
Reasoning Methods in Fuzzy Rule-based Classification Systems for Big
Data Problems

Antonio González, Raúl Pérez and Rocio Romero-Zaliz
Dpto. Ciencias de la Computación e IA, Universidad de Granada, 18071-Granada, Spain

Keywords: Approximate Reasoning, Fuzzy Rules, Classifications Problems, Big Data.

Abstract: The analysis with a very high number of examples is a subject of growing interest that needs new algorithms
and procedures. In this case, we study how the massive use of data affects the reasoning processes for classi-
fication problems that make use of fuzzy rule-based systems. First, we describe the standard reasoning model
and the operations associated with its use, and once it is verified that these calculations may be inefficient in
some cases we propose a new model to perform such calculations. Basically, the proposal eliminates the need
to review all the rules in every inference process, generating the rule that best adapts to the particular example,
which does not have to be part of the set of rules, and from it explore only the rules that have some effect on
the example. We make an experimental study that shows the interest of the proposal presented.

1 INTRODUCTION

Currently, there are large amounts of data that need
to be analyzed and this fact is causing it to be neces-
sary to review many of the algorithms that were used
to date. It is the so-called Big Data problem. This
has happened for example in classification problems
using fuzzy rule-based systems.

There are two types of proposals to address fuzzy
rule-based classification systems for big data prob-
lems, one that makes use of a decomposition strategy
(del Rı́o et al., 2015; Elkano et al., 2018) and uses
the MapReduce model (Dean and Ghemawat, 2008;
Dean and Ghemawat, 2010), and another that makes
use of a sequential model and incremental learning
algorithms (Gámez et al., 2016; Romero-Zalı́z et al.,
2017).

In the first case, given that in the final phase a
process of aggregation of rules is required, the basic
model of a fuzzy rule with weights has been used as a
rule model. In the second case, more elaborate fuzzy
rule models can be used. The models that make use of
the basic model of a fuzzy rule with weights are mod-
els that provide a simple solution to the problem, but
usually generate a large number of fuzzy rules, which
generates an added problem when you have a large
number of examples.

There are several papers in the specialized liter-
ature that compare different methods of fuzzy rea-
soning from the perspective of selecting different pa-

rameters within the general model of fuzzy reason-
ing (Cordón et al., 1999; Mizumoto and Zimmer-
mann, 1982). In our case, we start from the standard
model used in classification problems of the winning
rule and we want to analyze its functioning in prob-
lems with a massive number of examples, particularly
when we start from a very high number of fuzzy rules
and examples.

Thus, we want to analyze the influence of using
a massive data set in the process of inference of ba-
sic fuzzy rules, and for this, we will take into account
the complexity of the problem (number of variables
involved, number of fuzzy rules and number of exam-
ples to infer).

The objective of this work is to highlight the great
difficulty of carrying out inference processes on sets
with many examples, when it is also carried out on
a set with many fuzzy rules, as well as to propose a
more efficient calculation of the reasoning model that
can provide answers in a reasonable time to classifi-
cation problems.

The proposed model generates the fuzzy rule that
best adapts to the example, and from it generates the
neighboring fuzzy rules that could cover this exam-
ple. The result of the inference process is obtained
only from the analysis of that set of rules, and it is
not necessary to process the rest of the fuzzy rules.
In the experimental part, we will analyze that when
we use a knowledge base composed of a high num-
ber of rules this proposal is better than the standard

González, A., Pérez, R. and Romero-Zaliz, R.
Reasoning Methods in Fuzzy Rule-based Classification Systems for Big Data Problems.
DOI: 10.5220/0007709002550261
In Proceedings of the 4th International Conference on Internet of Things, Big Data and Security (IoTBDS 2019), pages 255-261
ISBN: 978-989-758-369-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

255



inference model.
In the following section, we analyze the standard

reasoning model with fuzzy rules and show a detailed
algorithm that allows the calculation giving a set of
fuzzy rules and an example. Section 3 shows an alter-
native method of calculation of the reasoning process
that is analyzed in Section 4. Finally, Section 5 shows
some conclusions.

