Towards New Ways of Evaluating Methods of Supporting Requirements

Keywords:

Abstract:

Management and Traceability using Signal-to-Noise Ratio

Krzysztof Wnuk!, Markus Borg? and Tony Gorschek!
Software Engineering Department, Blekinge Institute of Technology, Karlskrona, Sweden

2Software and Systems Engineering, Laboratory at RISE Research Institutes of Sweden, Sweden

Requirements Management, Traceability, Information Retrieval, Information Distance.

Developing contemporary software solutions requires many processes and people working in synergy to
achieve a common goal. Any misalignment between parts of the software production cycle can severely
impede the quality of the development process and its resulting products. In this paper, we focus on improving
means for measuring the quality of methods used to support finding similarities between software product
artifacts, especially requirements. We propose a new set of measures, Signal-to-Noise ratios which extends
the commonly used precision and recall measures. We test the applicability of all three types of SNR on two
methods for finding similar requirements: the normalized compression distance (NCD) originating from the
domain of information theory, and the Vector Space Model originating from computer linguistics. The results
obtained present an interesting property of all types of SNR, all the values are centered around 1 which con-
firms our hypothesis that the analyzed methods can only limit the search space for the analysis. The analyst
may still have difficulties in manually assessing the correct links among the incorrect ones.

1 INTRODUCTION

The size of software system continues to grow not
only in terms of code lines, but also in terms of its
augmenting factors such as complexity, the degree of
heterogeneity and decentralization. These augment-
ing factors are recognized as the “hot spots” research
topics in Requirements Engineering (RE) (Cheng and
Atlee, 2007). This problem is not new, since many
studies reported a need for revisiting current software
and requirements engineering techniques under pres-
sure of growing size and complexity (Bergman et al.,
2002; Finkelstein, 1994; Leveson, 1997; Northrop
et al., 2006; Maccari, 1999).

Providing automatic support for the most time-
consuming activities of requirements engineering and
management has been recognized as one of the chal-
lenges in development and large and complex sys-
tems (Konrad and Gall, 2008; Berenbach et al., 2009;
Finkelstein, 1994). In particular, techniques and tools
that can ease, and partially automate the task of identi-
fying and document traceability links among require-
ments artifacts and between requirements and other
artifacts (Cheng and Atlee, 2007; Cleland-Huang
et al., 2004; Hayes et al., 2006a; Marcus and Maletic,
2003; Sabetzadeh and Easterbrook, 2005; Cleland-

330

Whnuk, K., Borg, M. and Gorschek, T.

Huang et al., 2005; Karlsson et al., 2007).

Several methods have been proposed and eval-
uated for semi-automated tracing requirements, in-
cluding scenario and test case-based methods (Egyed,
2003), policy-based methods (Murta et al., 20006),
event-based methods (Cleland-Huang et al., 2003a)
and rule-based approaches (Spanoudakis et al., 2004).
Three IR-rooted methods dominate semi-automatic
and automatic support for requirements traceability:
Latent Semantic Analysis (LSA), the Vector Space
Model, and probabilistic approaches (Hayes et al.,
2006a; Hayes et al., 2008; och Dag et al., 2004;
Deursen et al., 2006; De Lucia et al., 2004; Antoniol
et al., 2000).

Despite delivering promising results in terms of
precision and recall, the methods have three major pit-
falls: (1) they require pre-processing of data, some-
times manually, (2) their performance heavily de-
pends on the data input and its quality and (3) they
leave the analysts with a list of candidate link that
he has to manually investigate. Thus, these semi-
automatic methods only help to effectively reduce the
search space rather than making actual decisions.

In that case, using precision and recall to evalu-
ate the mentioned methods can be questioned in the
following way: are these quality measures providing

Towards New Ways of Evaluating Methods of Supporting Requirements Management and Traceability using Signal-to-Noise Ratio.

DOI: 10.5220/0007717203300339

In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 330-339

ISBN: 978-989-758-375-9

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Towards New Ways of Evaluating Methods of Supporting Requirements Management and Traceability using Signal-to-Noise Ratio

the full picture of the support of the linking process
or maybe only precisely describe how well the search
space is limited? One of the studies that uses ma-
chine learning approach for tracing regulatory codes
to product specific requirements reported that one of
the methods used in the study successfully excluded
1806 of the potential 1889 links. (Cleland-Huang
et al., 2010). This, however, means that 83 links were
left for the analyst to analyze and the precision, in
this case, was below 10%! How many links are pre-
sented for the analysts: hundreds or maybe only ten or
twenty? How easy it is for the analyst to detect “false
positives”? How the presence of false positives next
to correct answer impact the judgment of the require-
ments analyst?

As identified by (Jarvelin and Kekildinen, 2002),
it is necessary to develop measures, going beyond pre-
cision and recall, which credit methods that clearly
distinguish between highly relevant and less relevant.
Without good measures to base evaluations on, future
improvements to traceability tools are hard to make in
a systematic way.

In this paper we propose extending the current
way of accessing performance and quality of semi-
automatic methods for supporting requirements trace-
ability. We propose using the Signal-to-Noise Ratios
(SNR) as a complementary quality measure that can
bring more qualitative insights into the performance
of tested methods. We complement other research ef-
forts but expanding the already presented measures,
e.g., Mean Reciprocal Rank, Accuracy@N, Recall-
Rate@N, Mean Average Precision (Zhou et al.,
2012).

