
Integrating SPL and MDD to Improve the Development of Student
Information Systems

A. Cunha1 a, S. Fernandes1 b and A. P. Magalhães1,2 c
1Post Graduated Program in Computing and Systems, Salvador University, Salvador, Brazil

2State University of Bahia, Department of Exact Sciences and Earth, Salvador, Brazil

Keywords: Student Information System, Evaluation Criteria, Software Product Lines, Model Driven Development,
Domain Specific Language.

Abstract: Software development has become increasingly complex in recent years, with the growing multiplicity of
development platforms, the integration between components in heterogeneous environments and platforms,
and frequent changes in requirements. Academic systems usually integrate various subsystems, such as
student enrolment and class planning which can change almost every semester. To address these issues,
different development approaches can be used, for example, Model-Driven Development (MDD) and
Software Product Lines (SPL). This paper presents an approach that integrates MDD with SPL for the
development of evaluation criteria in a family of educational systems. The solution comprises a modeling
language, called DSCHOLAR, for creating the models; and a transformation for C# code generation. This
article details the transformation responsible for generating the code of evaluation criteria components for the
student evaluations according to different universities scenarios. The transformation was validated using
proofs of concepts in which evaluation criteria from three public and private universities were modeled using
DSCHOLAR and subsequently converted into C# code.

1 INTRODUCTION

Management software has been widely used to
improve institutional processes, and improve decision
making, among other purposes. In the educational
context, Higher Education Institutions (HEI) use
software, either for their core business – to support
teaching-learning activities – or in their support
activities, such as the management of academic,
administrative and financial functions.

In the field of educational systems, it is common
for universities to have specificities that lead to
significant differences in the information systems that
support their processes. In certain situations, business
processes or rules in a given institution evolve
significantly and frequently. This implies that the
implementation of these information system might
change significantly over time. The use of a
traditional software development process in such
situations may be inefficient, because for each

a https://orcid.org/0000-0001-5335-1566
b https://orcid.org/0000-0002-1118-5560
c https://orcid.org/0000-0002-8608-4553

specificity of greater complexity, it is necessary to
code correspondingly specific software components
“manually”. Consequently, whenever specificity
changes, the corresponding code needs to be updated.
One of these specificities is student evaluation
criteria, which may vary from one institution to
another, from one semester to the next, or even be free
enough to be defined by each teacher. Therefore, a
more interesting approach is to define some form of
representation of the evaluation criteria (for example,
a representation at a higher level of abstraction, such
as a graphic model), and to create mechanisms for
automatic transformation of these models into code.

In order to contribute to the development of
educational systems two approaches can be
integrated: (i) Software Products Line (SPL),
designed to name software families that share
common characteristics in which each family
member has specific variations of these
characteristics (Clements and Northrop , 2001) and

Cunha, A., Fernandes, S. and Magalhães, A.
Integrating SPL and MDD to Improve the Development of Student Information Systems.
DOI: 10.5220/0007711201970204
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 197-204
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

197

(ii) Model Driven Development (MDD), an approach
that uses models as the main development artifacts,
transforming them (semi) automatically into
application source code (Brambilla, et al., 2017).
These approaches are strongly encouraged for this
context and might contribute to improve productivity:
define a SPL comprising the characteristic of the
domain and use MDD to specify these characteristics
and automatically generate code.

The SPL and MDD approaches have been
successfully used by several authors, such as Zhu
(Zhu, 2014), who proposed the Engine Cooperative
Game Modeling (ECGM) framework to model games
and generate source code, showing that it can
significantly improve the development process.
Sottet, Vagner and García Frey (Sottet, et al., 2015)
proposed using the two approaches to improve user
interaction with the interface, arguing that the design
of this interaction is made difficult by taking into
account aspects such as different devices and users
and diverse interaction environments. Zarrin and
Baumeister (Zarrin and Baumeister, 2018) proposed
the construction of a framework to better support
semantics in the use of both approaches. Although the
two approaches (SPL, MDD) are widely used
together, no reference was found to their application
in the context of student evaluation criteria in
educational systems, nor even in the broader
educational domain.