2 REASONING METHOD

The basic model of the fuzzy rule with weight is

Rk : IF X1 is Ak
1 and X2 is Ak

2 and . . .and Xn is Ak
n

THEN Y is B with weight wk

where X1, . . . , Xn are the attributes, Ak
1, . . . , Ak

n are
the linguistic terms taken for each attribute, and rep-
resented by fuzzy sets, Y is the consequent variable,
B is the fuzzy value of the consequent variable and wk

is a measure of the weight associated with the rule.
Suppose we have a set of rules

R={R1,R2, . . . ,RM} and given an example
e=(e1,e2, . . . ,en) the fuzzy reasoning allows us
to obtain the class associated with that example given
the set of rules R. The procedure for obtaining the
class associated with the example is very simple
using the well-known method of the winning rule.
Following the notation used in (Cordón et al., 1999)
this method has the following steps:

• First we calculate the adaptation between the ex-
ample and the antecedent of the rule by applying
a t-norm T

Rk(e) = T (µAk
1
(e1), . . . ,µAk

n
(en)),

where µAk
i

is the membership function of the fuzzy

sets Ak
i .

• Next we incorporate the weight of the rule into
this adaptation using a certain operator Op

h(Rk(e),wk) = Op(Rk(e),wk).

• Finally we select the rule that maximizes this
value, that is to say,

maxkh(Rk(e),wk) (1)

and the class associated with that rule is assigned
to the example.

Frequently, the minimum or the product is used as
T-norms, and the product is used as the operator Op.

This fuzzy rule model has been used to obtain
classifiers on big data problems (del Rı́o et al., 2015;

Elkano et al., 2018). These methods using the
MapReduce model (Dean and Ghemawat, 2008; Dean
and Ghemawat, 2010), and the Chi algorithm (Chi
et al., 1996) learn a base of fuzzy rules in a relatively
fast way but obtaining a very high number of rules.
When it is necessary to perform the inference with
massive databases and on a problem with a very high
number of rules, the problem is that the inference can
be very slow.

The possible slow running is due to the process
necessary for the calculation of the equation 1. In
calculating for that maximum you need to have the
complete set of rules (which can be very large), eval-
uate the adaptation of each rule with the example Rk,
and for all those that have some type of adaptation
you need to calculate the maximum. This process is
described step by step in Algorithm 1.

Algorithm 1: Standard inference process.

1: BestCurrentMatching = 0
2: for i = 1 to M do
3: CurrrentMatching = 1
4: for j = 1 to n do
5: CurrentMatching = T(CurrentMatching,

µAi
j
(e j))

6: end for
7: CurrentMatching = Op(CurrentMatching, wi)
8: if CurrentMatching > BestCurrentMatching

then
9: BestCurrentMatching = CurrentMatching

10: Class = ClassOfRule(i)
11: end if
12: end for
13: return Class

In this algorithm there are two nested FOR, the
first one goes through all the rules, and the second
one for each rule calculates the value of Rk(e) us-
ing a t-norm and the membership function of each
component of the example with each component
of the antecedent of the rule. Once we have that
value, the weight is included using the Op operator,
that is, h(Rk(e),wk) is calculated and stored in the
CurrentMatching variable. Now begins the calcula-
tion of the maximum of the equation 1 to determine
the rule with the maximum value of function h and
return as output the class of that rule.

The calculation associated with inference when
we have M rules and n antecedent variables per rule
is of the order O(nM) for each example. This or-
der of complexity is reasonable when we work with
a not very high number of variables and rules in the
knowledge base and there are not many examples to
classify. However, in problems where all these val-

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

256



ues are high, this inference algorithm may not be effi-
cient. Let’s suppose a problem similar to the one we
will see in the experimental part that contains 28 vari-
ables and the knowledge base has 5 million rules and
we want to classify 10 million examples. If we as-
sume that the computational time needed to calculate
each membership function µAi

j
(e j) is 10−9 seconds,

the time required to classify all the examples will be
more than 16 days.

Therefore when we have a high number of exam-
ples and rules it is necessary to look for an alternative
algorithm that reduces the response time of the infer-
ence process and in the next section, we will propose
one.

3 ALTERNATIVE CALCULATION
METHODS

In this section, we present a proposal to improve the
time required to perform inference. First, we present
a simple improvement of the previous algorithm in
which it allows to stop calculating the function Rk(e)
when the current calculation already indicates that it
is not better than the one obtained for another rule.