We discovered that most values are centered
around 1 which may cause difficulties in manually
assessing the correct links among the incorrect ones.
We applied SNR to the new methods for measuring
similarity between requirements that does not require
any pre-processing, based on Normalized Compres-
sion Distance (NCD) from the information theory do-
main (Vitanyi et al., 2008).

This paper is organized as follows: Section 2 de-
scribes related work and bring some rationale into re-
search. Section 3 gives the theoretical background of
SNR and Section 4 proposes how SNR can be used in
software engineering. Section 5 presents results from
measuring SNR for two methods for supporting the
requirements consolidation task. Section 6 presents
the results of our case study and our interpretations
of the data, Section 7 discusses threats to validity and
in section 8 we draw conclusions and directions for
future work.

2 RELATED WORK

The key activities of requirements traceability are es-
tablishing and maintaining traceability links between
artifacts. Many of the current state-of-the-art tools
support semi-automatic link generation or identifica-
tion. In most cases, a human analyst is presented a list
of possible candidates, thus significantly reducing the
search space, but the actual decision making must be
done manually. The analyst can actually discard true
links and make the results of semi-automated trace-
ability worse (Hayes et al., 2005).

The main purpose of Information Retrieval (IR)
methods is to extract relevant items and at the same
time retrieve as few of the non-relevant as possible.
The most relevant candidates should be ranked first
when presented to the user, in order to support rele-
vance judgments and decision making.

Various similarity techniques have been used to
support traceability in the software engineering do-
main. Natt och Dag et al. used vector-space mod-
els to measure linguistic similarities to link market
requirements to product requirements using the tool
ReqSimile (och Dag et al., 2005). Hayes et al. de-
veloped the tool RETRO to link requirements to de-
sign documents and bug reports, by default also us-
ing vector-space models (Hayes et al., 2008). La-
tent Semantic I Indexing (LSI) is an extended vector-
space based method that has been used (Marcus and
Maletic, 2003; De Lucia et al., 2008), and probabilis-
tic methods like what is used in spam filters has also
been tried (Antoniol et al., 2000). Cleland-Huang
et al. proposed a new method of traceability based
upon event-notification applicable even in a hetero-
geneous and globally distributed development envi-
ronment (Cleland-Huang et al., 2003b). Huffman
Hayes et al. proposed the RETRO tool for improving
the overall quality of the dynamic candidate link gen-
eration for the requirements tracing process (Hayes
et al., 2006b).

Even though these IR techniques indicate useful-
ness, in all cases there is considerable scope for im-
provements. A study conducted by Lee et al., claims
that assessment of semantic similarity fundamentally
is a human cognitive capability, and neither of the
vector-space oriented techniques word-based, n-gram
nor latent semantic analysis produced good correla-
tions with human judgments (Lee et al., 2007). All
approaches mentioned, including direct spam filter
evaluations as (Tariq Banday and Jan, 2009), could
utilize a measure for decision making. Hayes et al.
stressed that the issue of analyst interaction with soft-
ware needs further studies (Hayes et al., 2006b).

Hayes et al. (Hayes et al., 2003) present re-

331

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 1: The results from algorithms after trimming (Hayes et al., 2003). R indicates Recall and P precision.

Vanilla algorithm Retrieval with key Retrieval with the-
(10x10) phrases algorithm saurus algorithm
(10x10) (19x50)
Top 4 R:23% P: 17.6% R:27.2% P: 5.2% R: 85.4% P: 40%
Above 25 R:23% P: 75% R:27% P: 25% R:9.7% P: 40%
Within 33 R:23% P: 23% R 27.2% P: 15.7% R: 48.7% P: 44.4%
Within 50 R: 33% P: 20% R:27.2% P: 15.7% R 58.5% P: 42.1%

sults in terms of precision and recall depending on the
threshold given in number of candidate requirements
showed by the algorithms. They decided to decrease
the size of the list in order to improve precision as
a potential cost to recall. The selected values of the
threshold were: top 4 candidates, or candidates with
similarity above 0.25, any candidates with a similarity
within 0.33 and 0.50 of the similarity of the top candi-
date. The results do not reveal any particular function
or relationship that can be later explored. For example
for the vanilla algorithm, both above 25 and within 33
returned the same recall 23%, but above 25 returned
precision of 75% while within 33 only 23%.

Several measures have been proposed to
better evaluate IR methods. Jarvelin and
Kekildinen (Jéarvelin and Kekéldinen, 2002) propose
measures based on cumulated gain, combining
the degree of relevance and rank. This gives an
indication about the quality of a method, but does
not evaluate the support for decision making. Spink
and Greisdorf (Spink and Greisdorf, 2001) suggest
the median effect as a measure to evaluate the way
the distribution of relevance judgments of retrieved
items are generated by a method, but this is mainly
focused on being an alternative to dichotomous
measures. Kekildinen and Jarvelin (Kekéldinen and
Jarvelin, 2002) also, identify the weakness of just
evaluating binary relevance as is the case for recall
and precision, and they propose generalized recall
and precision, which reward IR methods that extract
more relevant items. These measures also do not
evaluate how easy it is to make decisions. While
Zhou et al. focused on measures that can evaluate a
process that produces a list of possible responses to
a query, e.g. Mean Reciprocal Rank, Mean Average
Precision (Zhou et al., 2012; Manning et al., 2008),
the SNR introduced in this work tries to describe how
much the analyst is distracted by the presence of false
positives next to a correct answer in the candidate
list.

