con-
sider obfuscated spyware to demonstrate that the pro-
posed framework is resilient to the most widespread
code obfuscation techniques implemented by mal-
ware writers in order to elude the current signature ba-
sed detection provided by antimalware technologies
(usually ineffective against trivial code transformati-
ons (Canfora et al., 2015a; Rastogi et al., 2014; Zheng
et al., 2012)). As a matter of fact, antimalware soft-
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Figure 3: Android packages related to the trusted version
of the official ebay application and the same application af-
ter the AFE injection (with highlighted the xybot malicious
package).

Figure 4: The classes belonging to the xybot package.

ware usually fail in the obfuscated malware recogni-
tion since their detection mechanism is signature ba-
sed and obfuscation techniques are considered to alter
the code signature.

The samples generated with the AFE framework
were injected with the following obfuscation techni-
ques: (i) changing package name; (ii) identifier re-
naming; (iii) data encoding; (iv) call indirection; (v)
code reordering; (vi) junk code insertion.

At the end of this transformation process, we have
collected 60 obfuscated applications which are a mor-
phed version of spyware samples. It should be un-
derlined that the number of morphed samples in less
than the number of original once since in some cases
DroidChameleon was not able to reassemble some of
the selected samples, this is the reason why we had to
discard them.

Summarizing 220 Android are included in the da-
taset: 80 trusted apps, 80 spyware apps and 60 obfus-
cated spyware apps.

4.3 Experimental Results

The dataset described above has been used to evaluate
the proposed spyware detection framework. The re-
sults achieved during the experimental evaluation are
shown in Table 3.

As shown in Table 3, the proposed framework is
able to correctly recognize the spyware samples and
their morphed version. Regarding the trusted sam-
ples our framework individuated 4 samples exposing

Table 3: Performance Evaluation.

Label #Samples #Identified Spyware #Clean Samples
Trusted 80 4 76
Spyware 80 80 0
Morphed Spyware 60 60 0

suspicious spyware behaviour. We have manually in-
spected the samples and we have found the suspicious
behaviour to retrieve contacts. It should be underlined
that only in one sample the read contacts suspicious
behaviour is defined in the run method of a thread. In
this case we can consider the sample under analysis
as suspicious. In the other three samples the identi-
fied behaviour is located in parts of code that seem
harmless. Thus, in these cases we have to consider
the identified samples as False Positive since our met-
hod classified them as spyware but they seems to be
trusted.

Furthermore, the proposed method is able to lo-
cate the code snippet where the logic formula results
true. In particular, our framework provides as out-
put both the label (spyware or not spyware) and, if
the formula is true, the exact location in the code in
terms of the method name, class name and packa-
ges where the formula is resulted verified. In fact,
from the localization results, it has emerged that all
the spyware samples contain the malicious payload in
the com.xybot.infect.class class (i.e., the class
injected by the AFE framework).

It is worthy of note that for the 4 trusted sam-
ples the logic formula turned out to be true in anot-
her class belonging to another package different from
com.xybot. In particular, during the analysis of spy-
ware samples, the logic formula results verified in two
different classes. Only in one application, it results
verified on three classes.

With regard to the obfuscated versions of the spy-
ware applications, the proposed framework was able
to correctly identify as spyware all 60 morphed sam-
ples.

In order to evaluate the obtained results we com-
pute following metrics: Precision, Recall and F-
Measure.

The precision has been computed as the propor-
tion of the examples that truly belong to class X
among all those which were assigned to the class. It
is the ratio of the number of relevant records retrieved
to the total number of irrelevant and relevant records
retrieved:

Precision = t p
t p+ f p

where tp indicates the number of true positives
and fp indicates the number of false positives.

The recall has been computed as the proportion
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Figure 5: A java byte-code snippet related to the com.xybox.infect.class injected by the AFE framework.

of examples that were assigned to class X, among all
the examples that truly belong to the class, i.e., how
much part of the class was captured. It is the ratio of
the number of relevant records retrieved to the total
number of relevant records:

Recall = t p
t p+ f n

where tp indicates the number of true positives
and fn indicates the number of false negatives.