Algorithm 2: Improved inference process.

1: BestCurrentMatching = 0
2: for i = 1 to M do
3: CurrrentMatching = 1
4: while j≤ n and CurrentMatching > BestCur-

rentMatching do
5: CurrentMatching = T(CurrentMatching,

µAi
j
(e j))

6: j = j+1
7: end while
8: if CurrentMatching > BestCurrentMatching

then
9: CurrentMatching = Op(CurrentMatching,

wi)
10: if CurrentMatching > BestCurrentMatch-

ing then
11: BestCurrentMatching = Current-

Matching
12: Class = ClassOfRule(i)
13: end if
14: end if
15: end for
16: return Class

The Algorithm 2 is just an improvement of the Al-
gorithm 1 so if the partial calculation of the Rk(e)
function already shows that the current rule cannot

be better than the current best rule, the calculation is
stopped. Therefore it is an improved version that re-
turns exactly the same output but reducing some cal-
culations.

In any case, the problem that makes the inference
process complex is to detect the set of rules whose
antecedents cover the example. Both in the standard
model and in the previous proposal, these rules are
detected by checking one by one the complete set of
rules, which is very inefficient when the number of
rules is very high.

The alternative calculation proposal, that we are
going to describe, uses the basic idea of the Algorithm
2 but also changes the way of detecting the set of rules
that affect an example. Thus, from the concrete exam-
ple is constructed the antecedent of the rule that best
adapts to that example, in a way similar to how Chi’s
algorithm does. This antecedent does not have to be-
long to any rule of the set R on which we make the
inference, but it will be the starting point to detect the
rules that could affect the example.

If the antecedent corresponds to a rule of the set
R, we calculate the value of the function h associated
to that rule and the obtained value corresponds to the
degree in which such rule assigns the particular con-
sequent to that example. Then, as described above,
we modify this antecedent in such a way that we gen-
erate a new antecedent close to the previous one and
that still has possibilities of being applied to the exam-
ple, and we repeat the process. The change from one
consequence to another will be carried out following
a branch and bound algorithm.

The following is an example of how the sec-
ond proposal works. Let’s suppose three variables
X1,X2,X3 with the same fuzzy domain (shown in Fig-
ure 1) composed of five labels {A1, . . . , A5}, and a
consequent variable Y that can take two values B1 or
B2. Let us suppose that R is composed of the follow-
ing two fuzzy rules:

R1 : IF X1 is A2 and X2 is A3 and X3 is A3

THEN Y is B1 with weight 0.9

R2 : IF X1 is A1 and X2 is A3 and X3 is A4

THEN Y is B2 with weight 1.0

Thus given an example e=(0.7,2.1,2.8), let us sup-
pose the following values of the membership function

µA1(0,7) = 0.3 µA3(2.1) = 0.9 µA3(2.8) = 0.2

µA2(0,7) = 0.7 µA4(2.1) = 0.1 µA4(2.8) = 0.8.

The membership function for the values of the exam-
ple for the rest of the labels is zero. Let’s suppose we
use the minimum T-norm and the Op operator prod-
uct.

Reasoning Methods in Fuzzy Rule-based Classification Systems for Big Data Problems

257



Figure 1: Fuzzy domain of variables X1,X2 and X3.

The process starts by assigning to X1 the label that
gives it the greatest value of membership on the ex-
ample, in this case A2, continues with variable X2 and
repeats the same criterion, assigns A3, continues with
X3 and assigns A4. But the antecedent

X1 is A2 and X2 is A3 and X3 is A4

is not in R. Therefore it goes back and assigns X3 the
second best value for the example, in this case A3.
Now the assignment coincides with the rule R1, the
assigned class would be B1 and the value h=0.1134.

The process continues going through all the
nearby rules that could apply to the example. On
the previous consequent, it goes backward looking for
new consequents, since there are no more possible la-
bels for the variable X3, so go back to the variable X2
and try the second best label A4. But in this case the
partial calculation of function h is equal to 0.07 which
is less than the value of function h of the antecedent
previously found, therefore it is not possible that an
antecedent with the current assignment is better than
the one previously found, we do not continue assign-
ing, and we do a return backward.

