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1University of Zaragoza, Zaragoza, Spain
2Aragon Institute of Engineering Research (I3A), Zaragoza, Spain

3everis / NTT Data, Zaragoza, Spain
4University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain

Keywords: Ontology Alignment, Hyponymy Relationships, Semantic Web.

Abstract: Using intelligent techniques to automatically compute semantic relationships across ontologies is a challeng-
ing task that is necessary in many real-world applications requiring the integration of semantic information
coming from different sources. However, most of the work in the field is restricted to the discovery of syn-
onymy relationships. Hyponymy relationships, although in the real world they are more frequent than syn-
onymy, have not received similar attention. In this paper, we evaluate a technique based on shared properties
used in the discovery of hyponymy relationships and identify some limitations of ontology sets commonly
used as benchmarks. We also argue that new lexical similarity measures are needed and discuss a preliminary
proposal.

1 INTRODUCTION

In recent years, ontologies have become a standard for
knowledge representation. An ontology is an explicit
and formal specification of the concepts, individuals,
and relationships that exist in some area of interest,
created by defining axioms that describe the proper-
ties of these entities (Baader et al., 2017; Staab and
Studer, 2009). They have been successfully used in
many applications, making knowledge maintenance,
addition of semantics to data, information integration,
and reuse of components easier.

As each ontology expresses the point of view of a
certain group of people about a given knowledge field,
it is not uncommon that different ontologies have re-
lated semantic terms. Ontology alignment consists in
using intelligent techniques to find semantic relation-
ships between elements belonging to different ontolo-
gies (Ehrig, 2006; Euzenat and Shvaiko, 2013), so
that the integration of the original ontologies becomes
easier. For example, it is common to look for syn-
onymy, hyponymy, or disjointness relations between
a concept from a source ontology and a concept from
a target ontology.

Ontology alignment is widely recognized as a
very important problem for data integration from dif-
ferent sources, and we find it particularly interesting
in semantic mobile distributed systems. For exam-

ple, semantic apps using semantic reasoners on mo-
bile devices (Bobed et al., 2017; Bobed et al., 2015)
typically needs to integrate the user context (usually
represented using an ontology) with more general do-
main ontologies or, in multiagent scenarios, with on-
tological knowledge from other users that co-operate
to solve complex tasks. This is the case, for exam-
ple, of the SHERLOCK system (Yus et al., 2014),
where users exchange information among themselves
related to existing Location-Based Services in the
area.

Although there has been a considerable amount
of work in the field of ontology alignment, most of
the approaches restrict themselves to the problem of
finding synonymy relationships (i.e., finding pairs of
elements from different ontologies such that are se-
mantically equivalent). In this paper, we will focus
on the the less studied problem of finding hyponymy
relationships (i.e., finding pairs of elements from dif-
ferent ontologies such that one of them is more gen-
eral than the other). Indeed, synonymy is a very de-
manding relationship that implies that the two aligned
entities have exactly the same meaning: two equiva-
lent concepts must have exactly the same individuals
in all possible interpretations. On the contrary, in real
world domains it is more common to find terms that
are quite similar but not exactly the same, as it hap-
pens with hyponymy, where two related concepts rep-
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resent similar semantics but one subsumes the other.
As an example of the smaller attention that the

community has paid so far to the discovery of
hyponymy relationships, we can mention the fact
that the Ontology Alignment Evaluation Initiative
(OAEI)1 has been organizing (annually since 2004)
a benchmark of ontology alignment systems, mainly
focused on synonymy relationships, and only two of
these editions (20092 and 20113) included an “ori-
ented matching” track dedicated to subclass relation-
ships.
This paper provides the following contributions:

• We evaluate the impact of the shared properties in
the discovery of hyponyms. Based on our experi-
ments, we conjecture that existing benchmarks are
not appropriate enough and that new datasets are
needed.

• We claim that new lexical measures between on-
tology entity names are needed, and show the re-
sults of an evaluation of a simple heuristic.

The rest of this paper is organized as follows.
Firstly, Section 2 recalls the notion of hyponymy in
ontologies and some salient properties. Next, Sec-
tion 3 evaluates empirically the impact of shared
properties in hyponymy relationships. Then, Sec-
tion 4 proposes and evaluates a novel lexical measure
on entity names. Finally, Section 5 overviews some
related work and Section 6 sets out some conclusions
and ideas for future work.

2 HYPONYMYS IN ONTOLOGIES

As in natural language, two synonyms in an ontology
have the same meaning. Clearly, synonymy is a re-
flexive, symmetric and transitive relation.

A common definition of hyponym in natural lan-
guage is that of a word with a more specific meaning
than a general or superordinate term called hypernym.
We can see how this almost directly maps to the no-
tion of subsumption between two ontological terms
Eh and EH , which might belong to the same ontol-
ogy O or two different ontologies. Note that if two
terms have a hyponymy relationship, they cannot be
synonyms.

