
Towards the Modelling of Adaptation Rules and Histories for
Multi-Cloud Applications

Kyriakos Kritikos1, Chrysostomos Zeginis1, Eleni Politaki2 and Dimitris Plexousakis1,2

1ICS-FORTH, Heraklion, Crete, Greece
2Department of Computer Science, University of Crete, Heraklion, Crete, Greece

Keywords: Adaptation, Execution, History, Rule, Meta-model, DSL.

Abstract: Currently, there is a move towards adopting multi-clouds due to their main benefits, including vendor lock-in
avoidance and optimal application realisation via different cloud services. However, such multi-cloud appli-
cations face a new challenge related to the dynamicity and uncertainty that even a single cloud environment
exhibits. As such, they cannot deliver a suitable service level to their customers, resulting in SLA penalty
costs and application provider reputation reduction. To this end, we have previously proposed a cross-level
and multi-cloud application adaptation architecture. Towards realising this architecture, this paper proposes
two extensions of the CAMEL language allowing to specify advanced adaptation rules and histories. Such
extensions not only enable to cover cross-level application adaptation by executing adaptation workflows but
also to progress such an adaptation to address both the application and exploited cloud services evolution.

1 INTRODUCTION

Cloud computing has revolutionized the way appli-
cations are developed, deployed and provisioned. Its
wide adoption has led to a proliferation of cloud ap-
plications and services. Such applications were either
migrated to the Cloud or were developed from scratch
by adopting existing or new technologies. The suc-
cess of this computing paradigm is mainly due to the
benefits it delivers, including cost reduction, flexible
resource management and resource elasticity allow-
ing applications to scale on demand as needed.

Various providers have rushed to offer cloud ser-
vices and platforms. The bigger from those providers
have also attempted to lock-in cloud users by offer-
ing certain technologies, platforms as well as extra,
added-value secondary services. This has led towards
adapting multi-clouds both at the research and in-
dustry level. The application deployment at multiple
clouds is quite promising as it enables to avoid the
vendor lock-in while it also brings additional bene-
fits, including the selection of the best cloud services
to optimally realise an application according to its re-
quirements and the increase of the application secu-
rity level via adopting different security services.

However, multi-cloud applications face a novel
challenge related to the dynamicity and uncertainty
inherent even in a single cloud. This jeopardises an

application’s ability to keep up with its promises by
delivering a suitable service level to its customers.
Such a challenge is further hardened by the fact that
an application can be realised by different cloud ser-
vices types in different abstraction levels. Thus, an
application is vulnerable to the quality level varia-
tion of such services. Further, the dynamicity aspect
should not be neglected. Both services and applica-
tion requirements can evolve over time. As such, even
if a suitable way to adapt an application is discovered,
it can be invalidated over time due to this dynamicity.

To close this gap, we have already proposed (Kri-
tikos et al., 2017) an architecture of an advanced,
cross-level and multi-cloud application adaptation
framework. Such a framework will exhibit the follow-
ing features: (a) semi-automatically infer new adap-
tation rules (Zeginis et al., 2015) by considering the
application structure and the dependencies at the dif-
ferent abstraction levels; (b) dynamically transform
such rules into adaptation workflows that can be en-
acted via workflow execution engines; (c) dynami-
cally evolve adaptation rules based on their execution
history, performance and successability in completely
addressing an actual event (“problematic situation”)
that has caused their execution. All these features are
currently being implemented to realise our vision.

This paper attempts to provide support to this on-
going realisation by proposing two meta-model ex-

300
Kritikos, K., Zeginis, C., Politaki, E. and Plexousakis, D.
Towards the Modelling of Adaptation Rules and Histories for Multi-Cloud Applications.
DOI: 10.5220/0007706503000307
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 300-307
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tensions to the CAMEL state-of-the-art cloud mod-
elling language (Rossini et al., 2015). The first exten-
sion focuses on the modelling of advanced adaptation
rules. Such a modelling is quite rich as it re-uses ele-
ments from Complex Event Pattern (CEP) languages,
like the Esper’s1 one, to specify complex event pat-
terns as logical or time-based compositions of sim-
pler events. Further, to complete the adaptation rule
specification, it enables mapping such events patterns
to workflow-language-independent adaptation work-
flows, including actions at any possible abstraction
level (infrastructure, platform, software and work-
flow). To the best of our knowledge, no other meta-
model or language (Song et al., 2013; Erbel et al.,
2018; Marquezan et al., 2014; Lushpenko et al., 2015)
has the right expressivity level to specify such adap-
tation rules. Our contribution benefits the first two
features of the envisioned adaptation framework. Es-
pecially, the workflow language independence offers
implementation flexibility as our adaptation frame-
work could re-use any workflow engine, specialised
in the use of a certain workflow language.