This work proposes a solution that integrates the
SPL and MDD approaches for the development of
Student Information Systems (SIS). The purpose is to
create a product line of a SIS that can be customized
through the MDD at its points of variation. Diverse
products can be instantiated from this SPL to meet the
specific needs of educational institutions.

This paper focuses on a specific point of
variability of SIS: the student evaluation criteria. The
approach presented here will be further extended to
other SIS variability points. For this specific point of
variability we developed, a modeling language, called
DSCHOLAR, to be used in characteristics modelling
by domain specialists, and a transformation program
to generate component code from DSCHOLAR
models. This article presents an overview of the
solution and of the DSCHOLAR (Cunha, et al.,
2018), and details the following contribution: the
transformation and its validation.

We defined DSCHOLAR due to the higher
expressivity of Domain Specific Languages (DSLs)
when compared to General Purpose Languages, such
as UML (Booch, et al., 2006), making them more
suitable for the users, i.e. domain experts, such us

academic managers or teachers, not software
engineering professionals.

The point of variability focus here, student
evaluation criteria, was initially selected because of
its relevance and non-triviality: relevance because the
evaluation criteria may vary significantly in different
institutions. Indeed, this variation may occur in
different areas or departments of the same institution.
In the limit, different teachers might adopt different
evaluation criteria; non-triviality because the
specification and implementation of an evaluation
criteria can be very distinct and expressed through
non-trivial rules. This particularity – the possibility
that each individual user (typically not an software
development expert) may need a specific
configuration of the evaluation criteria – is not usual
in information systems in general, but a real
possibility in the SIS.

The method used to develop this work started with
the specification of the characteristics of the SIS
product line as well as the classification of them as
variable or non-variable. Each variable characteristic
was analysed so as to characterize the frequency of
changes in their specifications. We use MDD to
develop components for variable characteristics that
may change considerably over time (e.g. the student
evaluation criteria). In these cases, a modeling
language and a transformation program must be
defined, to enable the modeling of the characteristic
and the automatic generation of its code. Finally, both
the language and the transformation were validated
through proofs of concept.

The rest of the paper is organized as follows:
section 2 introduces the concepts necessary for a
better understanding of the work and section 3
presents the related works that integrate SPL and
MDD. Section 4 presents an overview of the proposed
SPL and DSCHOLAR as well as the detailing of the
transformation and its evaluation. Finally, section 5
presents the conclusions and future work.

2 BACKGROUND

Several approaches have been proposed to meet the
increasing demand and complexity of software. These
approaches aim, among other things, to increase the
productivity of the development process and software
quality. Among them, SPL and MDD stand out in a
context such as the one we have: an information
system that needs extensive and non-trivial
customization for each specific customer.

SPL can be defined as a set of software products
with characteristics sufficiently similar to share a

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

198

common infrastructure and the parameterization of
differences among the products (Almeida, 2009). The
characteristics, usually called features, of a SPL are
classified as mandatory or optional and can be used
to specify variabilities and commonalities among
software products, as well as to guide the structure,
reuse and variations between products in their life
cycle. Therefore, the development of software using
SPL is based on a set of core assets, defined according
to the commonalities and variabilities of a specific
domain, used to derive new products of the line.

MDD is a software development approach that
uses models as the main developmental artifacts. It
changes the focus of the development from code
writing to model development. In MDD, high-level
abstraction models are automatically / semi
automatically transformed through a chain of
transformations, into less abstract models and,
typically, in the end, into the source code of the
application (Brambilla, et al., 2017).

The MDD approach contains two essential
elements: the models, artifacts representing the
software at the various levels of abstraction; and
transformations, which convert models into other
models or code (Brambilla, et al., 2017). Models must
be formally written using well-defined modeling
language syntax and semantics. Transformations are
responsible for mapping the models across the
various levels of abstraction throughout development
(Stahl, et al., 2006).

One of the most widespread techniques in the
generation of source code by transformation of
models is that of templates. A template is a
standardized text file, instrumented mainly with code
expansion and selection constructions, and is
responsible for performing parameter queries on an
entry: a textual file or templates. The information
contained in the templates and entries are processed
by the transformation, resulting in the source code
(Sendall and Kozaczynski, 2003).