Hyponymy is irreflexive and asymmetric relation:
a term is never a hyponym of itself, and if Eh is a hy-
ponym of EH , EH is not a hyponym of Eh. Hyponymy
is also a subproperty of subsumption. If Eh is an hy-
ponym of EH then Eh is a subclass of EH . Indeed,

1http://oaei.ontologymatching.org
2http://oaei.ontologymatching.org/2009/oriented
3http://oaei.ontologymatching.org/2011/oriented

in any interpretation model I we have that EI
h ⊆ EI

H .
The converse of the previous property does not hold in
general because subsumption is not asymmetric: it is
possible to have two classes such that each of them is
a subclass of the other one. Note that the approaches
in (Bobillo et al., 2017; Yus et al., 2015) sometimes
use the term subsumption relationships when they ac-
tually mean hyponymy relationships.

Definition 1. Eh is a direct hyponym of the term EH if
Eh is a hyponym of the term EH and there is not a term
T such that Eh is a hyponym of T and T is a hyponym
of EH .

In the following, we will restrict to direct hy-
ponymy relationships. From a linguistic point of
view, one could also be interested in computing the
transitive closure of this relation to obtain indirect hy-
ponymy relationships, but we will not address this
case further. Thus, from now on, we will write hy-
ponyms to mean direct hyponyms.

As in Description Logic languages or OWL lan-
guage there is not usually syntactic sugar to define
strict subclasses (Ch @ CH ), in practice it is usual to
encode hyponymy relationships as subclass relation-
ships (Bobillo et al., 2017; Yus et al., 2015). However,
when doing so, one is implicitly excluding that the
two classes are synonyms because otherwise a syn-
onymy relationship would be encoded by stating that
the two classes are equivalent (Ch ≡CH ). Thus, to be
precise, we should also add the axiom

>v ∃U.(CH u¬Ch) , (1)

where U denotes a universal role
(owl:topObjectProperty). This axiom states
that the set of individuals that belong to the hypernym
and do not belong to the hyponym is not empty, i.e.,
there should be examples that justify specializing
concept CH .

Equation 1 is not necessary if the ontology already
contains instances of CH u¬Ch, i.e., if O |= i : CH and
O |= i : ¬Ch holds. Note also that Equation 1 can-
not be expressed in some inexpressive languages such
as RDF-S or OWL 2 EL. A similar situation raises
when trying to encode hyponymy relationships be-
tween properties. In this case, however, Equation 1
cannot be expressed in OWL 2 DL.

3 ON SHARED PROPERTIES IN
HYPONYMY DISCOVERY

In this section we discuss how to use the set of shared
properties in hyponymy discovery. Clearly, a hy-
ponym concept should include all the properties of its
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hypernym concept, but we argue that in most of the
cases it should also have some additional properties
of its own. That is, when an ontology designer de-
cides to specialize a concept by defining a more spe-
cific one, his/her decision will be based very often on
the existence of some attribute that characterizes such
concept. Thus, the existence of new properties in-
creases our confidence in the existence of a hyponymy
relationship. Unfortunately, these new properties are
sometimes not included explicitly due to modeling
decisions, as we will see.

Definition 2. Let O be an ontology, C ∈ O a
concept name, R ∈ O a (data or object) property,
and dom(O,R) =

{
D is a concept name ∈ O | O |=

{∃R.>v D}
}

. Now:

• C defines R if C is one of the direct domains of
R, i.e., C ∈ dom(O,R) and 6 ∃D ∈ dom(O,R) such
that O |= {DvC} and O 6|= {D≡C}.

• C has R if a concept name D ∈ O defines R and
DvC.

We can see that C has a property R if C defines R or if
it inherits it from an ancestor in the concept hierarchy
that defines it.

Example 1. Let O be the Wine ontology (to be dis-
cussed later). dom(O,hasWineDescriptor) includes
Wine and their superclasses, such as Consum-
ableThing, because O |= {∃hasWineDescriptor.> v
Wine} and O |= {∃hasWineDescriptor.> v
ConsumableThing} hold. Thus, Wine defines
(and has) hasWineDescriptor. Any subclass of
Wine, such as SweetWine, has (but does not define)
hasWineDescriptor. �

To be precise, the semantics of Description Logic-
based ontologies states that if, for example, the do-
main of hasWineDescriptor is Wine, then anything
with a wine descriptor must be a wine. Instead, we
assume that hasWineDescriptor is a characteristic fea-
ture of the class Wine, as common in frames or object
orientation design.

The properties that a concept has/defines must be
computed by a semantic reasoner, as they could not
be implicitly represented in the ontology. Please note
that range restrictions must be taken into account at
this point. For example, if the range of an object
property R is C, then C defines the inverse of R, even
if the inverse property is not explicitly represented in
the ontology.