The second meta-model extends CAMEL’s execu-
tion sub-DSL to capture not only application execu-
tion but also adaptation histories by explicating which
adaptation actions were performed under which adap-
tation rule and how well they addressed the respective
problematic event according to which performance
level. This contribution benefits the 3rd adaptation
framework feature. First, as it enables analysing the
suitability of single and composite adaptation actions
(i.e., workflows), thus allowing their prospective sub-
stitution when the need arises. It can also identify
places for adaptation behaviour improvement by de-
tecting situations where all automatically-generated
alternative adaptation workflows for the same event
are not so performant or suitable any more. As
such, this meta-model well covers our goal to (semi-
)automatically evolve the application adaptation be-
haviour over time to cope with permanent changes in
both the services being exploited and the application
requirements. This second paper contribution is novel
as we are not aware of any approach able to record the
cloud application adaptation history.

The rest of the paper is structured as follows. Next
section introduces our envisioned adaptation frame-
work architecture. Section 3 elaborates on the adap-
tation meta-model proposed. Section 4 explicates
the extension performed over CAMEL’s execution
meta-model. Section 5 provides an example use case
utilised to showcase the added-value of the two meta-
models proposed. Finally, the last section concludes
the paper and draws directions for further research.

1www.espertech.com/esper/

2 MULTI-CLOUD APPLICATION
ADAPTATION FRAMEWORK

We have already proposed a holistic multi-cloud ap-
plication adaptation framework, depicted in Fig. 1.
This framework, currently under implementation, ex-
hibits the following features: (a) enables inferring
new from existing adaptation rules; (b) transforms
such rules into adaptation workflows that can be exe-
cuted by workflow engines; (c) dynamically changes
adaptation workflows mapping to problematic events
to better address them and thus evolve application
adaptive behaviour; (d) enables editing adaptation
rules, quite handy when automatically generated rules
need adjustment or for rapidly dealing with cases not
covered by the existing adaptation rule set; (e) enables
browsing the adaptation history to check the success-
fulness of adaptation rules. All these five features are
enabled by the paper’s two contributions.

In the sequel, we shortly explain the adaptation
framework components and their interactions. The
Adaptation UI enables editing adaptation rules, enact-
ing them (e.g., manual rules to rapidly react to unan-
ticipated situations), and visualising both the applica-
tion adaptation history and its analysis. The analysis
results could then be approved by the expert to evolve
the application adaptation behaviour, if needed.

Any adaptation rule kind, edited or automatically
generated or enacted, passes via the Transformer, re-
sponsible for: (a) transforming the rules in CAMEL
into the format expected by the Rule Engine; (b) trans-
forming the adaptation workflow part of enacted rules
into the language expected by the Adaptation Engine.

The Rule Engine enables the enactment path of
rules. It takes as input monitoring events, retrieved
from the Monitoring Framework, and checks which
are the adaptation rule(s) triggered by them. Upon a
rule triggering, the Transformer is informed to enact
its adaptation workflow. Internally, the Rule Engine
utilises a Rule Base for adaptation rule storage.

Once the enacted rules’ workflow is transformed,
it must be concretised. The main rationale is that
the adaptation framework capabilities can be enriched
over time such that a certain adaptation task could
be realised by two or more alternatives. As such,
the Concretiser, based on user requirements and pref-
erences, attempts to solve a constraint optimisation
problem to support the selection of the best possible
adaptation task alternatives globally.

A concretised adaptation workflow can be then
executed by the Adaptation Engine, taking the form
of a workflow execution engine. This engine also
stores information about the adaptation workflow ex-
ecution in the Model Repository (a placeholder for all

Towards the Modelling of Adaptation Rules and Histories for Multi-Cloud Applications

301



Figure 1: The envisioned adaptation framework architecture.