3 RELATED WORKS

The development of new products in a SPL has been
frequently integrated to the use of MDD, usually in
the development of products in telecommunications,
banking, embedded systems and automotive sectors
(Tolvanen and Kelly, 2016).

Gonzalez-Huerta et al. (González-Huerta, et al.,
2014), in a case study in the automotive sector,
present a set of guidelines for the development of
architectural transformations on a model that
represents different points of view of a system,

allowing the explicit representation of relationships
between architectural patterns and quality attributes.

Lahiani and Bennouar (Lahiani and Bennouar,
2018) performed a case study in the e-Health area to
illustrate the transformation process for product
generation of an SPL. They used modeling languages
to represent the architecture and the application. Then
they modeled points of variability according to the
needs of some users who used the application and
automatically transformed those models into products
with the requirements requested by the users.

Sochos et al. (Sochos, et al., 2006) propose the
FArM (Feature-Architecture Mapping) method,
which provides a stronger mapping from software
characteristics into software design. It is based on a
series of transformations in the initial model of
product line features. During the execution of the
transformations, architectural components are
derived, encapsulating the business logic of each
transformed feature and the interfaces directly reflect
the interactions of the feature.

In the same direction of the works presented
before, our work defines a SPL and uses MDD to
model the variability points of this SPL in order to
generate code. However, we apply this strategy to
support the development of systems in the education
domain, where, to the best of our knowledge, it has
not been used before.

4 SPL FOR EDUCATIONAL
SYSTEMS

This section introduces the SPL solution for the
Student Information Systems (SIS) proposed to
enable the customization of systems for different
educational institutions (Figure 1).

Figure 1: Overview of SIS product line using MDD
solution.

The left side of Figure 1 shows an outline of the
high-level design of the components of the SIS
product line. Some of the components are classified
as non-variables, while others are classified as

Integrating SPL and MDD to Improve the Development of Student Information Systems

199

variables. This classification was generated through
the analysis of the features (Czarnecki and
Eisenecker, 2000) of the product family. Features that
do not vary across all members of the product family
are classified as non-variable, while those that will
need to be customized for each individual product are
classified as variables. New products are generated by
reusing and/or customizing product family
components. Variable component customization can
be done using the MDD approach. This is the case of
the Evaluation Criteria component.

The right-hand side of Figure 1 details the MDD
solution provided to enhance the development of the
evaluation criteria component according to the
specific needs of each SIS. In order to enable the
modeling of the specific component, a modeling
language was defined for the evaluation domain,
DSCHOLAR (presented in section 4.1). Thus, from
this language, several evaluation criteria can be
defined (in the figure we have M1, M2, M3) and used
to automatically generate the application code in the
C# language through a transformation (detailed in
section 4.2).

This project was implemented in Microsoft DSL
Tools, a set of plugins hosted by Microsoft Visual
Studio (Warren, 2019). We adopted this technology
due to the expertise of the team in using it and because
it provides easy integration between the code
generated by the transformations and the code
manually written in Microsoft Visual Studio.

4.1 DSCHOLAR Modeling Language

DSCHOLAR is a domain-specific language designed
to model the Student Evaluation Criteria in the SIS
SPL. In (Cunha, et al., 2018), the abstract syntax of
DSCHOLAR is presented and discussed.
DSCHOLAR encapsulates the necessary knowledge
to enable domain specialists, not necessarily software
developers, define new evaluation components
according to their needs.

In DSL DSCHOLAR, the elements specified for
the modeling of the evaluation criteria of universities
are: (i) Entity, which represents the educational
institution and (ii) Evaluation, which represents the
student evaluations of a certain educational
institution.The concept Entity is a generic concept
that may represent an institution, a course or even a
discipline.

An Entity has attributes, such as entityName,
meanGrade, lowestGrade and finalMeanGrade,
which indicate how the entity works.