Our claims regarding the set of shared properties
is based on some intuitive ideas such as the duck test,
the opposite duck test, and the weak duck test (Yus
et al., 2015):

• Duck test: if it looks like a duck, swims like a
duck, and quacks like a duck, then it probably is
a duck. In our setting, this implies for example
that the hyponymy degree is proportional to the
percentage of shared properties.

• Opposite duck test: if it does not look like a duck,
does not swim like a duck, and does not quack
like a duck, then it probably is not a duck. For
example, if there are no shared properties, the
hyponymy degree is inversely proportional to the
number of properties.

• Weak duck test: if it looks like a duck and quacks
like a duck, then it is probably a kind of duck,
although we are not sure that it swims like a
duck. In this case, shared properties should have a
higher impact in the hyponymy degree than non-
shared properties.

In the rest of this section, we will discuss an evalua-
tion of the previous claims on several datasets.

Datasets. Firstly, we have considered OAEI 2009
and OAEI 2011 oriented track benchmarks. They pro-
vide reference alignments (or official results) between
ontology pairs formed by a fixed source ontology and
several target ones. The results include equivalence
and subclass relationships. As discussed in Section 2,
we assume that such subclass relationships actually
denote hyponymy relationships. Furthermore, we will
restrict to those direct relationships explicitly repre-
sented in the ontology (recall that one could also con-
sider the transitive closure). Let us now discuss these
datasets in detail.

The OAEI 2009 dataset includes 30 pairs of on-
tologies describing bibliographic references. On-
tologies are part of the regular benchmark used in
OAEI 2006, but the alignments are different and, in
particular, include hyponymy relationships between
concepts. Each ontology pair is formed by a fixed
ontology (called 101) and a variable ontology (names
from 102 to 3044). Unfortunately, 8 pairs of ontolo-
gies (27%) of the OAEI 2009 had to be discarded be-
cause the ontology reasoner that we used (described
later) could not support them.

The OAEI 2011 dataset includes 12 pairs of on-
tologies that can be classified in two categories:
Academia and Course catalogs. Academia involves
bibliographic references and includes 6 ontology
pairs obtained after some modifications of 4 ontolo-
gies in the OAEI 2006 dataset (from 301 to 304).
Course catalogs involves description of courses in the
universities of Cornell and Washington and also in-
cludes 6 ontology pairs obtained by modifying 4 real

4Not each number in the interval corresponds to an on-
tology, there are only 30 pairs.
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ontologies. For each pair of ontologies, reference
alignments include subsumption mappings between
concepts. In this case, 3 pairs (25 %) could not be pro-
cessed successfully by the semantic reasoner. Since
some of the ontologies in the OAEI 2011 dataset do
not include any property, we have identified a frag-
ment, denoted OAEI 2011*, restricted to ontologies
with some (object or data) property.

More recently, A. Vennesland developed a very
small dataset to evaluate his work in (Vennesland,
2017).5 The dataset contains 3 pairs of ontologies; 4
ontologies from the Conference track of OAEI 2016,
another one from the Benchmark track of OAEI 2016,
and the well-known Bibo ontology.6 We will call it
OAEI 2016 dataset.

So far, the number of ontologies was small and
there were some limitations (for example, there
were no subproperty relationships in the reference
alignments). Thus, we additionally considered the
ORE 20157 ontology set, with 1920 ontologies al-
though not oriented to ontology alignment (Parsia
et al., 2016). To this dataset we have added the well-
known Wine8 ontology. Wine is a general ontology
only used for didactic purposes, but it will be useful
for us to show very illustrative examples of our met-
rics. In this case, we consider intra-ontology subclass
relationships between entities of one ontology (and,
again, we will assume that they denote hyponymy re-
lationships), so we do not consider ontology pairs.

During our experiments, we set a timeout of 15
minutes for each ontology to complete our experi-
ments (it only had an effect on ORE 2015 dataset).
Because of that, we discarded 848 ontologies (44%)
that reached the timeout, 47 ontologies (2.4%) that
were found to be inconsistent and 12 ontologies
(0.6%) that were not supported by the reasoner.

Research Questions. Our first experiment aims
at answering the following questions:

a) What is the proportion of hyponymy relationships
where the hyponym has all the properties of its
hypernym?

b) What is the proportion of hyponymy relationships
such that the hyponym defines some property that
its hypernym does not have?

c) What is the proportion of hyponymy relationships
such that the hyponym defines no properties or de-
fines some properties that its hypernym also has?

5http://github.com/audunve/
COMPOSE-ReferenceAlignments

6http://bibliontology.com
7http://mowlrepo.cs.manchester.ac.uk/datasets/

ore-2015-reasoner-competition-dataset
8http://www.w3.org/TR/owl-guide/wine.rdf

d) How many different pairs of concepts C,D are
there such that C has all the properties of D plus
some new defined properties, and C is not a hy-
ponym of D?

To do so, we will compute the precision (percentage
of positive examples) and the number of false posi-
tives or counter-examples.