CAMEL models produced and manipulated) by us-
ing CAMEL’s execution meta-model extension. The
workflow execution relies on using level-specific ser-
vices (e.g., WfaaS/SaaS adaptation service) repre-
senting service-based realisations of adaptation tasks.

The Adapter generates new or adapts existing
adaptation rules by analysing the adaptation history.
New rules are semi-automatically generated via our
previous work (Zeginis et al., 2015), which combines
the event patterns discovered with all possible combi-
nations of adaptation tasks able to address them.

3 ADAPTATION META-MODEL

CAMEL originally covered the adaptation of multi-
cloud applications via its scalability meta-model, ded-
icated to the capturing of scalability rules in form of
mappings from events to scaling actions.

Events (see Fig. 2) could be simple or composite.
Simple events were specified via metric conditions.
Composite events were specified as event patterns by
applying time-based (e.g., PRECEDES) and logical
operators (e.g., AND) over simpler events, thus actu-
ally representing an event tree or hierarchy.

Scaling actions were distinguished into horizontal
and vertical. Horizontal scaling actions were speci-
fied by indicating the number of instances to be added
or removed for an application component. Vertical
scaling actions were specifying the VM to be scaled
and the respective update in the size or number of cer-
tain VM features like the number of cores.

To cover the whole adaptation possibilities of a
multi-cloud application at different abstraction levels,
CAMEL was extended (see Fig. 3) to transform its

scalability meta-model to an adaptation one.

3.1 Adaptation Rules and Strategies

The meta-model’s topmost element is Adaptation-
Model, acting as a container for all adaptation-related
elements. The meta-model’s key concept is Adapta-
tionRule, mapping events to adaptation actions.

In essence, there can be multiple rules able to con-
front a problematic situation, i.e., an event; so, an
adaptation system must choose the best from them.
This choice can be reduced to selecting the rule with
highest priority, i.e., a dynamically-modifiable at-
tribute. This means that an already selected rule might
be unsuitable for selection in the near future as it
might not have a sufficient successability level or a
better rule is discovered that more completely ad-
dresses the respective event. An AdaptationStrategy
encapsulates all rules confronting such an event. The
collection of all adaptation strategies then represents
an application’s current adaptive behaviour as well as
the way such a behaviour can evolve over time.

3.2 Adaptation Tasks

Event specification has not been modified in the new
CAMEL version. However, the scaling actions were
subsumed by an adaptation task, that can be incorpo-
rated within adaptation workflows to confront prob-
lematic situations. Such a task can be simple or com-
posite. A simple task maps to executing a level-
specific action, while a composite task can be seen as
an adaptation workflow, i.e., a composition of (sim-
pler) adaptation tasks whose execution is controlled
by well-known control flow constructs.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

302



BinaryEventPattern
lowerOccurrenceBoundc:cEIntc=ck

upperOccurrenceBoundc:cEIntc=ck

operatorW:WBinaryPatternOperatorTypeW=WAND

BinaryPatternOperatorType
AND

OR

XOR
PRECEDES
REPEAT_UNTIL

Event
nameW:WEString

HorizontalScaling
countc:cEIntc=ck

NonFunctionalEvent
isViolationW:WEBooleanW=Wfalse

Scaling

SimpleEvent

Timer
namec:cEString

typeW:WTimerTypeW=WWITHIN

timeValueW:WEIntW=W0
maxOccurrenceNumW:WEInt

TimerType

INTERVAL

WITHIN

WITHIN_MAX

UnaryEventPattern
occurrenceNumc:cEIntc=ck

operatorW:WUnaryPatternOperatorTypeW=WEVERY

UnaryPatternOperatorType
EVERY

NOT

WHEN

REPEAT

VerticalScaling

CPUUpdatec:cEDoublec=ckbk

networkUpdatec:cEIntc=ck

memoryUpdatec:cEIntc=ck

coreUpdatec:cEIntc=ck

storageUpdatec:cEIntc=ck
ioUpdatec:cEIntc=ck

FunctionalEvent
functionalTypeW:WEString

Component

EventPattern

VM

[kbb[]cleftEvent[kbb[]crightEvent

[[bb[]cevent

[[bbz]ccomponents

[kbb[]ccomponent

[kbb[]ctimer

[[bb[]cvm

Figure 2: The representation of events in CAMEL.