Other measures as expected search
length (Cooper, 1968), normalized recall mea-
sure (Rocchio, 1966), sliding ratio measure (Pollack,
1968), satisfaction-frustration-total measure (Myaeng
and Korfhage, 1990) can all be used to credit meth-

332

ods presenting relevant items high up the list, but
again evaluation of decisions making support is not
targeted.

3 DEFINITIONS AND THEORY

The signal-to-noise ratio (SNR) is a measure widely
used in science and engineering to quantify how much
a signal has been corrupted by noise. It compares the
level of a desired signal to the level of background
noise which is a fundamental measure in signal pro-
cessing theory.

P .
SNR — signal (1)
noise
SNR = —=)
sigma

In its classical definition, signal-to-noise is a ratio
between the average power of the signal (Ps;gnq;) and
the average power of the noise (P,,ise) (1) (Gonzalez
and Woods, 2006). Since signals have usually a very
wide dynamic range, the logarithmic decibel scale is
used to express SNR. There exist alternative defini-
tions of SNR, like for example the ratio of mean (mu)
to standard deviation (sigma) of a signal or measure-
ment (2). This definition is commonly used in image
processing (Gonzalez and Woods, 2006; Stathaki,
2008; Raol, 2009; Russ, 1999) where the SNR of an
image is usually calculated as the ratio of the mean
pixel value to the standard deviation of the pixel val-
ues over a given neighborhood.

The higher the ratio, the less obtrusive the back-
ground noise is. In other words it is a ratio be-
tween the meaningful information and the back-
ground noise. In our case, the signal is represented by
the correct link between two objects while the noise
is represented by all other potential links. In digital
signal processing the noise is the error signal cause
by the quantization of the signal, assuming that the
analog-digital conversion has been performed.

Fens precision x recall 3)

precision + recall

Towards New Ways of Evaluating Methods of Supporting Requirements Management and Traceability using Signal-to-Noise Ratio

o true_positives
Precision =

true_positives + false_positives

true_positives

Recall = — -
true_positives + false_negatives

Precision and recall are widely used for statisti-
cal classifications. They can be seen as measures of
exactness or fidelity (precision) or completeness (re-
call). The relationship between precision and recall
is often inverse, the effort put on increasing the recall
of the method often result in a decrease of precision
and vice-versa. Therefore, these measures should not
be discussed in isolation and are often combined into
the single measure, such as the F-measure, which is
the weighted harmonic mean of precision and recall
(see equation 3 for an evenly weighted version of F
measure). Finally, based on the notion of true posi-
tives, true negative, false positives, and false negatives
we can classify the results of the information retrieval
task and build additional measures.

For example, recall can be called true positive
rate 4, or true negative rate can be called specificity 5.
These measures can be suitable for measuring the
quality of the result of the automatic classification
task, but do not assume that someone, for example
a requirements analyst will use the results as a list
of possible candidates in linking similar objects (Natt
och Dag et al., 2006). In this case, the measures de-
scribed above give only an indication of the entire re-
sult set, without assessing the quality of how distinc-
tive the correct answers are from the incorrect ones.
We assume that this support can help the human an-
alyst to assign more correct links and minimize the
number of false positive links (Natt och Dag et al.,
2006).

4 RATIONALE FOR DEFINING
SIGNAL-TO-NOISE RATIO

To illustrate the rationale for defining yet another
measure we use an example of linguistic tool support
for requirements consolidation (Natt och Dag et al.,
2006). In this case, a similarity measure has been uti-
lized to propose a list of requirements candidates and
their similarity score to one actually analyzed. The
requirements analyst uses the resulting list of candi-
dates to assign links between two or more similar re-
quirements. In the experiment performed to validate
the method (Natt och Dag et al., 2006), a set of 30
requirements has been analyzed against 160 other re-
quirements. The key with correct answers, consist-
ing of 20 links, had been prepared before the experi-
ment. Once the correct links have been assigned, they

have been checked with the output of the tool to as-
sess which position on the candidate list they will be
classified.

Histogram of the positions of similar requirements in the
automatically produced ranked list of similar requirements

s -

5

s

Sh

PR

0 [
1 2 3 4 s 6 7 8 9 10

11 12 13 14 15

Number of requirements

Position in ranked list

Figure 1: Histogram of the positions of similar require-
ments in the automatically produced ranked list of similar
requirements (Natt och Dag et al., 2006).

Figure 1 depicts a histogram of the distribution
of the positions at which the correctly similar re-
quirements end up in the ranked list produced by the
tool (Natt och Dag et al., 2006). For the data set used
in (Natt och Dag et al., 2006), almost all (17 out of
20) of the correct answers end up at position 8 or bet-
ter in the ranked list, and could therefore be quickly
spotted. The question that remains unanswered here
is what are the similarity scores for all the incorrect
links proposed on the list. In case the correct answer
has position 8 on the list, there seems to be 7 other an-
swers ranked as more similar than the correct answer,
which the analyst has to correctly disregard in order
to create the correct link. The decision which links to
reject may be hard if the similarity scores of all incor-
rect but highly ranked requirements are very similar
to the score of the correct answer. In other words, the
analysts may get mislead by the fact that the noise is
highly ranked than the correct signal. Thus, we pro-
pose applying three SNR measures that gives insights
of the differences between the correct answer and the
very close appearing incorrect answer.