One would expect a) and b) to be as high as pos-
sible, whereas the other cases should be as small as
possible. Note also that in cases b) and d) we are in-
terested in properties that are actually defined by the
hyponym, excluding properties defined by a different
ancestor, which could happen in multiple inheritance
scenarios.

When considering intra-ontology relationships, a
semantic reasoner is used to decide if two proper-
ties are equivalent and correspond to the same en-
tity. In the case of inter-ontology relationships, we
would need a reference alignment or an alignment
software defining synonymy relationships. Because
existing benchmarks do not provide such information
(they only provide alignments between concepts, but
not between properties), in this paper we needed to
assume that two properties from different ontologies
denote the same entity if and only if they have the
same name (fragment) and they are of the same type
(object and data properties).

Technical Details. All experiments were per-
formed on a desktop computer with Intel Core i5-
2320 3.0 GHz, 16 GB RAM (12 GB were allocated
for the JVM in the experiments) under Windows 7
64-bits. We used Java 1.8, OWL API (Horridge and
Bechhofer, 2011) to manage the ontologies, and the
ontology reasoner HermiT 1.3.8 (Glimm et al., 2014)9

to retrieve implicit axioms. We selected HermiT be-
cause it provides a simple method to retrieve directly
the direct domain and range of object and data prop-
erties, even if they are not explicitly represented in
the ontology.10 To best of our knowledge, a similar
method is not available in other reasoners such as Pel-
let (Sirin et al., 2007) or Konclude (Steigmiller et al.,
2014). We also use the reasoner when dealing with
the range of an object property P to check if the in-
verse property of P exists;11 otherwise we create a
new inverse property called P@inverse. All the meth-
ods above that we use belong to the Reasoner class
(org.semanticweb.HermiT.Reasoner).

Example 2. Let us illustrate the measures that we are
computing by providing some examples, taken from

9http://www.hermit-reasoner.com
10Methods getObjectPropertyDomains and getObject-

PropertyRanges, respectively.
11Method getInverseObjectProperties.
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Table 1: Statistics of the datasets.

Dataset TOT OK C sub C pairs C OOP OP ODP DP sub OP pairs
OP sub DP pairs

DP
OAEI 2009 30 22 77 49 1432 22 52 22 89 0 0 0 0
OAEI 2011 12 9 154 109 5982 3 17 3 14 0 0 0 0
OAEI 2011* 6 3 56 27 588 3 52 3 43 0 0 0 0
OAEI 2016 3 3 101 11 2619 3 73 3 51 0 0 0 0
ORE 2015 1920 1013 792 857 1834180 925 44 375 9 25 6600 3 1373

the Wine ontology, that appeared in our experiments.
An example of case b) are the pair of classes

WineGrape and Grape which have a hyponymy re-
lationship. Both of them have the same proper-
ties (producesWine, hasMaker, locatedIn, madeFrom-
Fruit, and the inverse of madeFromFruit). WineGrape
is an hyponym of Grape and defines a new property
called madeIntoWine that Grape does not have.

As an example of case c), AmericanWine class
is a hyponym of Wine. Both of them have the
same properties (producesWine, hasSugar, hasColor,
hasMaker, locatedIn, hasFlavor, hasWineDescrip-
tor, madeFromGrape, madeFromFruit, and hasBody).
However, AmericanWine defines itself no new prop-
ertys.

An example of case d) are Vintage and Winery,
two classes without a hyponymy relationship. Vin-
tage has all the properties of Winery (namely, pro-
ducesWine, hasMaker, and locatedIn) but also a new
one ( hasVintageYear). �

Results. In this section, we summarize the results
of our experiments. The detailed results can be found
online.12 Firstly, Table 1 shows some statistical data
of each dataset considered in our experiments: TOTal
number of examples in the dataset (TOT), examples
correctly processed within a timeout (OK), average
number of Classes (C), average number of subClasses
(sub C), average number of pairs of Classes (pairs C),
number of ontologies with Object Properties (OOP),
average number of Object Properties (OP), number of
ontologies with Data Properties (ODP), average num-
ber of Data Properties (DP), average number of sub-
ObjectProperties (sub OP), average number of sub-
DataProperties (sub DP), average number of pairs of
Object Properties (pairs OP), and average number of
pairs of Data Properties (pairs DP). In ORE 2015,
OK is the number of ontologies; in OAEI 2009 and
OAEI 2011 it is the number of ontology pairs. Com-
pared to OAEI 2009, OAEI 2011 has a smaller num-
ber of ontologies with a smaller average number of
properties but a higher average number of classes.

Table 2 shows the result of the measures related

12http://webdiis.unizar.es/∼ihvdis/Hyponyms\ Results.
htm

to shared properties, from a) to d). For each dataset,
we show the total number of examples found (Sum),
the total number of ontologies with at least one exam-
ple (#Onts), and the average percentage of examples
(Mean%). These values are always shown for classes
(C). Note that the denominator of Mean% is not the
same in the three criteria e.g., it is the total number of
hyponym pairs in cases a)–c), and the total number of
(possibly non-hyponym) pairs in case d).