AdaptationRule
nameB:BEString

priorityB:BEFloatB=B0.0

AdaptationStrategy
nameB:BEString

AdaptationTask

ComponentConfiguration

ComponentDeployment

ComponentReconfiguration
ConfigureTypeB:BConfigureTypeB=BConfigure

ComponentReDeployment ComponentUnDeployment

CompositeAdaptationTask ConditionalAdaptationTask

ConfigureType

START

STOP

CrossCutting

IaasAction
typeB:BIaasActionTypeB=BSTARTUP

IaasActionType
STARTUP

RESTART

Migration
allInstancesB:BEBooleanB=Bfalse

ParallelAdaptationTask

Reporting
messageB:BEString

recipientsB:BEString

protocolB:BEString

Scaling

SequentialAdaptationTask

ServiceReplacement

SimpleAdaptationTask

SwitchAdaptationTask

TaskAddition

TaskDeletion

TaskModification
enclosingElementB:BEString

positionB:BEIntB=B0

TaskReplacement

ValueToTask

WorkflowAdaptationTask
workflowIdB:BEString

levelB:BAdaptationLevelB=BCLASS

WorkflowRecomposition
startElementB:BEString

endElementB:BEString

subWorkflowSpecificationB:BEStringComponent

CONFIGURE

SHUTDOWN

AdaptationLevel
CLASS
INSTANCE_PERMANENT

INSTANCE_NOT_PERMANENT

VM

MetricFormulaParameter
nameB:BEString

[2]]2]stask

[2]]L]srules

[0]]L]svalueToTask

[2]]2]stask

[2]]L]scomponents

[2]]2]shostingComponent

[*]]L]scomponents

[2]]2]sfrom

[*]]2]sto

[2]]2]spreviousService

[2]]2]snewService

[*]]2]sdeployed

[2]]L]sadaptationTasks

[2]]2]svm

[2]]2]svm

[2]]2]sformulaParameter

Figure 3: The adaptation meta-model in CAMEL.

3.2.1 Composite Adaptation Tasks

A composite task can be seen as a tree containing
tasks with lower complexity. To simulate the four
main types of basic control flows that can participate
in any workflow kind, we have created respective sub-
concepts of the CompositeAdaptationTask concept.

A SequentialAdaptationTask represents a se-
quence of adaptation tasks, while a ParallelAdapta-
tionTask a parallel execution of tasks. On the other

hand, a ConditionalAdaptationTask relates to a con-
ditional construct predicated over a certain event ref-
erenced. The occurrence of that event leads to ex-
ecuting the first task referenced by this composite
task, while its non-occurrence the second referenced
task. For a conditional branch with multiple alterna-
tives, a SwitchAdaptationTask needs to be supplied,
which relates to a certain MetricFormulaParameter,
i.e., a metric or a metric formula. In each case, mul-
tiple values can be produced by monitoring this met-

Towards the Modelling of Adaptation Rules and Histories for Multi-Cloud Applications

303



ric or computing this formula that have to be mapped
(see ValueToTask concept) to the respective adapta-
tion tasks that need to be executed.

3.2.2 Simple Adaptation Tasks

A simple adaptation task is sub-classed, according to
the (abstraction) level it pertains, to other concepts
with the exception of the Cross-Cutting abstract con-
cept, representing cross-cutting adaptation actions.

IaaSAction covers all possible actions (startup,
shutdown and restart) at the IaaS level by referring to
the VM to be adapted and the action type that can be
performed on it (see IaaSActionType enumeration).

At the SaaS level, adaptation tasks are encapsu-
lated by the abstract ComponentConfiguration con-
cept which covers the configuration of one or more
SaaS. This task can then be further distinguished into
more concrete configuration tasks which include:

• ComponentDeployment: indicates that the SaaS
components referenced must be deployed in a
PaaS or IaaS component. Such an action could
be useful in the context of deploying components,
such as load balancers, only after the second in-
stance of an application component is created.