Now the backward step assigns the A1 label for
the X1 variable, the A3 label for X2 and the A4 label for
X3, this assignment corresponds to the R2 rule, and we
assign the consequent B2 with h=0.216. As the value
of the function h is greater than the value of the rule
found before, we discard the previous assignment and
we keep this new assignment. The process continues
and we assign A3 to X3, but the partial value is 0.054
and the assignment is discarded. We go back, and the
last possible assignment is A4 to X2, again the partial
assignment is 0.03 and again it is discarded. Thus,
the process ends up assigning the class B2 with value
h=0.216.

It is important to note that this process only looks
at the rules that could be applied to the example, and
does not have to review the rest of the rules. This new
procedure, which we will call Algorithm 3, is an im-
proved calculation version of the standard inference
algorithm, which again returns the same output but
reduces the necessary calculations.

A basic element for this alternative way to calcu-
late the maximum to be efficient, in comparison with
the previous one, is that the operation to determine

whether the antecedent of the rule exists in the rule
base must be of order O(1). This is achieved by using
a method of coding the rules that are used as a key to
store them in a hash table.

In the worst case, this proposal explores in a re-
cursive way all the rules neighboring the rule. In the
case of problems where the domains are discretized
by means of fuzzy labels distributed uniformly and
with the cut in 0.5, the number of rules to evaluate is
2d , being d the number of continuous variables dis-
cretized by means of fuzzy labels, being d ≤ n.

The order of complexity in the worst case of the
algorithms 1 and 2 is O(nM), and is better than O(2d)
which is the order of complexity of the proposed algo-
rithm. However, this second one is independent of the
number of rules and this allows that in problems with
a great number of rules and a low number of variables
(discretized as fuzzy variables), in the practical appli-
cation, this algorithm presents better response time,
as we will check later. For example, in the census
database (see Table 1), the number of continuous vari-
ables is 8 so Algorithm 3 would have to study 256
rules at most, but instead, this number for Algorithms
1 and 2 would be 80791 rules (see Table 2).

However, with a low number of rules and many
continuous variables, the algorithm 2 presents better
behavior. Therefore, we could use an inference al-
gorithm that works with two processes (each imple-
ments an inference algorithm) that run in parallel, so
that once one of them finds the solution, it eliminates
the other thread and returns the output found. Thus,
the response time of the algorithm will always be lim-
ited in the worst case to O(nM). In any case, in this
work, we want to know the behavior of the recursive
algorithm by itself when it is used on some of the most
used databases to test fuzzy models in big data prob-
lems. In the next section, we show this experimental
study.

4 EXPERIMENTAL STUDY

The purpose of this experimental part is to show the
behavior of the new calculation models for reason-
ing (Algorithms 2 and 3) in terms of response time,
on some of the databases that have been used in re-
cent proposals to address the problem of classification
through algorithms based on the use of fuzzy rules.

In this experimentation, we will use eight
databases from the UCI dataset repository (Bache and
Lichman, 2013), which are described in Table 1. In
this table, Nemo refers to the short name for each
dataset, #Ex represents the number of examples and
#Atts shows the number of attributes and Cont reflects

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

258



the number of continuous attributes (all of them dis-
cretized as fuzzy domains). Some of the databases
(those marked with a *) have been converted to a bi-
nary classification problem in the same sense that they
were used in (Gámez et al., 2016) and (del Rı́o et al.,
2015). Furthermore, in the same way of the previ-
ous papers, in the Poker database, 5 attributes orig-
inally considered as an integer in the range {1,13},
have been considered as continuous variables in the
range [1,13].

Table 1: Summary of Databases. #Ex is the total number of
examples, #Atts is the total numbers of attributes and #Cont
is the number of continuous attributes.

Dataset Nemo #Ex #Atts #Cont
Census cens 141544 41 8
Covtype* covt 495141 54 10
Fars* fars 62123 29 5
Hepmass hepm 10500000 28 27
Higgs higg 11000000 28 28
Kddcup* kddc 4856150 41 26
Poker* poke 946799 10 5
Susy susy 5000000 18 18

In this experimental study to obtain the fuzzy rule
set, we have used the well-known Chi algorithm (Chi
et al., 1996). The rule structure used by this classi-
fier is the same that was described in section 2, be-
ing the weight of the rule computed by the Penalized
Certainty Factor (Ishibuchi and Yamamoto, 2005). In
the implementation of this algorithm, we have used
the product both as t-norm and Op operator. Further-
more, for this experimental part, we are used domains
of three fuzzy labels uniformly distributed for all the
continuous variables and ten cross-validations.