Evaluation is a general concept, specialized in
four other concepts: MandatoryEvaluation, for

evaluations that must be applied;
OptionalEvaluation, for those that are part of the
evaluation process but that may be applied at teachers
discretion; VariableEvaluation, when teachers may
freely define a number of evaluations not predefined
by the evaluation process; and ExtraEvaluation,
which is a special evaluation whose grade is to be
added to that of another evaluation grade. All
Evaluations have the attributes: (i) name, referring to
the name that the evaluation will have; (ii) weight,
referring to the weight of each evaluation within the
criteria of a university; (iii) description, which
describes each evaluation; and (iv) sequence,
representing the order in which the evaluations will
be performed.

Figure 2 illustrates an example of a model created
with DSCHOLAR to represent the evaluation criteria
of a private higher education institution.

In the model depicted in Figure 2, there are three
evaluations, namely Evaluation 1, Evaluation 2 and
Final Evaluation, and their respective relative
weights (30, 40, 30). The round-cornered rectangle of
the first two evaluations is the concrete syntax used
to specify that all of them are mandatory
specifications. Final Evaluation is an optional
evaluation, which is depicted by a conventional
rectangle in a different color. Regarding the number
of optional evaluations in a model, there are two
different modeling options. If the quantity of optional
evaluations is already defined, each one of these
evaluations is represented by an instance of a specific
modeling element in the respective model. Otherwise,
each teacher can define the number of optional
evaluations as an attribute of a variable evaluation
element, so that the model will have only one instance
of that evaluation and an attribute quantity is used to
define the upper boundary of this quantity.

Figure 2: Example of model using DSCHOLAR that
represents the evaluation criteria of a private institution.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

200

There are different kinds of connections among
the represented elements in the model. Simple
connections are represented between an Entity and an
Evaluation (e.g. the Private Institution and the
Evaluation 1 in Figure 2). Composite connections are
used to link evaluations, i.e. when an evaluation is
composed of others (e.g. Evaluation 2 is composed
by Test and AIC in Figure 2).

In summary, for the example shown in Figure 2,
there is an Institution, named Private Institution (first
square at the top of Figure 2), which has the mean
grade 70 (attribute meanGrade), the lowest grade 40
(attribute lowestGrade), and final grade 50 (attribute
finalGrade). The evaluation criteria is given
respectively by an evaluation (Evaluation 1) of
weight 30, a second evaluation (Evaluation 2) of
weight 40 which is composed of three other
evaluations, one weighing 32 (Test Evaluation), one
weighing 8 (AIC Evaluation) and one that generates
extra point of weight 8 (Arhte Evaluation). After
completing these 4 evaluations (Evaluation 1, Test,
AIC and Arhte), students who reach 70 points
(meanGrade of the entity) will pass without a final
evaluation (Final Evaluation); those who score more
than 40 (lowestGrade of the entity) and less than 70
(meanGrade of the entity) will have to do Final
Evaluation weight 30; and, after that, should pass if
their weighted average is equal to or greater than 50
(finalMeanGrade of the entity). Students who score
less than 40 in all evaluations before Final Evaluation
and less than 50 of the total after completing Final
Evaluation will fail.

4.2 Code Generator for Evaluation
Criteria in Educational Systems

This section presents the transformation, named
dscholar2Code, developed to support code
generation of the component Evaluation Criteria of
our SIS product line. The transformation receives as
input a model specifying the education criteria of a
specific institution, i.e. a model developed according
to DSCHOLAR, and generates as output the
correspondent code in C# language.

The transformation dscholar2Code was specified
in five stages. First, Product Design stage, the
architecture of the component that will be generated
is defined. Then, stage Implementation Strategy
Definition, defines which part of the component code
will be static, i.e. manually implemented, and which
one will be dynamic, automatically generated by the
transformation. Based on this, the transformation
rules are specified (in stage 4), implemented (stage 5)
and finally tested (Transformation Validation stage).

Following the stages presented above, the first
stage concerns about architecture definition and the
MVC (Model-View-Controller) pattern (Buschmann,
et al., 1996) was used. This is an architectural
software pattern that structures the application in
three layers. For the component Evaluation Criteria,
the elements of MVC layers are predefined templates
specified according to the information provided by
the DSCHOLAR metamodel. Figure 3, for example
presents the classes specified for the Model layer.