• ComponentUnDeployment: indicates that the
components referenced need to be undeployed
from their hosting component, also referenced.
Such a scenario could be useful in hybrid cloud
bursting, where the public VMs for a certain ap-
plication component are not needed any more.

• ComponentReDeployment: signifies that the com-
ponents referenced must be redeployed. This
could be useful for migrating the components to
a new version, e.g., to address certain bugs.

• ComponentReconfiguration: signifies that the ref-
erenced components must be reconfigured by ei-
ther stopping, starting (e.g., to bypass the poten-
tial transient error occurred) or redeploying them
(e.g., when the error is not transient).

At the workflow level, WorkflowAdaptationTask
encapsulates all possible adaptation tasks.A workflow
adaptation task can be further distinguished into a
WorkflowRecomposition and TaskModication one.

A WorkflowRecomposition signifies the need to re-
compose a workflow from the current execution point
until the final workflow task by replacing its respec-
tive remaining content with a (sub-)workflow descrip-
tion. On the other hand, a TaskModification task sig-
nifies a single, low-level workflow modification at the
task level by pointing to the respective workflow part
(i.e., workflow task) where this change will be per-
formed. Such a task can be further distinguished into:

• TaskAddition: signifies the addition of a workflow
task (represented by an ApplicationTask encapsu-
lating the task description) at the point referenced.

• TaskDeletion: indicates the deletion of the work-
flow task pointed.

• TaskReplacement: signifies the replacement of the
workflow task pointed by another also referenced.

A change at the workflow level can be permanent or
not. This is signified by the level attribute in Work-
flowAdaptationTask to cover 3 possible cases: (a)
Class: the change is permanent – case of workflow
evolution; (b) InstancePermanent: the change is per-
manent at the current instance but does not affect
the other workflow instances; (c) InstanceNonPerma-
nent: this is a special case of an instance-level change
where a task instance in a workflow loop is adapted
just once in the context of the current loop repetition.

Finally, cross-cutting adaptation tasks include
level-independent tasks or tasks realised in different
or across levels. These can be further separated into:

• EventCreation: maps to creating an event that can
be consumed by the adaptation system and pos-
sibly lead to an adaptation rule triggering. This
is a nice mechanism enabling to, e.g., deal with
the uncertainty in executing an adaptation rule.
As such, it could check whether its execution was
successful; in the opposite case, it could create an
event to signify that. This can enable formulat-
ing more advanced adaptation rules, accounting
the possibility of adaptation-related exceptions.

• Reporting: in some cases, it could be possible that
the an adaptation rule triggering signifies the oc-
currence of a critical event of which a respective
user, like an admin, should become aware. This
could be useful, e.g., when the admin could com-
plete the partial addressing of the current problem
by the adaptation rule.

• Scaling: scaling is an adaptation task that can be
alternatively performed in different levels (IaaS or
PaaS). Its specification is already covered in the
original CAMEL version.

• Migration: a component can be migrated into a
different VM or environment of the same or dif-
ferent cloud provider. As such, this task is speci-
fied by referring to one or more components that
need to be migrated from a certain hosting compo-
nent to another one. The hosting components can
be certain PaaSes or IaaSes, such that we could
have different possible migration cases (e.g., from
PaaS to IaaS or IaaS to PaaS). It can also be indi-
cated whether all instances of the component(s) to
be adapted must be migrated or only the affected

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

304



one. The former could be possible when the cur-
rent hosting could be deemed problematic for all
the component(s) instances and not a single one.

4 EXECUTION META-MODEL

4.1 Background

CAMEL’s execution meta-model covers the mod-
elling of historical information related to the execu-
tion of a multi-cloud application. It partitions this in-
formation into groups called ExecutionContexts, rep-
resenting deployment episodes for a certain applica-
tion. An ExecutionModel is then just a collection of
deployment episodes over time for this application.