To address the issues mentioned above, we pro-
pose three versions of signal-to-noise that can be ap-
plied for evaluation of automatic methods for support-
ing decision-oriented tasks in software engineering.
The first measure, called Individual SNR is the ratio
between the correct answer and the closest incorrect
answer on the list of candidates. In a case when the
correct answer is not ranked as number one on the list
of candidates, the Individual SNR is an average value
of the two closest incorrect proposals, one higher than
the correct one and one lower than the correct answer
6. The interpretation is a type of SNR may be that

333

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

it is the ability to spot the correct answer among the
closest proposed incorrect answer(s).

score_corr

SNRindividual = . ,
individual (score_incorr-down+ scope_incorr_up) /2

(6)

The second version of SNR we propose is the
Maximum Noise SNR which is the ratio of the simi-
larity degree of the correct answer of the candidates
list to the maximum value of similarity of the incor-
rect answer presented in the list of candidates 7.

SNRyjox = score_corr 7
score_incorrect
MAX

The third version of SNR we propose in this paper,
called Average SNR, is the ratio between the value of
similarity of the correct answer to the average noise
ratio value above a certain threshold 8. The thresh-
old in Figure 1 has been set to 15, which means that
candidate requirements that scored below number 15
on the list were not considered. However, this is a
modified version of the Average SNR measure. Our
definition consider a value rather than a certain num-
ber on the ranked list as the threshold.

score_corr

SNRavg = Vi < threshold (8)

n
Z score_incorrect
i=1

nbr_of _incorrectyits

S MEASURING SNR FOR THREE
REQUIREMENTS SIMILARITY
METHODS

In this section, we present results from measuring the
three versions of SNR on the set of requirements de-
scribed in section 4. The requirements are reused
from the experiment on a linguistic tool, support-
ing the consolidation of requirement sets (och Dag
et al., 2005). The analysis has been performed for
two methods of measuring the similarity between the
requirements: (1) the linguistic method based on vec-
tor space model (och Dag et al., 2005; Natt och Dag,
2006b) and (2) the normalized compression distance
method based on information theory (Cilibrasi et al.,
) and POIROT (Lin et al., 2006).

334

5.1 Data in the Context

The set contains 30 requirements that are checked
against 160 requirements. There exist 20 correct links
between the requirement sets. Knowing which links
are correct, we have compared the values of the simi-
larity score for the correct and incorrect answers.

Next, we used the ReqSimile tool (och Dag et al.,
2005; Natt och Dag, 2006b), which implements the
linguistic method, and the Complearn implementation
of normalized compression distance (Cilibrasi et al.,)
to measure the SNR values for the two techniques.
The linguistic method uses a vector-space representa-
tion of requirements where each requirement is rep-
resented using a vector of terms with a respective
number of occurrences (och Dag et al., 2004; Man-
ning and Schiitze, 2002). From the matrix which
shows how many times a term appears in each re-
quirement the information may be derived about how
many terms the two requirements have in common i.e.
overlap. The very similar requirements will result in
closely clustered points in this vector space (Manning
and Schiitze, 2002). In the evaluated method (och
Dag et al., 2005) a frequency of terms has been used,
instead of counting the occurrences. The cosine cor-
relation measure is often chosen in text retrieval ap-
plications for the purpose of finding similar require-
ments, as it does not depend on the relative size of the
input (Manning and Schiitze, 2002).

wa(f)*wg(f)
\/ZWf<r>2*ng<r>2

The measure in 9 is used, where f and g are two
requirements, ¢ ranges over terms, and w(?) denotes
the weight of term ¢. The term weight is typically a
function of the term frequency, since while the num-
ber of times a word occurs is relevant, its relevance
decreases as the number gets larger (Manning and
Schiitze, 2002). As mentioned in (Natt och Dag,
2006a), there is no guarantee that two requirements
that are similar according to the 6(.) measure are in-
deed related. The method evaluated does not con-
sider hypernyms and hyponyms (Jackson and Moulin-
ier, 2002). POIROT is a Web-based tool supporting
traceability of distributed heterogeneous software ar-
tifacts. A probabilistic network model is used to gen-
erate traces between requirements, design elements,
code and other artifacts stored in distributed 3rd party
case tools such as DOORS and source code reposito-
ries (Lin et al., 2006).

Procedures of the Case Study. To avoid errors
while measuring, the analysis has been performed

o(f.8) = €))

Towards New Ways of Evaluating Methods of Supporting Requirements Management and Traceability using Signal-to-Noise Ratio

twice by two researchers, working independently and
then compared. Any inconsistencies and possible er-
rors were discussed and corrected.

5.2 Results of Measuring SNR on the
First Dataset

The results from measuring the three types of SNR
are presented in Tables 2, 3, and 4. For the average
SNR calculations we use similarity 0.5 as the thresh-
old in the linguistic approach. The very low similarity
measures of the NCD forced us to lower the threshold
to 0.4 for this method, accepting that direct compar-
isons no longer are possible. R19, the only quality
requirement, was in all calculations considered as an
outlier and disregarded. Its format and structure lead
to too high similarity values.