Because sometimes one of these metrics can be-
have well in some ontologies and bad in others, the
last four columns compare case b) versus c), and b)
versus d). For each of these comparisons, #b> de-
notes the number of ontologies with more positive
examples than negative ones, whereas Dif denotes
the difference between the number of ontologies with
more positive examples than negative ones and vice
versa (the number of ontologies with more negative
examples). Thus, a positive value indicates that there
are more ontologies with more positive examples than
the other way around.

Discussion. Firstly, note that in all cases we ob-
tain the same values in Sum and #Ont for OAEI 2011
and OAEI 2011* (the percentages are different be-
cause the dataset sizes are different).

Regarding case a), as expected, we obtained a
100 % in the case of intra-ontology relationships
(ORE 2015). For inter-ontology relationships, much
smaller values are obtained. In OAEI 2011 we ob-
tained a surprising result of 0 %. In this case, only
3 ontology pairs involved properties, and none of the
properties of an hyponym matched a property of the
hypernym. This clearly shows that there is a lot of
missing information in the ontologies.

Case b) only produces reasonably good results in
OAEI 2009 and OAEI 2016 (48% and 36%, respec-
tively); in other datasets the percentage are 0.3% or
2%. Note that the absolute number of positive ex-
amples is quite significant in ORE 2015 (17273), but
the high total number of subclass axioms produces a
small percentage. Again, the small value obtained
in OAEI 2011 can be partially explained by the low
number of ontology pairs with properties.

The numbers of counter-examples c) and d) are
higher than b) if we consider total numbers, except
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Table 2: Metrics for shared properties on each dataset.

Dataset Item
Criteria b vs. c b vs. d

a b c d #b> Dif #b> Dif
OAEI
2009
(C)

Sum 346 509 559 2188
#Onts 8 22 22 8 15 8 14 6

Mean % 32 48 52 7
OAEI
2011
(C)

Sum 0 3 77 0
#Onts 0 2 3 0 0 -3 2 2

Mean % 0 0.3 7.8 0
OAEI
2011*

(C)

Sum 0 3 77 0
#Onts 0 2 3 0 0 -3 2 2

Mean % 0 4 96 0
OAEI
2016
(C)

Sum 0 12 21 0
#Onts 0 3 3 0 1 -1 3 3

Mean % 0 36 64 0
ORE
2015
(C)

Sum 867810 17273 850537 1327113
#Onts 1013 504 938 454 123 -706 85 -352

Mean % 100 2 98 0.1

in the cases of d) for OAEI 2011, OAEI 2011*, and
OAEI 2016, where there are no examples of d). How-
ever, there is usually a (small) class of ontologies
where the value is greater than the number of counter-
examples. In OAEI 2011 and OAEI 2011*, the num-
ber of cases with more positive cases b) than nega-
tive cases c) or d) ranges between 14 and 123. In
OAEI 2016, 33% and in 100% of the ontology pairs
have more positive cases b) than c) or d), respectively.
Nevertheless, one should not be too optimistic to ap-
ply this idea to every ontology. In general, there are
more ontologies with negative cases c) than positive
cases b), except in OAEI 2009 dataset, and in some
datasets (ORE 2015) there are more ontologies with
negative cases d) than positive cases b). This sug-
gests that further work is needed to identify that class
of ontologies where our claim about shared properties
provides good results.

Since we strongly think that our claim about
shared properties is reasonable, the somehow disap-
pointing results make us question the benchmark it-
self, and we think that the datasets are incomplete
(small number of properties and subproperty align-
ments) and contain an unnatural modeling.

In ontology modeling it is common to pay much
more attention to classes than properties. Historically,
ontology languages have indeed supported more ex-
pressivity for concepts than for properties. Because
the ontologies in the datasets include much more con-
cepts than properties (a big quantity of the ontologies
do not have any properties at all), heuristics based
on properties are penalized. Indeed, in OAEI 2009,

OAEI 2011, and OAEI 2016 there were no exam-
ples of property hyponymy. Furthermore, ORE 2015
dataset is more useful for object property hyponymy
than for data property hyponymy. Although the aver-
age number of subproperty axioms is 25, 47.2 % of
the ontologies do not have any subproperty axiom.

Example 3. WineFlavor, WineSugar, and WineBody
are candidates to be subproperties of WineDescriptor,
although this is not represented in the Wine ontology.

Regarding the unnatural modeling, there is often a
rather different representation of the reality in the two
ontology pairs: sometimes one of them uses an ob-
ject property and the other one a data property, some-
times properties are assigned to concepts with differ-
ent granularity levels, etc.