The second stage, Implementation Strategy
Definition, deals with the identification, in the class
structure modeled by the previous step, of which
elements of each class are variable and which
elements are static. The variable elements must be
dynamically generated, and the statics are generated
manually. Based on this it is determined, for each
class, which code snippets should be generated
automatically, and which snippets should be fixed.

The language used to implement the
transformation code is based on templates, i.e. a
predefined template contains the code parts which are
static as well as the specific points where the dynamic
code must be inserted when generated. For the
component Evaluation Criteria, the templates defined
for the View layer are dynamically customized using
the input model data, i.e. the DSCHOLAR model of
a specific institution. The Control layer is generated
manually as it does not vary according to the
evaluation criteria. The Model layer comprises
dynamically and statically generated code. The code
defined to be statically generated was the structural
part of the class Entity and the declaration of its
attributes, such as entityName, meanGrade,
lowestGrade and finalMeanGrade. The part defined
to be dynamically generated was the methods
loadEntity() and generateEvaluationsList() because
they have information that varies according to the
student evaluation criteria of the input model.

Figure 3: Model layer of the evaluation criteria component.

Integrating SPL and MDD to Improve the Development of Student Information Systems

201

At stage 3, transformation rules must be specified.
They map the elements of DSCHOLAR and the bits
of code that are dynamically processed by the
transformation dscholar2Code. The language used to
implement the transformation reads a model and
manipulates its elements through tags in order to
dynamically generate code. Therefore, in order to
specify transformation rules, we map each relevant
element of DSCHOLAR metamodel into a tag in the
transformation code.

At the Transformation Implementation stage, the
transformation was coded. Figure 4 shows part of the
code of the class Entity, which was manually
implemented.

 public class Entity
{
 public String entityName;
 public Double meanGrade;
 public Double lowestGrade;
 public Double finalMeanGrade;
 public List<Evaluation> evaluations = new
List<Evaluation>();
}

Figure 4: Part of the code of the class Entity.

For the elements to be dynamically instantiated, a
loop-like programming structure was used, which
reads a model (as the one shown in Figure 1) in search
of instances of the Entity and Evaluations elements as
well as their attributes in the input model. Figure 5
and 7 present respectively the implementation of the
methods loadEntity() and generateEvaluationsList ().

The method loadEntity() assigns a value to each
attribute of each object of the Entity class existing in
the input model. The code in Figure 5 illustrates the
search for an instance of type Entity in a DSCHOLAR
model, and the storing of its attributes entityName,
meanGrade, lowestGrade and finalMeanGrade in the
instance of the C# Entity class being generated.

Public void loadEntity(){
<# foreach(Entity ent in this.x.Entity){ #>
this.entityName = "<#= ent.name #>";
this.meanGrade = <#= ent.meanGrade #>;
this.lowestGrade = <#= ent.lowestGrade #>;
this.finalMeanGrade = <#= ent.finalMeanGrade #>;
<# } #>
}

Figure 5: Part of the code of the method loadEntity().

Public void generateEvaluationList(){
<# foreach (Evaluation av in this.X.evaluations){ #>
 <# if (av.Targets.Count == 0){#>
 <# if (av.GetType().GetProperty("mandatory") !=
null){#>

 this.evaluations.Add(new Evaluation("<#=
av.name #>",<#= av.weight #>,"<#= av.description
#>",<#= av.sequence #>, 1));

<# } } }#>
}

Figure 6: Code of the method generateEvaluationList().

The code of the method generateEvaluationList()
(Figure 6) is dynamically generated based on the list
of evaluations that are part of each entity in the input
model. As a result, it will fulfill a list in the C# code
(named evaluations) which contains all the
corresponding evaluations of the input model. When
this generated code is executed it will scroll the list
instantiating each one of the evaluations.

Figure 7 presents the code generated by the
transformation dscholar2Code for the class Entity
considering the input model shown in Figure 2.

public class Entity
{
public String entityName;
public Double MeanGrade;
public Double LowestGrade;
public Double FinalMeanGrader;
public List<Evaluation> Evaluation = new List<
Evaluation >();

//Loading Entity
Public void loadEntity(){
this.entityName = "Entity";
this.MeanGrade = 70;
this.LowestGrade = 40;
this.FinalMeanGrade = 50;
}
//Type 1 = mandatory, 2 = variable, 3 = extra, 4 =
FINAL, TIPO 5 = optional

Public void generateEvaluationList(){
this.Evaluation.Add(new Evaluation("AV1
",30,"description 1",1, 1));

this.Evaluation.Add(new
Evaluation("Test",32,"Description 2",2, 1));

this.Evaluation.Add(new Evaluation("AIC",8,"
DESCRIÇÃO 3",3, 1));

Figure 7: Code generated for class Entity.