A quick comparison between the three techniques
can be seen in Table 5. The SNR values are in all
cases close to 1 and the correct link is in the most
cases not the first on the list. The linguistic VSM
based approach has in all cases higher SNR than the
proposed method from the domain of information the-
ory. POIROT seems to deliver promising values for
some requirements R1 (SC13) and R2 (41104).

As it can be seen in Table 2 only for one require-
ment (R19) the SNR value is more than 2. In all
other cases the values ranges from 0.69 to 1.2 for
various types of SNR. The Na values in Table 2 for
the AvgSNR corresponds in this case to the situa-
tion when the measurement could not be performed:
for example in cases of R9 and R16 both the correct
answer and the highest noise were below threshold
0.5. Moreover, for some data points, the values for
MaxSNR and AvgSNR are identical (R3 and R17),
which means in this case that there are only two data
points above the threshold and the top candidate is
the noise (R3 case) or a correct signal (R17). The
equal values for both IndSNR and MaxSNR indicate
that the correct answer is number one on the list of
candidates (R2, R5, R11, R17, R18, and R19). The
average value for IndSNR is slightly higher (1.035)
than for MaxSNR (0.93) and AvgSNR (0.974) 5. Fi-
nally, the biggest median value represents results for
AvgSNR (1.06), comparying to IndSNR(1.009) and
MaxSNR(0.94)

The results for measuring all three types of SNR
for the Normalized Compression Distance method
of assessing the similarity between requirements are
more dispersed, see Table 3. The values range from
0.28 to 1.04. The correct answer mostly ended up on
the list of candidates much lower than for the linguis-
tic similarity measure method (only for 4 cases it is
within the top 10 candidates). The average for Ind-

Table 2: The results from measuring all three types of SNR
for the ReqSimile tool that uses vector space model.

Requirement IndSNR MaxSNR AvgSNR Pos. on

the list

R1 (SC13) 1.04 0.98 1.16 2
R2 (41104) 1.26 1.26 1.34 1
R3 (41112) 1.12 0.97 0.97 2
R4 (41114) 1 0.68 0.68 3
R5(41123) 1.04 1.04 1.14 1
R6 (41301) 1.005 0.89 0.95 5
R7 (41307) 1.009 0.57 0.62 64
R8 (41309) 0.97 0.79 0.83 15
R9 (41414) 1.02 0.91 Na 3
R10 0.99 0.95 1.19 3
(41601)
R11 1.008 1.008 1.07 1
(416006)
R12 0.99 0.94 1.06 5
(41608)
R13 1.02 0.89 0.92 8
(41710)
R14 1.009 0.94 1.20 6
(41804)

1.001 0.91 1.20 8
R15 1.001 0.89 1.06 12
(41811)
R16 (4205) 1.01 0.89 Na
R17 1.12 1.12 1.12 1
(43302)
R18 1.05 1.05 1.05 1
(43303)
R19 2.7 2.7 Na 1
(43402)

SNR is the highest (1), with more differences to other
types of SNR (MaxSNR average is equal to 0.72 and
AvgSNR average is equal to 0.759 in this case). The
similar, bigger than in the case of linguistic support,
difference can be seen between the medians for Ind-
SNR (1), MaxSNR (0.75) and AvgSNR (0.75) respec-
tively.

The result for the POIROT tool (see Table 4 are
similar than those for ReqSimile. POIROT returns
much better IndSNR for R1 and R2 and similar values
for the remaining requirements.

6 CASE STUDY RESULTS AND
INTERPRETATION

As it can be seen from the results depicted in Ta-
bles 2, 3 and 4 the values for all three types of SNR
are centered around 1. This may lead to the following

335

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 3: The results from measuring all three types of SNR
for the tool using NCD.

Requirement IndSNR MaxSNR AvgSNR Pos. on

the list
R1 (SC13) 1.03 0.93 0.97 4
R2 (41104) 1 0.49 0.49 111
R3 41112) 1 0.75 Na 20
R4 (41114) 1.06 0.84 Na 5

R5 (41123) 1.01 1.01 1.04 1
R6 (41301) 0.99 0.42 0.48 155
R7 (41307) 1.003 0.66 0.72 97
R8 (41309) 0.998 0.84 0.86 57

RO (41414) 1 0597 0.62 134
R10 1.007 066 079 80
(41601)
RI1 1.01 08 Na 52
(41606)
RI2 098 085 092 13
(41608)
RI13 1 089 1 9
(41710)
R14 0993 091 099 14
(41804)

1 077 084 73
RIS 1 073 NaN 95
(41811)
RI6(4205) 093 0507 057 92
R17 099 0564 0.564 41
(43302)
RIS 1 0537 0537 29
(43303)
R19 0996 028 038 136
(43402)

interpretation: in the task of requirements consolida-
tion for the methods that have been tested, the dif-
ferences between the values of similarity of the cor-
rect answer and the incorrect answers are very small.
Thus, SNR offers better understanding and new in-
sights about these methods. Still, we should further
investigate how the human analyst reacts to a list of
X candidates with similar SNR values. Paradoxically,
the struggle to improve IR-methods may result in a
candidate list of very similar requirements and those
make the final decision more difficult.