Example 4. Class Entry in ontology 301 is a hyponym
of class Resource in ontology 302. One of the data
properties of Entry is has author, but Resource does
not have a similar data property. Instead, Publication
is a subclass of Resource in the same ontology 302
with two object properties Resource author and Re-
source first author. Thus, there are notable differences
in the modeling. �

We claim that in many cases the fact that a hy-
ponym does not specialize the hypernym with a new
property is a modeling error, as the hyponym needs
to have some feature that justifies the existence of a
subclass. For example, a database developer does not
create a new table if there are not any additional at-
tributes. In the case of ontologies, it makes sense to
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create a subclass without adding a new property: for
example, one can restrict the range of possible val-
ues, or increase the minimal cardinality. However, in
several cases, we think that a new property should be
added.

Example 5. RedWine could define a tannin level (al-
though all wines have tannins, they have a stronger
impact in red wines) or SweetWine could define a fer-
mentation procedure (as it is different in a naturally
sweet wine and in a natural sweet wine or vin doux
naturel).

We also observed that too many properties do not
have a domain and/or a range axioms, so we infer that
they are the Thing class. Enriching ontologies with
those axioms will make it possible to identify proper-
ties that a class has or defines, and thus to improve the
applicability of our heuristic for shared properties.

Another finding is that some properties might have
a different interpretation in different concepts (the
evaluated datasets do not provide enough formal or
informal information about the semantics of the terms
to be completely sure). Of course, such polysemic
properties make discovering hyponyms harder.

Example 6. In the Wine ontology, producesWine
property is related to WineGrape and Winery classes,
but with different semantics (a winery produces a spe-
cific wine brand, whereas a grape is used to produce
a general wine type).

4 ON ENTITY NAMES IN
HYPONYMY DISCOVERY

In this section we study a lexical measure that seems
particularly useful in the discovery of hyponyms.
For our purpose, the name of an entity is only
the fragment identifier of its URI, e.g., hasEnd-
Time is the name of <http://sweet.jpl.nasa.gov/
2.0/time.owl#hasEndTime>.

In ontology alignment, it is usual to consider sim-
ilarity between the names of a pair of entities as a
heuristics to identify relationships between the en-
tities. There are many well-known string similar-
ity metrics (the interested reader can find a good
overview in (Cheatham and Hitzler, 2013)), but we
argue that they are mostly appropriate when looking
for synonymy relationships. Because we find it rea-
sonable to assume that the confidences on two enti-
ties having a synonymy or a hyponymy relationship
are somehow contradictory, we think that hyponym
and hypernym usually have a similar name but not an
equivalent one. If two entities have a similar name,

our confidence in the existence of a hyponymy rela-
tionship usually increases except if the name is ex-
actly the same one: in this case our confidence in
the existence of a synonymy relationship increases.
Thus, we are interested in metrics that penalize a per-
fect similarity.

In particular, we observed that the name of the hy-
ponym is sometimes a specification of the name of its
hypernym, which is an affix substring. Clearly, this is
just a heuristic that does not need to hold in general.

Definition 3. Given a reference ontology O and a
pair of entities (two concepts or two properties) e1
and e2, we say that e1 is an affix substring of e2
if the name of e2, denoted name(e2), has either a
prefix or a suffix relationship with the name of e1.
That is, name(e2) has one of the following forms:
name(e1)◦S or S◦name(e1), where S is a non-empty
string and ◦ denotes string concatenation. If e1 is an
affix substring of e2, e2 is an affix superstring of e1.

That is, e1 is an affix substring of e2 if e2 contains
the name of e1 as a prefix (i.e., at the beginning of
the string) or as a suffix (i.e., at the end of the string),
and the name of e1 is different from the name of e2.
Note that we do not look for arbitrary substrings but
we look for indications of compound names. For ex-
ample, Student is an affix substring of its hyponym
PhDStudent.

Research Questions. Now we are interested in
computing (using the same datasets):
e) What is the proportion of hyponymy relationships

that involve a hypernym with a name being an af-
fix substring of the hyponym?

f) What is the proportion of hyponymy relationships
that involve a hypernym with the same name as
the hyponym?

g) How many different pairs of concepts/properties
are there such that one of them has a name being
an affix substring of the other one, but they do not
have a hyponymy relationship?

One would expect e) to be as high as possible,
whereas the other cases should be as small as pos-
sible. One could also think that the case f) does not
make sense if we are using a single ontology. Ap-
parently, two different entities cannot have the same
name if they have different URIs, but it is possible if
we only consider the fragment, as shown in Exam-
ple 4.

Both e), f), and g) can be measured not only for
concepts but also for properties (both object an data
properties). This will be interesting for the ORE 2015
dataset, as the other datasets do not contain subprop-
erty alignments.
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Example 7. Let us now illustrate our metrics regard-
ing entity names.

Examples of case e) are pairs with a hyponymy
relationship where the hyponym is an affix super-
string of the hypernym, such as the object properties
hasEndTime and hasEnd, the data properties (from
the 204 ontology) number or volume and volume, and
the classes SweetWine and Wine.