Once the transformation is implemented it is
tested (Validation Transformation stage in our
method). This is described in section 4.3.

4.3 Validation of the Code Generator

The transformation dscholar2Code was validated
using a proof of concept, to evaluate the coherence of
the generated code in relation to the model input
model specified using DSCHOLAR. This goal was
defined according to Goal Question Metric (GQM)
template [11] in Figure 8.

Analyze the component code generated as output of the
transformation dscholar2Code
With the purpose of evaluating its correctness
Regarding its correspondence to the evaluation criteria
specified in the input model
In the perspective of the software developer
In the context of models developed with DSCHOLAR
modeling language

Figure 8: Goal of the transformation validation.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

202

To guide the evaluation, the following research
questions (RQ) were defined: RQ1: are all the
evaluations specified on the model present in the
component code? RQ2: are the evaluation criteria
defined in the input model included in the component
code? RQ3: are the mean grades correctly calculated?

The validation was performed using three
different input models, i.e. models of three different
universities. These models were specified in the case
study carried out to validate the DSCHOLAR
modeling language.

In order to evaluate the first question we ran the
application, i.e. the generated component, and
observed if the interface comprises all the evaluations
as specified in the model. The metric used was the
type of evaluations specified in the input model (EM-
evaluation of model) and the type of evaluations
presented in the component (EC – evaluation of
code). For the second question, we compare the
criteria defined in the input model (CM – criteria of
model) with the criteria of the generated code (CC –
criteria of code). Finally, to evaluate the third
question we performed a set of test cases in order to
observe the resulting mean grades.

The validation was performed separately for each
university, i.e. for each input model. First, we run the
transformation using the input model. Then, the codes
generated were used to derive a different product of
the educational SPL. The product created was a portal
to record the grades of the students. We used this
portal to execute the test cases previously specified.

For each university used in our validation, ten
students had their grades recorded in order to verify
if the result achieved was equivalent to the results of
the university. We used studies of a real class running
in the second semester of 2018 and then compared the
results calculated by our system to the results of the
system currently used by each university.

At the end of the tests we observed that: (i) the
code generator produced the code corresponding to
the models in all the cases tested (related to RQ1); (ii)
the grades calculated in our system were equal to the
ones calculated in the university systems (related to
RQ2 and RQ3). Based on these results, we concluded
that, for the examples used, the transformation has
covered all the evaluation criteria of the three
universities, and is therefore satisfactory for the
established purpose.

5 CONCLUSIONS

This paper proposed an improvement in the
development of student information systems through

the integration of SPL and MDD approaches. With
this integration, we aim to decrease the development
effort to absorb changes in evaluation criteria that
frequently occur in this domain.

The MDD solution offers flexibility as it enables
the specification of the evaluation criteria in a high
abstraction, using DSCHOLAR language, and the
generation of code in an automated way, without the
need to implement them by hand. The transformation
contributed to streamlining the development changes
in the final products.

In addition, it is important to observe the potential
of the transformation to reduce accidental
implementation errors, as all the pertinent
information is contained in the models and the
generation of the code is automatic. Thus, the impacts
of changes in the products diminishes, resulting in
lower costs of maintenance of software.

The solution has been tested by proof of concept
and although it has been demonstrated to be
satisfactory, it has limitations. We are however,
working on a case study with professionals from
several universities to more accurately assess the
solution and reach more generalized conclusions.

The solution was validated to demonstrate its
completeness and correctness. Its expected
productivity gains were not a goal of the validation
and should be the subject of a future work. Another
future work will be to define and implement software
configuration and deployment processes that enable
the solution to be correctly deployed in an institution
where different actors use different evaluation
criteria.