The results also provide valuable information
about the nature of candidate links that an analyst has
to examine while assigning links. The low levels of
SNR obtained in this study suggest that the analyst
may have difficulties assessing which of the proposed
candidates is the correct one, especially if the differ-
ences of the degree of similarity are very small. As a
result, in this case, the analysts must turn back to the

336

Table 4: The results from measuring all three types of SNR
for the POIROT tool. In this case we calculated average
SNR for all data point with confidence level >=50%.

Requirement IndSNR MaxSNR AvgSNR Pos. on
the list

R1 (SC13) 1.31 0775 2.05 3
R2 (41104) 2.01 2.01 2.56 1
R3 (41112) 1 0.766 0918 12
R4 (41114) 1.02 0.75 1.19 4
R5(41123) 1.18 0.99 1.92 2

R6 (41301) 1 076 0.60 43
R7(41307) 099 083 0.83 28
R8 (41309) 1 071 053 47
RO (41414) 098 093 138 3
R10 097 092 125 2
(41601)
RI1 098 0775 1.14 4
(41606)
RI2 098 085 101 3
(41608)
RI3 101 082 09 11
(41710)
R14 1 089 097 11
(41804)

1 085 086 18
RIS 1 079 089 16
41811)
RI16(4205) 0995 04 019 34
R17 1.3 1.3 194 1
(43302)
RIS 106 1.06 25 1
(43303)
R19 327 327 588 1
(43402)

original text to make the judgment, or more or less
guess the correct answer by selecting a requirement
from the list of candidates.

7 THREATS TO VALIDITY

We discuss validity threats based on the classification
of threats provided by Yin (Yin, 2002). To address re-
liability we have measured all three types of SNR for
three methods that can be used to help finding simi-
lar requirements. Moreover, the data set selected for
this study is reused from a previous study on support-
ing similarity analysis of requirements from multiple
sources together with the correct answer. Finally, both
requirements sets and correct answer can be shared
upon a request for replications.

Due to the descriptive and exploratory nature of

Towards New Ways of Evaluating Methods of Supporting Requirements Management and Traceability using Signal-to-Noise Ratio

Table 5: Comparison of the three SNR measures and posi-
tion of the correct link for Reqsimile, NCD and POIROT.

ReqSimile NCD POIROT

Average IndSNR 1.035 1 1.20
Median IndSNR 1.009 1 1
Average MaxSNR 0.930 0.724 1.02
Median MaxSNR 0.94 0.75 0.84
Average AvgSNR 0.974 0.759 148
Median AvgSNR 1.06 0.75 1.07
Average Position 7.526 56.947 12.25
Median Position 3 52 4

this study, where the main focus is to introduce a new
set of measures and to provide an example without
an attempt to draw any causal relationship, the inter-
nal threats to validity are minimized. Still, it would
be valuable to perform a user study where we could
ask the participants to perform a task and see if SNR
results “matches” the performance of users in per-
forming this tasks (Kochhar et al., 2016). The as-
sumed positive causal relationship of SNR introduc-
tion should be confirmed in user surveys.

Since this study proposes only one way of measur-
ing the differences between the candidate links pre-
sented to the analysts, the threats to construct valid-
ity remains not fully addressed. It remains to be an
open question how SNR performs in relation to other
metrics suggested to evaluate IR techniques applied
to software engineering, e.g., Mean Reciprocal Rank,
Accuracy @N, Recall-Rate@N, Mean Average Preci-
sion, just to name a few.

Finally, the threats to external validity have been
partially addressed by measuring the three types of
SNR for two methods that may be used as support
for linking similar requirements. Moreover, there has
been several new IR-based methods proposed. Mea-
suring SNR on as many IR-based methods as possible
remains to be the part of future work. Moreover, We
plan to expand our analysis to other traceability re-
covery techniques, e.g., bug localization (Rath et al.,
2018). The used dataset is small and we plan to repli-
cate our study on much larger datasets.

8 CONCLUSIONS AND FUTURE
WORK

Producing software is a complex task and keeping
the involved processes aligned is an important chal-
lenge (Sabaliauskaite et al., 2010). One approach
to improving the alignment is to utilize traceability
techniques to create and maintain links between soft-

ware artifacts. Most of the traceability techniques cur-
rently available are semi-automatic (Raja and Kam-
ran, 2008). They present a list of candidates and a hu-
man analyst has to make the final decision, whether a
link should be established or not. The commonly ac-
cepted measures for evaluating traceability techniques
fail short on measuring the support for this decision.

In this paper, we propose a new way of measuring
the quality of the list of candidates for semi-automatic
methods. We apply a new set of measures, signal-
to-noise ratio, to a set of requirements and evaluate
three methods. The results show that the differences
between the signal and noise are small. This clearly
indicates that an analyst may have a problem when
making the decision. We propose that the measures
should be used to help improve the semi-automatic
techniques, and also to lay the foundation for more
automated tools in the future. Another contribution
of this paper is that we have tried normalized com-
pression distance as a method to assess the similarity
between software artifacts, even though the results are
discouraging.

Future work includes expanding the data set with
more textual requirements and test cases, and mea-
suring SNR for more of the available techniques. We
also plan to further explore the suitability of NCD for
non-textual requirements tracing.

ACKNOWLEDGMENTS

This work is supported by the Knowledge Foundtion
in Sweden within the Software Engineerng Rethought
project, https://rethought.se/.

REFERENCES

Antoniol, G., Canfora, G., de Lucia, A., and Casazza, G.
(2000). Information retrieval models for recovering
traceability links between code and documentation.
Software Maintenance, IEEE International Confer-
ence on, 0:40.