Covering historical information can be quite im-
portant. First, it can be used to check an application’s
performance capabilities. Second, it can be used to
reason over the best deployments of an application
or its components. Such a reasoning could enable
to accelerate the deployment reasoning time (Kritikos
et al., 2016) as certain application component-to-offer
mappings can be fixed. Third, it can be utilised by,
e.g., a Reinforcement Learning deployment reasoning
algorithm (Horn, 2013) to avoid inspecting deploy-
ments that failed in the past (either leading to errors
or SLO violations). Fourth, it can be used for trace-
ability analysis to check which requirements have led
to producing which application deployment models.

In this respect, CAMEL was designed to cover all
necessary information to support deriving all above
knowledge types. First, the execution context encap-
sulates information related to: (a) what was the appli-
cation’s execution period; (b) the overall cost for it;
(c) which deployment model and requirement group
drove application deployment and provisioning. Sec-
ond, this execution context was used as a reference
to all other history-related elements that can be mod-
elled. These elements are now shortly explained.

Measurements of specific MetricInstances are
covered by specifying their value and a reference to
their generation timepoint. They can be also associ-
ated with SLOs to be assessed based on them. De-
pending on the type of the object being measured, we
can distinguish between application, internal compo-
nent, VM, PaaS and communication measurements.

An SLOAssessment covers an SLO assessment’s
outcome and the time point it was performed. SLO
assessments enable to track over time which SLOs
were violated, thus triggering the affected applica-
tion’s global or local reconfiguration.

Finally, a RuleTrigger represents a scalability
rule’s triggering, also associated with its occurrence

time plus the respective instances of events causing it.

4.2 CAMEL Modifications

While CAMEL covered well execution history mod-
elling, it still lacked the complete capturing of adapta-
tion information.As such, we have decided to extend
CAMEL to fully cover both adaptation rule trigger-
ing as well as measurability and successability aspects
related to it. The main goal is to allow the adapta-
tion system to assess the suitability of adaptation rules
within an adaptation strategy and dynamically modify
their priority according to the information recorded.

To this end, CAMEL’s execution meta-model (see
Fig. 4) was extended based on the following (3) ways.
First, the RuleTriggering concept was extended to
cover the triggering of adaptation rules as well as the
realisation of adaptation tasks that took place in this
triggering. This gave rise to modelling a new concept.

This concept is named TaskRealisation, covering
details about how an adaptation task was realised in
the context of an adaptation rule. Such details in-
clude when the task execution started and ended, to
compute the task’s execution time, and the execution
result. The latter maps to the next AdaptationResult
enumeration members:

• SUCCESSFUL: the adaptation task did achieve its
main adaptation goal

• UNSUCCESSFUL: the task, while successfully
executed, failed to achieved its adaptation goal

• FAILED: a certain error or failure occurred during
the execution of the adaptation task.

• UNAVAILABLE: the adaptation task was not avail-
able or accessible at the time point of its execution

The first two members enable assessing an adaptation
task’s successability, which could be, e.g., measured
by the percentage of times the task attained its goal.
The third member enables assessing the task reliabil-
ity, which could be measured by subtracting from one
the percentage of times task execution has failed. Fi-
nally, the last member enables assessing task avail-
ability, which could be computed by subtracting from
one the percentage of time this task was unavailable.

Apart from this information, a task’s realisation
refers to its parent’s realisation. This could be handy
for traceability reasons, i.e., check how many times
one or more sub-tasks can be blamed for the failure
of a parent task. This could enable discovering those
parent adaptation tasks doomed to fail to address a
“problematic” event due to the “bad” combination of
included sub-tasks. For instance, the task combina-
tion is either overlapping or wrong which could al-
ways lead to the parent task’s unsuccessfulness.

Towards the Modelling of Adaptation Rules and Histories for Multi-Cloud Applications

305



AdaptationResult

UNAVAILABLE

FAILED

UNSUCCESSFUL

ApplicationMeasurementCommunicationMeasurement

ExecutionContext

SUCCESSFUL

nameN:NEString

totalCostV:VEDoubleV=V][]