An experiment has been carried out on the
databases considered and on the sets of fuzzy rules
obtained for each database. The experimentation
has been carried out on a computer with Intel(R)
Core(TM) i7-6700 CPU 3.40GHz with 8 cores and
16 Gb of memory, working under the Linux operating
system (Fedora 28). The implementations of the Chi
algorithm necessary to obtain the rules, as well as the
three forms of inference calculation described previ-
ously in this work have been implemented in C++ (us-
ing the gcc compiler version 8). In the implementa-
tions, the data structures of the STL library have been
used. In this sense, indicate that the implementation
used for the definition of the hash table has been taken
from this library.

The results obtained in the number of rules and
accuracy on training and test sets using this algorithm
on the previous database are shown in Table 2. Obvi-
ously, as the reasoning model does not change, any of
the three calculation proposals (Algorithms 1, 2 and

3) considered on that reasoning model will give the
same result in the number of rules and accuracy. On
the other hand, the result may vary if we analyze the
time required for each proposal. In some databases
the number of rules obtained by Chi’s algorithm is
very high especially taking into account the number
of examples processed, being able to reach 67.33 of
the number of examples (this happens for example in
the ”fars” database).

Table 2: Results obtained on accuracy and number of rules,
applying Chi algorithm using 10 cross validation.

Database #R %Train %Test
cens 80791 98.72 49.82
covt 8294 77.29 76.73
fars 41825 100.00 49.88
hepm 5523370 87.16 70.47
higg 929050 62.40 56.84
kddc 772 99.95 99.95
poke 196403 76.77 56.63
susy 11470 64.44 68.02

Table 3 shows the behavior of the different infer-
ence algorithms that we have considered. The column
labeled “Alg1” shows the number of inferences per
second that Algorithm 1 performs on each database.
The “Alg2” column shows both the number of infer-
ences per second that Algorithm 2 performs on each
database and the percentage of time needed in relation
to that used by the “Alg1”. These same two measures
are presented for the Algorithm 3 under the column
”Alg3”. The last row shows the mean of the values
obtained in each of the columns. The values cor-
responding to the databases “hepm” and “higg” for
the algorithms “Alg1” and “Alg2” are marked with
an “*”. This asterisk indicates that the values shown
here correspond to the estimation of those values after
12 hours of execution, since the complete execution
of only the first of the ten executions of the cross-
validation for the ‘hepm” using Algorithm 1 would
consume more than 32 days of computation, that is,
almost a full year to complete the cross-validation.

A simple analysis of the results presented in Ta-
ble 3 shows that the proposals presented significantly
reduce the time of the inference process compared to
Algorithm 1. In 5 of the 8 cases, the time is reduced
by more than 99%, and in the case less favorable to
the proposal, the “kddc” database, the reduction is
greater than 90%. A deeper analysis of the “kddc”
database, allows us to verify that it is the database that
has the least number of rules, and has a high number
of continuous attributes, 26, which are just the condi-
tions in which the proposal presents an order of com-
plexity in the worst case of 226.

Reasoning Methods in Fuzzy Rule-based Classification Systems for Big Data Problems

259



Table 3: Number of inferences that each algorithm can
make in a second and percentage of time reduction obtained
to process the examples compared to Algorithm 1.

Data Alg1 Alg2 % Alg3 %
cens 32.5 34.9 6.76 9502.0 99.63
covt 251.3 456.7 49.97 17810.4 97.44
fars 69.8 71.0 1.68 24852.0 99.71
hepm 0.3* 0.4* 6.31 611.2 99.93
higg 2.3* 2.4* 2.48 991.2 99.76
kddc 6316.4 6396.1 1.25 67363.0 90.51
poke 7.0 21.7 67.80 242051.3 99.99
susy 242.6 365.8 33.68 25706.9 98.58
mean 865.3 918.6 20.62 48611.0 98.19

It can also be observed that while Algorithm 2
produces an improvement in time of 20.62% over the
Algorithm 1, the Algorithm 3 produces a reduction
of 98.19%, going from being able to make 865 infer-
ences per second to more than 48000. Algorithm 3, as
expected, presents its best results in those cases where
a high number of rules are used, such as “hepm”,
“higg” and “poke” databases. It also shows good
results when the number of continuous attributes is
small in relation to the total number of attributes.