The student evaluation criteria were the vantage
point selected for our study for economic reasons.
The costs involved in manually changing this specific
functionality into software products deployed without
the MDD solution often made customers choose not
to evolve its implementation. When this happened,
the evaluation criteria supported by the tools differed
from the current academic process, generating
significant extra work for teachers and others
involved. Thus, by automating the modeling and
implementation of the evaluation process, we are not
only increasing productivity and reducing the cost of
software development, but also reducing the effort
made by those (usually teachers) who use the
solution.

Moreover, at a time when distance learning is
expanding, the variability of institutions' assessment
criteria need to be more flexible to accommodate new
teaching models.

Integrating SPL and MDD to Improve the Development of Student Information Systems

203

Subsequently, other points of variability of the
SIS family of products will be adapted to use the
approach presented in this text.

Finally, MDD has been used in the development
of embedded systems, in the automotive and
aerospace industries, among others. There is a lack of
experiences reported using MDD to develop
information systems. Therefore, this paper reports a
relevant experience in the domain of educational
systems which may influence future projects.

REFERENCES

Almeida, E., 2009. Component Reuse in Software
Engineering. s.l.:CESAR e-books.

Booch, G., Rumbaugh, J. and Jacobson, I., 2006. UML
Guia do Usuário. s.l.: Addison Wesley.

Brambilla, M., Cabot, J. and Wimmer, M., 2017. Model-
Driven Software Engineering in Practice. 2nd ed.
s.l.:Morgan and Claypool.

Buschmann, F. et al., 1996. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. 1st ed.
s.l.:Wiley.

Clements, P. and Northrop , L., 2001. Software Product
Lines: Practices and Patterns. 3rd ed. s.l.:Addison-
Wesley Professional.

Cunha, A., Fernandes, S. and Magalhães, A., 2018. A
Domain Specific Language for the Domain of Student
Evaluation. Revista de Sistemas de Computação.

Czarnecki, K. and Eisenecker, U., 2000. Generative
Programming: Methods, Tools, and Applications. 1st
ed. s.l.:Addison-Wesley Professional.

González-Huerta, J., Insfran, E., Abrahão, S. and
McGregor, J., 2014. Architecture derivation in product
line development through model transformations. s.l.,
Springer, Cham.

Lahiani, N. and Bennouar, D., 2018. On the use of model
transformation for the automation of product derivation
process in SPL. [Online] Available at: https://
www.researchgate.net/publication/327269080_On_the
_use_of_model_transformation_for_the_automation_o
f_product_derivation_process_in_SPL [Acesso em 24
12 2018].

Sendall, S. and Kozaczynski, W., 2003. Model
Transformation: The Heart and Soul of Model- Driven
Software Development. IEEE Software, 20(5), pp. 42 -
45.

Sochos, P., Riebisch, M. and Philippow, I., 2006. The
Feature-Architecture Mapping (FArM) Method for
Feature-Oriented Development of Software Product
Lines. s.l., IEEE Int'l Conf. on the Engineering of
Computer-Based Systems.

Sottet, J.-S., Vagner, A. and Frey, A. G., 2015. Variability
management supporting the model-driven design of
user interfaces. 2015 3rd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD).

Stahl, T., Voelter, M. and Czarnecki, K., 2006. Model-
Driven Software Development: Technology,
Engineering, Management. 1st ed. s.l.:Wiley.

Tolvanen, J.-P. and Kelly, . S., 2016. Model-Driven
Development Challenges and Solutions - Experiences
with Domain-Specific Modelling in Industry. 2016 4th
International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD), pp. 711-719.

Warren, G., 2019. OVerview of Domain Specific Language
Tools. [Online] Available at: https://
docs.microsoft.com/pt-br/visualstudio/modeling/
overview-of-domain-specific-language-tools?view=vs-
2017

Zarrin, B. and Baumeister, H., 2018. An Integrated
Framework to Specify Domain-Specific Modeling
Languages. Proceedings of 6th International
Conference on Model-Driven Engineering and
Software Development, pp. 83-94.

Zhu, M., 2014. Model-Driven Game Development
Addressing Architectural Diversity and Game Engine-
Integration, s.l.: s.n.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

204