endTimeV:VEDate

startTimeV:VEDateInternalComponentMeasurement
Measurement

nameN:NEString

valueN:NEDoubleN=N0.0

rawDataV:VEString

measurementTimeN:NEDate

PaaSMeasurement

RuleTrigger
nameN:NEString

trigerringTimeN:NEDate

SLOAssessment
nameN:NEString

assessmentN:NEBooleanN=Nfalse

assessmentTimeN:NEDate

TaskMeasurement

TaskRealisation
nameN:NEString

adaptationResultV:VAdaptationResult

endDateV:VEDate

startTimeV:VEDate

VMMeasurement

AdaptationTask

InternalComponentInstance

PaaSInstance
registryIdV:VEStringVMInstance

ipV:VEString

Application
nameN:NEString

versionN:NEString

descriptionV:VEString

DeploymentModel

RequirementGroup
requirementOperatorN:NRequirementOperatorTypeN=NAND

Event
nameN:NEString

[*[[*]VexecutionContext

[*[[y]VtaskRealisations

[*[[*]VexecutionContext

[*[[*]VexecutionContext
[*[[*]Vmeasurement

[][[*]VparentRealisation

[*[[*]VadaptationTask

[*[[*]Vtask

[*[[*]VsourceVMInstance

[*[[*]VdestinationVMInstance

[*[[*]VinternalComponentInstance

[*[[*]VpaasInstance[*[[*]VvmInstance [*[[*]Vapplication

[*[[*]Vapplication

[*[[*]VdeploymentModel

[*[[*]VrequirementGroup

[][[y]VdeploymentModels

[][[y]VinternalComponentInstances

[][[y]VvmInstances

[][[y]VpaasInstances

[*[[*]Vevent

[][[*]VsubEvent

Figure 4: The extended execution meta-model in CAMEL.

From the raw information of task realisations, we
can then deduce quality measurements for adaptation
tasks, covering metrics associated with the task exe-
cution time, availability, reliability and successability.
This could provide sufficient support for evaluating
the adaptation rules’ priority and thus their selection
in the context of an adaptation strategy. For instance,
this could be possible by aggregating such measure-
ments and then applying an overall mathematical for-
mula over them to calculate the adaptation rule prior-
ity. Thus, our vision for evolving a multi-cloud appli-
cation’s adaptation behaviour could be easily realised.

The adaptation task measurements also refer to the
event being coped with. This ensures that a correct
aggregation over them can be performed in the con-
text of an adaptation strategy. Further, in case this
is possible (i.e., we know how sub-events of event
patterns map to adaptation sub-tasks), we could also
record the sub-event of the overall event pattern which
the respective adaptation sub-task is supposed to con-
front. This will supply an additional insight of, e.g., a
certain task’s successability across the multiple adap-
tation strategies in which it is potentially re-used.

5 RUNNING EXAMPLE

To demonstrate the two main paper contributions, we
rely on a city traffic management use case relying on
a sequential workflow repeatedly executed over time.
This workflow comprises the following tasks:

• monitor: monitors a certain city area with respect
to traffic and environment conditions and draws
information concerning special events (e.g., con-
certs) that could take place in the city

• analyse: analyses the current situation, as sensed

Figure 5: The architecture of the use-case system.

by monitor, and produces a traffic regulation plan

• execute: executes the regulation plan derived (by,
e.g., controlling the traffic lights frequency in a
problematic sub-area).

By following a micro-service architecture, these (3)
tasks are mapped to micro-services, which are called
as S1,S2,S3 for short, respectively. The first service is
deployed in VM V M1, which also hosts an underly-
ing time series data base (TSDB), for storing this ser-
vice’s measurements. The second service is deployed
in VM V M2, including also a NoSQL database for
storing important knowledge required for traffic anal-
ysis. Finally, the last service is deployed in VM V M3.
All VMs have a different size (e.g., V M2 is compu-
tationally and storage-wise wider than the other two)
and were deployed in the city’s private cloud. The
overall system architecture is depicted in Figure 5.

Focusing on S2 that realises the analysis function-
ality, the next (2) adaptation rules were modelled:

down(S2)−→ restart(S2) (1)
down(S2)−→ recon f igure(S2) (2)

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

306



Table 1: Instance information for TaskRealisation class.
name startTime endTime result task
TR1 1545991912 1545991972 SUCCESSFUL T1
TR2 1545995572 1545995632 UNSUCCESSFUL T1
TR3 1545999232 1545999292 UNSUCCESSFUL T1
TR4 1546002892 1546002952 UNSUCCESSFUL T1
TR5 1546003012 1546003252 SUCCESSFUL CT1
TR6 1546006852 1546007152 SUCCESSFUL CT1

The first rule is required to overcome transient by
restarting S2. On the other hand, the second rule can
be employed to overcome permanent errors by rede-
ploying the component on the same VM. Via this re-
configuration, it might be possible that such errors are
corrected by a new version of the respective code.