Berenbach, B., Paulish, D. J., Kazmeier, J., and Rudorfer,
A. (2009). Software & Systems Requirements Engi-
neering: In Practice. Pearson.

Bergman, M., King, J. L., and Lyytinen, K. (2002). Large-
scale requirements analysis revisited: The need for
understanding the political ecology of requirements
engineering. Req Eng, 7(3):152-171.

Cheng, B. H. C. and Atlee, J. M. (2007). Research di-
rections in requirements engineering. In FOSE '07:
2007 Future of Software Engineering, pages 285-303,
Washington, DC, USA. IEEE Computer Society.

337

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

Cilibrasi, R., Cruz, A. L., de Rooij, S., and Keijzer, M. The
complearn suite website. http://www.complearn.
org/index.html.

Cleland-Huang, J., Chang, C. K., and Christensen, M.
(2003a). Event-based traceability for managing evolu-
tionary change. IEEE Trans. Softw. Eng., 29(9):796—
810.

Cleland-Huang, J., Chang, C. K., and Christensen, M.
(2003b). Event-based traceability for managing evo-
lutionary change. IEEE Tran on Soft Eng, 29(9):796—
810.

Cleland-Huang, J., Czauderna, A., Gibiec, M., and Eme-
necker, J. (2010). A machine learning approach for
tracing regulatory codes to product specific require-
ments. In ICSE Conference, pages 155-164, New
York, NY, USA. ACM.

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhan-
skaya, E., and Christina, S. (2005). Goal-centric trace-
ability for managing non-functional requirements. In
ICSE Conference, pages 362-371, New York, NY,
USA. ACM.

Cleland-Huang, J., Zemont, G., and Lukasik, W. (2004).
A heterogeneous solution for improving the return on
investment of requirements traceability. In IEEE RE
Conference, pages 230-239, Washington, DC, USA.
IEEE Computer Society.

Cooper, W. S. (1968). Expected search length: A single
measure of retrieval effectiveness based on the weak
ordering action of retrieval systems. J. Am. Soc. Inf.
Sci., 19(1):30-41.

De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.
(2004). Enhancing an artifact management system
with traceability recovery features. In 20th IEEE
ICSM Conference, pages 306-315, Washington, DC,
USA. IEEE Computer Society.

De Lucia, A., Oliveto, R., and Tortora, G. (2008). Adams
re-trace: Traceability link recovery via latent seman-
tic indexing. In Proceedings of the 30th ICSE Confer-
ence, ICSE °08, pages 839-842, New York, NY, USA.
ACM.

Deursen, A. V., Stehouwer, A., Lormans, M., Lormans,
M., gerhard Gross, H., gerhard Gross, H., Solingen,
R. V., and Solingen, R. V. (2006). Monitoring require-
ments coverage using reconstructed views: An indus-
trial case study. In 13th Working Conf. on Reverse
Eng, pages 275-284.

Egyed, A. (2003). A scenario-driven approach to trace
dependency analysis. [EEE Trans. Softw. Eng.,
29(2):116-132.

Finkelstein, A. (1994//). Requirements engineering: a re-
view and research agenda. pages 10 — 19, Los Alami-
tos, CA, USA.

Gonzalez, R. C. and Woods, R. E. (2006). Digital Image
Processing (3rd Edition). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Hayes, J. H., Dekhtyar, A., and Osborne, J. (2003). Improv-
ing requirements tracing via information retrieval. In
20th IEEE RE Confenrece, pages 151-161.

Hayes, J. H., Dekhtyar, A., and Sundaram, S. (2005). Text
mining for software engineering: How analyst feed-

338

back impacts final results.
Notes, 30(4):1-5.

Hayes, J. H., Dekhtyar, A., Sundaram, S., Holbrook, A.,
Vadlamudi, S., and April, A. (2008). Requirements
tracing on target (retro): Improving software mainte-
nance through traceability recovery.

Hayes, J. H., Dekhtyar, A., and Sundaram, S. K. (2006a).
Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Tran on Soft
Eng, 32:4-19.

Hayes, J. H., Dekhtyar, A., and Sundaram, S. K. (2006b).
Advancing candidate link generation for requirements
tracing: the study of methods. IEEE Tran on Soft Eng,
32(1):4-19.

Jackson, P. and Moulinier, 1. (2002). Natural language pro-
cessing for online applications. Text retrieval, extrac-
tion and categorization, volume 5. Benjamins, Ams-
terdam, Philadelphia.

Jarvelin, K. and Kekéldinen, J. (2002). Cumulated gain-
based evaluation of ir techniques.

Karlsson, L., Dahlstedt, s. G., Regnell, B., Natt och Dag,
J., and Persson, A. (2007). Requirements engineering
challenges in market-driven software development -
an interview study with practitioners. Inf. Softw. Tech-
nol., 49(6):588-604.

Kekildinen, J. and Jérvelin, K. (2002). Using graded rel-
evance assessments in ir evaluation. J. Am. Soc. Inf.
Sci. Technol., 53(13):1120-1129.

Kochhar, P. S., Xia, X., Lo, D., and Li, S. (2016). Practition-
ers’ expectations on automated fault localization. In
Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 165-176. ACM.