Examples of case f) are pairs with a hy-
ponymy relationship and the same name.
This happens with the object properties
<http://sweet.jpl.nasa.gov/2.0/time.owl#hasBegin-
ning> and <http://www.w3.org/2006/time#hasBe-
ginning>, the data properties <http://www.fao.org/
aims/aos/fi/eez#hasMeta> and <http://www.fao.
org/aims/aos/fi/water#hasMeta>, and the classes
<http://purl.org/olia/emille.owl#Noun> and
<http://purl.org/olia/olia.owl#Noun>.

Examples of g) are pairs where an entity is an affix
substring of the other one but it is not its hypernym.
This happens in the object properties hasTimeRefer-
ence and hasTime, and in the data properties has-
NameEN and hasName. �

Results and Discussion. Table 3 shows the result
of our measures from e) to g) for pairs of Object Prop-
erties (OP), Data Properties (DP) and Concept Names
(C). Sum, #Onts, Mean%, #e>, and Dif have the same
meaning as in Table 2.

The percentage of e) was very low for proper-
ties, smaller than 1 % in ORE 2015 (the only dataset
where there are computed). Percentages are higher
for classes, ranging from 4% to 48%, and the highest
value happens in OAEI 2011, where it is applied in all
(3) pairs of ontologies. Note that the absolute num-
ber of positive examples is significant in ORE 2015,
34863.

Values of f) are surprisingly high. For properties,
the number of hypernyms with the same name than
the hyponym is even higher than the number of hy-
pernyms with an affix substring.

The total number of cases g) is higher than the
number of e). Nevertheless, in OAEI 2011 and
ORE 2015 there is a (small) class of ontologies where
the value of e) is greater than the number of counter-
examples g), with 3 and 124 ontologies, respectively.
As in the case of shared properties, further studies to
identify those ontologies are needed, as in all datasets
there are more ontologies where our heuristics gives
more false positives than positives than the other way
around, as the Dif column shows.

We expected a small number of positives (we are
just proposing a simple heuristic), but not such a high
number of counter-examples. We think that cases f)
are modeling mistakes: the same name should not

designate two different things. Let us now discuss
some reasons of the small number of positives.

• Some of the entity names in the datasets are inten-
tionally unreadable, so that ontology alignments
approaches cannot take advantage of lexical mea-
sures. Any lexical measure, and not only ours,
performs poorly on these scenarios. This happens
for example in 7 ontologies of OAEI 2009.

• Another example where our measure fails are
pairs of ontologies with entity names written in
different languages. As it is well known, cross-
lingual ontology alignment requires specific tech-
niques (Gracia and Asooja, 2013). This happens
for example in 3 ontology pairs of OAEI 2009.

• It can be the case that it is the hypernym the
one specializing the name of the hyponym, as it
happens in aggregated concepts. This shows that
more sophisticated techniques are needed.

• Sometimes, what an affix substring implies is a
meronymy (part-whole) relationship.

Example 8. Let us illustrate the above reasons for the
small number of cases e):

• Concept Chapter (in ontology 101) is an hyper-
nym of sqdsopq (in 101).

• Ontology 210 is written in French.

• SemillonOrSauvignonBlanc is an hypernym of
Semillon.

• Concept BookPart (in ontology 222) is a meronym
of Book but not a hyponym. �

5 RELATED WORK

This section recaps some related work on the discov-
ery of subsumption relationships in ontologies. Most
of the work in ontology alignment is focused on the
discovery of synonymy relationships, and only a few
works consider the discovery of subsumption rela-
tionships. Among them, some authors have addressed
the discovery of subsumption intra-ontology relation-
ships (see e.g., (Lambrix et al., 2015)), but we will
focus here on the discovery inter-ontology subsump-
tion relationships

Some of the previous works are based on the ex-
traction of subsumption relationships on shared in-
stances, but do not take schema information into ac-
count (Chua and Kim, 2012; Kang et al., 2005; Tour-
naire et al., 2011; Zong et al., 2015). Some of these
works also assume that ontology instances are anno-
tated with phrases of text (Chua and Kim, 2012).
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Table 3: Metrics for string affixes on each dataset.

Dataset Item
Criteria e vs. g

e f g #e> Dif
OAEI
2009
(C)

Sum 47 2 185
#Onts 15 2 22 0 -22

Mean % 5 0.2 1
OAEI
2011
(C)

Sum 125 106 138
#Onts 8 9 9 3 -3

Mean % 13 11 0.3
OAEI
2011*

(C)

Sum 6 19 15
#Onts 2 3 3 0 -3

Mean % 8 24 1
OAEI
2016
(C)

Sum 16 0 68
#Onts 3 0 3 0 -3

Mean % 48 0 0.87
ORE
2015
(C)

Sum 34863 403 186357
#Onts 486 43 667 124 -410

Mean % 4 0.05 0.01
ORE
2015
(OP)

Sum 29 119 4851
#Onts 28 42 491 0 -491

Mean % 0.1 0.46 0.07
ORE
2015
(DP)