Both rules address the same event, so the first rule
was initially selected as it has a better execution time
than the second. However, such a rule was not al-
ways successful as Table 1 (indicating instances of
the TaskRealisation class) highlights. As such, as that
rule’s successibility rate is below a certain threshold,
the expert decides to replace it with the second rule.
The outcome (depicted in the same table) is satisfac-
tory as the second rule’s successibility rate is 1. Thus,
the adaptation history of the use case workflow guides
the expert in making the right choices to modify the
workflow’s adaptation behaviour accordingly.

6 CONCLUSIONS

This paper has introduced two extensions to the
CAMEL state-of-the-art cloud modelling language.
The first extension concerns CAMEL’s scalability
sub-DSL, enhanced to specify sophisticated adapta-
tion rules as a mapping between events (patterns) to
adaptation workflows. Such workflows are speci-
fied in a language-independent manner, enabling their
transformation into any workflow language, depend-
ing on the workflow engine used to execute them.

The second extension concerns CAMEL’s execu-
tion sub-DSL, enhanced via the capability to record
the adaptation history of a multi-cloud application,
including details about the adaptation actions per-
formed, like their start and end time and their out-
come. Such information can be exploited to derive
important knowledge about adaptation actions like
their performance and successibility in terms of ad-
dressing a certain event. This can enable replacing
adaptation workflows with alternative ones to better
address the same “problematic” event.

Both extensions provide support to the three main
features of our envisioned multi-cloud application
adaptation framework. The first extension enables
supporting any workflow execution engine that could
be injected into our adaptation framework, while the

second evolving the adaptive behaviour of a multi-
cloud application which will be evident when the ap-
plication context permanently changes. The appropri-
ateness of the two extensions was demonstrated via
the use of a certain use case.

ACKNOWLEDGEMENTS

The research leading to this survey paper has received
funding from the European Union’s Horizon 2020 re-
search and innovation programme under Grant Agree-
ment No. 731664.

REFERENCES

Erbel, J. M., Korte, F., and Grabowski, J. (2018). Com-
parison and Runtime Adaptation of Cloud Application
Topologies based on OCCI. In CLOSER.

Horn, G. (2013). A vision for a stochastic reasoner for au-
tonomic cloud deployment. In NordiCloud, pages 46–
53. ACM.

Kritikos, K., Magoutis, K., and Plexousakis, D. (2016). To-
wards Knowledge-Based Assisted IaaS Selection. In
CloudCom, pages 431–439. IEEE Computer Society.

Kritikos, K., Zeginis, C., Griesinger, F., Seybold, D., and
Domaschka, J. (2017). A Cross-Layer BPaaS Adap-
tation Framework. In FiCloud 2017, pages 241–248,
Prague, Czech Republic. IEEE Computer Society.

Lushpenko, M., Ferry, N., Song, H., Chauvel, F., and Sol-
berg, A. (2015). Using adaptation plans to control the
behavior of models@runtime. volume 1474, pages
11–20.

Marquezan, C. C., Wessling, F., Metzger, A., Pohl, K.,
Woods, C., and Wallbom, K. (2014). Towards exploit-
ing the full adaptation potential of cloud applications.
In PESOS.

Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J.,
Griesinger, F., Seybold, D., and Romero, D. (2015).
D2.1.3 —- CAMEL Documentation.

Song, H., Raj, A., Hajebi, S., Clarke, A., and Clarke,
S. (2013). Model-based cross-layer monitoring and
adaptation of multilayer systems. SCIENCE CHINA
Information Sciences, 56(8):1–15.

Zeginis, C., Kritikos, K., and Plexousakis, D. (2015). Event
pattern discovery in multi-cloud service-based appli-
cations. IJSSOE, 5(4):78–103.

Towards the Modelling of Adaptation Rules and Histories for Multi-Cloud Applications

307