Konrad, S. and Gall, M. (2008). Requirements engineering
in the development of large-scale systems. In Pro-
ceedings of the 16th International Requirements En-
gineering Conference (RE 2008), pages 217-222.

Lee, M. D., Pincombe, B., and Welsh, M. (2007). A com-
parison of machine measures of text document simi-
larity with human judgments.

Leveson, N. G. (1997). Software engineering: stretching the
limits of complexity. Commun. ACM, 40(2):129-131.

Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya,
J., Bedford, G., Berenbach, B., Khadra, O. B., Duan,
C., and Zou, X. (2006). Poirot: A distributed tool
supporting enterprise-wide automated traceability. In
14th IEEE International Requirements Engineering
Conference (RE’06), pages 363-364.

Maccari, A. (1999//). The challenges of requirements engi-
neering in mobile telephones industry. pages 336 — 9,
Los Alamitos, CA, USA.

Manning, C. D., Raghavan, P., and Schiitze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA.

Manning, C. D. and Schiitze, H. (2002). Foundations of
Statistical Natural Language Processing. MIT Press.

Marcus, A. and Maletic, J. (2003). Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In ICSE Conference, pages
125-135, Washington, DC, USA. IEEE Computer So-
ciety.

SIGSOFT Softw. Eng.

Towards New Ways of Evaluating Methods of Supporting Requirements Management and Traceability using Signal-to-Noise Ratio

Murta, L. G. P, van der Hoek, A., and Werner, C. M. L.
(2006). Archtrace: Policy-based support for man-
aging evolving architecture-to-implementation trace-
ability links. In ASE Conference, pages 135-144,
Washington, DC, USA. IEEE Computer Society.

Myaeng, S. H. and Korfhage, R. R. (1990). Integration
of user profiles: models and experiments in informa-
tion retrieval. Information Processing & Management,
26(6):719 — 738.

Natt och Dag, J. (2006a). Managing Natural Language
Requirements in Large-Scale Software Development.
PhD thesis, Lund University.

Natt och Dag, J. (2006b). The reqsimile tool website. http:
//regsimile.sourceforge.net/.

Natt och Dag, J., Thelin, T., and Regnell, B. (2006). An
experiment on linguistic tool support for consolida-
tion of requirements from multiple sources in market-
driven product development. Empirical Software En-
gineering, 11(2):303-329.

Northrop, L., Felier, P., Habriel, R. P., Boodenough, J.,
Linger, R., Klein, M., Schmidt, D., Sullivan, K., and
Wallnau, K. (2006). Ultra-Large-Scale Systems: The
Software Challenge of the Future. Software Engineer-
ing Institute.

och Dag, J. N., Gervasi, V., Brinkkemper, S., and Regnell,
B. (2004). Speeding up requirements management in
a product software company. RE Conference, 0:283—
294.

och Dag, J. N., Gervasi, V., Brinkkemper, S., and Reg-
nell, B. (2005). A linguistic-engineering approach to
large-scale requirements management. [EEE Softw.,
22(1):32-39.

Pollack, S. M. (1968). Measures for the comparison of
information retrieval systems. Am. Doc., 19(4):387—
397.

Raja, U. A. and Kamran, K. (2008). Framework for require-
ments traceability.

Raol, J. R. (2009). Multi-Sensor Data Fusion with MAT-
LAB: Theory and Practice. Taylor and Francis, Inc.

Rath, M., Lo, D., and Mider, P. (2018). Analyzing require-
ments and traceability information to improve bug lo-

calization. In Int Conf Mining Software Repositories
(MSR), pages 442-453. IEEE.

Rocchio, J. J. J. (1966). Document retrieval systems: opti-
mization and evaluation. PhD thesis, Harvard Univer-
sity, USA.

Russ, J. C. (1999). The image processing handbook (3rd
ed.). CRC Press, Inc., Boca Raton, FL, USA.

Sabaliauskaite, G., Loconsole, A., Engstrom, E., Un-
terkalmsteiner, M., Regnell, B., Runeson, P,
Gorschek, T., and Feldt, R. (2010). Challenges in
aligning requirements engineering and verification in
a large-scale industrial context. In Proc. REFSQ 2010.

Sabetzadeh, M. and Easterbrook, S. (2005). Traceability
in viewpoint merging: A model management perspec-
tive.

Spanoudakis, G., Zisman, A., Perez-Minana, E., and
Krause, P. (2004). Rule-based generation of require-
ments traceability relations. JSS, 72(2):105-127.

Spink, A. and Greisdorf, H. (2001). Regions and levels:
measuring and mapping users’ relevance judgments.
J. Am. Soc. Inf. Sci. Technol., 52(2):161-173.

Stathaki, T. (2008). Image Fusion: Algorithms and Appli-
cations. Academic Press.

Tariq Banday, M. and Jan, T. R. (2009). Effectiveness and
Limitations of Statistical Spam Filters. ArXiv e-prints.

Vitanyi, P. M. B., Balbach, F. J., Cilibrasi, R. L., and Li, M.
(2008). Information Theory and Statistical Learning,
chapter Normalized Information Distance, pages 45—
82. Springer.

Yin, R. K. (2002). Case Study Research: Design and Meth-
ods. Sage Publications.

Zhou, J., Zhang, H., and Lo, D. (2012). Where should the
bugs be fixed? more accurate information retrieval-
based bug localization based on bug reports. In 34th
ICSE Conference, pages 14-24.

339