Sum 1 11 1118
#Onts 1 3 178 0 -178

Mean % 0.03 0.37 0.01

Previous approaches extracting relationships at
the schema level include the systems MOMIS (Ben-
eventano et al., 2000), SCARLET (Sabou et al.,
2008), RepOSE (Lambrix and Liu, 2013; Lambrix
and Ivanova, 2013) and Classification-based learn-
ing of Subsumption Relations (CSR) (Spiliopoulos
et al., 2008). The alignments that MOMIS and
SCARLET can find must already exist in third-party
sources (Wordnet and other ontologies, respectively),
whereas RepOSE finds missing is-a relationships that
are derivable from a set of an ontology network (a
set of ontologies). CSR uses machine learning tech-
niques so it requires a previous training step. The au-
thors of CSR recognize that not all the ontologies are
suitable for the training step.

Another relevant work applies machine learning
techniques in order to learn a structure (what they call
a lightweight ontology) in a list of terms (Movshovitz-
Attias et al., 2015). However, they do not consider on-
tology alignment, but only relationships between two
low-level terms.

STROMA system uses a two-step ap-
proach (Arnold and Rahm, 2014), using any
matching system to retrieve a list of mappings
between ontology terms, and a second step using
some heuristics to determine the type of relationships

(i.e., synonymy or hyponymy).
More generally, (Vennesland, 2017) supports hav-

ing several matchers (e.g., a structural one and a lexi-
cal one), and studies how to choose them and how to
combine their results.

We must also cite our previous work in (Yus et al.,
2015). The present paper studies and evaluates some
of the techniques used in that system.

6 CONCLUSIONS AND FUTURE
WORK

This paper has discussed several issues related to
the automatic discovery of hyponymy relationships
across ontology elements. We hope that this will con-
tribute to an increase in the interest in such a kind of
relationships, which have received much less atten-
tion than synonymy relationships.

Firstly, we discussed the impact on shared prop-
erties on the discovery of hyponymy relationships. A
hyponym concept should include all the properties of
its hypernym concept, and we also argue that it is
very likely to specialize it with some additional prop-
erties. An empirical evaluation over 4 datasets (the
only three existing sets considering inter-ontology re-
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lationships and an additional one considering intra-
ontology relationships) shows that there is a signif-
icant amount of examples confirming our claim but
there are also a notable number of exceptions. In par-
ticular, there is usually a class of ontologies where
the number of examples is greater than the number of
counter-examples.

The number of counter-examples made us ques-
tion the benchmark itself, and we conclude that the
datasets are incomplete and contain often an unnatu-
ral modeling. On the one hand, existing benchmarks
are restricted to hyponymy relationships between con-
cepts and exclude the case of properties. Moreover,
they have strong limitations in terms of size and num-
ber of properties and axioms (in particular, subprop-
erty, domain, and range axioms). This penalizes very
much heuristics based on properties as ours. On the
other hand, we were able to identify several reasons
to explain cases where our measures did not perform
well and illustrated them by providing concrete exam-
ples.

Finally, we claimed that new lexical measures be-
tween ontology entities are needed. Indeed, we ar-
gue that if two entities have the same name, our con-
fidence in a possible hyponymy relationship should
decrease, as they are more likely to be synonyms. As
a first step towards lexical measures that penalize a
perfect similarity, we studied a simple heuristic based
on the fact that the name of the hyponym is sometimes
a specialization of the name of its hypernym, which is
an affix substring. An empirical evaluation shows that
this heuristic is much more useful for classes than for
properties, and the existence of ontologies where this
idea leads to more positive examples than counter-
examples. We also analyzed some cases where our
measure fails and provided some justifications and
concrete examples, such as the existence of ontolo-
gies with unreadable or multilingual names.

Future Work. There are many directions for
our future research. Our main priority is to develop
a more general system computing at the same time
both synonymy and hyponymy relationships (but also
other semantic relationships). The key idea is that
our confidence in a synonymy relationship should
decrease our confidence in a hyponymy relationship
and vice versa. This idea, and the fact that our al-
gorithm to compute hyponymy relationship assumes
some synonymy relationships could create a chicken-
egg problem that needs to be properly addressed. An
interesting alternative to evaluate such approach is us-
ing external RDF triple stores to measure the con-
fidence in the discovered axioms (Tettamanzi et al.,
2017).

As we have already mentioned, further research

is needed to identify the class of ontologies where
our measures provide good results. Lexical measures
across entity names also require more sophisticated
techniques than those presented here. For instance,
to compare entity names one can use word stem-
ming and services providing semantic relationships
between some common terms. Furthermore, we will
not only assume that hyponyms can add a property
but also that they can restrict the values of a property
inherited from its hypernym.

Furthermore, the identified limitations of existing
datasets lead us to consider developing a new bench-
mark. Needless to say, it is important to develop a
benchmark which is not biased to benefit our specific
heuristics, so the contributions of the community will
be extremely important.
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