The F-Measure is a measure of a test’s accuracy.
This score can be interpreted as a weighted average
of the precision and recall:

F-Measure = 2∗ Precision∗Recall
Precision+Recall

Table 4 shows the performances in terms of the
metrics we defined.

Table 4: Metrics Evaluation.

Precision Recall F-Measure
0.98 1 0.98

As shown in Table 4 the proposed framework is
able to reach a precision value equal to 0.98, a recall
value equal to 1 and an F-Measure of 0.98.

5 RELATED WORK

Several studies in current state of the art literature
are mainly focused on generic mobile malware de-
tection (Chen et al., 2016; Suarez-Tangil et al., 2017;
Nix and Zhang, 2017; Duc and Giang, 2018). These
works are mainly exploiting machine learning techni-
ques by extracting distinctive features from samples
under analysis to discriminate between malicious ap-
plications and trusted ones. Contrarily, in this paper
we investigate for a specific threat (i.e., the mobile
spyware). Another difference with the these methods
is that the proposed model checking based approach is
behavioural: it models the code behaviour and then, it
checks against it the temporal logic formulae by spe-
cifying the malicious behaviour.

Shan et al. in (Shan et al., 2018) investigate about
self-hiding behaviours (SHB), e.g. hiding the app, hi-
ding app resources, blocking calls, deleting call re-
cords, or blocking and deleting text messages. First
of all the authors provide an in-deep characterization
of SHB, then they present a suite of static analyses
to detect such behaviour. They define a set of de-
tection rules able to catch SHB. They test their ap-
proach against more than 9,000 Android applications.
Differently from the method we propose, authors are
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not mainly focused on spyware detection even if they
define a set of rules able to detect specific behaviours.

At the best of our knowledge the only work fo-
cusing on Android spyware detection is the one pro-
posed in (Chatterjee et al., 2018). Authors are focu-
sed in spyware used as intimate partner surveillance
(IPS). The authors crawled apps from Google Play
Store and using a combination of manual inspection
and machine learning based approach discovered a
large number of apps which are designed for legiti-
mate use but also repurposed for IPS. Differently from
this method we consider the model checking techni-
que in order to identify spyware apps. Authors extract
distinctive features from applications in order to apply
machine learning based approach, instead, we define
temporal logic formulae, which are behavioural ba-
sed, to recognize Android spyware. Furthermore, we
are focused about spyware with information gathering
ability (i.e., the most widespread spyware in mobile
environment (Wei et al., 2012)).

Zhang et al. in (Zhang et al., 2018) demonstrate
that Google Assistant can be targeted since it suffers
from some vulnerabilities. They develop an attacking
framework able to record the voice of the user. This
framework launches the attack using the recorded
voice. This is a very dangerous vulnerability since
the built-in voice assistant is able to access system re-
sources and private information. Thus, hacking this
assistant can lead to the leak of private and sensitive
information. Differently, the proposed framework is
able to recognize spyware applications in mobile en-
vironment to stem these types of attacks.

6 CONCLUSION AND FUTURE
WORK

Nowadays smartphones collect a large amount of per-
sonal information. This is the reason why malware
writers target these devices. More specifically, there
is a kind of malicious software aiming to steal and
collect these sensitive information and it is known as
spyware.

Thus, in this paper we described a spyware de-
tection framework. We exploit model checking
technique and we use temporal logic formulae to de-
tect Android spyware. We generated a synthetic data-
set injected by spyware malicious payload in order to
evaluate the effectiveness of the proposed method.

As future work, we plan to extend the experi-
mental dataset including applications belonging from
third-party marketplaces. We want also largely inves-
tigate for many other applications belonging to the
Android official market. Thus, we want to perform

an in-deep analysis of the applications available in the
stores. Furthermore, also secure information analysis
will be investigated (Avvenuti et al., 2012).

Furthermore, we intend to compare our approach
with other solutions proposed in literature, for exam-
ple the approach proposed by (Chatterjee et al., 2018).
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