These results show that the process of evaluation
of membership functions and pruning used in the pro-
posal makes it more efficient than the other two algo-
rithms.

In summary, the results presented show that the
proposed algorithm provides a substantial improve-
ment in the process of inference in problems where
the description of knowledge contains a high number
of rules and/or the number of continuous attributes
(discretized as fuzzy domains) is small in relation to
the total number of attributes.

5 CONCLUSIONS

The use of a large number of examples generates
problems in obtaining knowledge from these exam-
ples, but also in using them in a reasoning model.
Some of the algorithms proposed in the field of fuzzy
logic to deal with big data problems have the disad-
vantage of generating a very high number of rules.
The standard inference algorithm of the winning rule
used in fuzzy logic has problems when confronted
with knowledge bases with many rules.

The modified version of the algorithm that opti-
mizes the calculation through adaptation thresholds
is not sufficient to significantly improve the response
time.

We have analyzed the problem and have proposed
a model for reasoning that is more efficient than the

standard one in cases where there are a large number
of fuzzy rules. Thus, we have presented a calculation
of the inference algorithm that uses a different strat-
egy to obtain the winning rule. Although according
to its order of complexity is a worse approximation
than the original algorithm, in the experimental part
we show that it presents a significantly better behav-
ior applied to databases than the field of classifiers
based on fuzzy logic are being applied.

In future work, it seems interesting to combine
both algorithms using a parallel model to ensure a bet-
ter time response to the inference process.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish
MEC Projects TIN2015-71618-R, DPI2015-69585-R
and co-financed by FEDER funds (European Union).

REFERENCES

Bache, K. and Lichman, M. (2013). Uci machine learning
repository.

Chi, Z., Yan, H., and Pham, T. (1996). Fuzzy algorithms:
with applications to image processing and pattern
recognition, volume 10. World Scientific.

Cordón, O., del Jesus, M. J., and Herrera, F. (1999). A pro-
posal on reasoning methods in fuzzy rule-based clas-
sification systems. International Journal of Approxi-
mate Reasoning, 20:21–45.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-
fied data processing on large clusters. Commun ACM
51(1), 107-113.

Dean, J. and Ghemawat, S. (2010). Mapreduce: a flexible
data processing tool. Communications of the ACM,
53(1):72–77.

del Rı́o, S., López, V., Benı́tez, J. M., and Herrera, F. (2015).
A mapreduce approach to address big data classifica-
tion problems based on the fusion of linguistic fuzzy
rules. International Journal of Computational Intelli-
gence Systems, 8(3):422–437.

Elkano, M., Galar, M., Sanz, J., and Bustince, H. (2018).
Chi-bd: A fuzzy rule-based classification system for
big data classification problems. Fuzzy Sets and Sys-
tems, 348(1):75–101.

Gámez, J. C., Garcia, D., González, A., and Pérez, R.
(2016). On the use of an incremental approach to
learn fuzzy classification rules for big data problems.
In 2016 IEEE International Conference on Fuzzy Sys-
tems, FUZZ-IEEE 2016, Vancouver, BC, Canada, July
24-29, 2016, pages 1413–1420.

Ishibuchi, H. and Yamamoto, T. (2005). Rule weight spec-
ification in fuzzy rule-based classification systems.
IEEE Transactions on Fuzzy Systems, 13(4):428–435.

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

260



Mizumoto, M. and Zimmermann, H.-J. (1982). Compar-
ison of fuzzy reasoning methods. Fuzzy Sets Syst.,
8(3):253–283.

Romero-Zalı́z, R., González, A., and Pérez, R. (2017). In-
cremental fuzzy learning algorithms in big data prob-
lems: A study on the size of learning subsets. In Pro-
ceedings of the 2017 IEEE International Conference
on Fuzzy Systems, pages 1–6.

Reasoning Methods in Fuzzy Rule-based Classification Systems for Big Data Problems

261


