
An Ontological Framework for Reasoning about Relations between
Complex Access Control Policies in Cloud Environments

Simeon Veloudis, Iraklis Paraskakis and Christos Petsos
South East European Research Centre (SEERC),

The University of Sheffield, International Faculty CITY College,
Thessaloniki, Greece

Keywords: Context-Aware Security, Privacy, Access Control, Inter-Policy Relations, Ontological Representation,
Semantic Inferencing, Reasoning.

Abstract: By embracing the cloud computing paradigm enterprises are able to realise significant cost savings whilst
boosting their agility and productivity. Yet, due mainly to security and privacy concerns, many enterprises
are reluctant to migrate the storage and processing of their critical assets to the cloud. One way to alleviate
these concerns, hence bolster the adoption of cloud computing, is to infuse suitable access control policies in
cloud services. Nevertheless, the complexity inherent in such policies, stemming from the dynamic nature of
cloud environments, calls for a framework capable of providing assurances with respect to the effectiveness
of these policies. The work presented in this paper elaborates on such a framework. In particular, it proposes
an approach for generically checking potential subsumption relations between access control policies that
incorporate the contextual knowledge that characterises an access request and which needs to be taken into
account for granting, or denying, the request. The proposed framework is expressed ontologically hence
enabling automated reasoning, through semantic inferencing, about policy subsumption.

1 INTRODUCTION

Cloud computing signifies a shift towards service-
based architectures that offer a theoretically bound-
less scalability and a flexible pay-per-use model (Liu
et al., 2011). Such a shift induces significant advan-
tages for enterprises in terms of cost, flexibility and
business agility. In particular, it enables inherently
heterogeneous stakeholders, ranging from SMEs to
large retailers and healthcare institutions, to realise
significant cost savings by migrating their data and
applications to servers that are under the control of
third-party cloud providers. However, relinquish-
ing control of —oftentimes critical— corporate assets
naturally raises significant security concerns that de-
ter, in general, stakeholders from embracing the cloud
paradigm (CSA, 2015).

One way to alleviate these concerns, hence re-
inforce the adoption of cloud computing, is to in-
fuse adequate access control policies into the appli-
cations through which critical assets are accessed in
the cloud (Veloudis and Paraskakis, 2016). Neverthe-
less, the inherently dynamic nature of cloud environ-
ments calls for policies that are able to incorporate
a potentially complex body of contextual knowledge
(Veloudis et al., 2017).

We argue that, for stakeholders to be able to rely
on such complex policies for the protection of their
sensitive assets, a generic governance framework that
is capable of providing assurances about the effec-
tiveness of the policies is required (Veloudis and
Paraskakis, 2016). Our work, conducted as part of the
PaaSword project (Paa, 2015), provides such a frame-
work. In particular, it provides a governance mech-
anism that draws upon a semantic representation of
policies, one that captures ontologically the various
knowledge artefacts comprised in policies, and there-
fore unravels the expression of policies from the ac-
tual code of the applications into which they are in-
fused. This renders our mechanism capable of provid-
ing automated reasoning about potential inter-policy
relations, such as subsumption and contradiction, that
may affect the effectiveness of the policies.

This paper presents an approach to reason-
ing about subsumption relations between complex
context-aware access control policies. The approach
draws upon the diffused XACML standard (XAC,
2013), whilst it performs inter-policy comparisons,
aiming at unveiling subsumption relations, on the
basis of a suitable semantic characterisation of all
those access requests that may be permitted, or de-
nied, by the policies. One of the main benefits of

Veloudis, S., Paraskakis, I. and Petsos, C.
An Ontological Framework for Reasoning about Relations between Complex Access Control Policies in Cloud Environments.
DOI: 10.5220/0007720703550362
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 355-362
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

355

our approach is that, by modelling policies ontolog-
ically —using OWL (OWL, 2004)— we can dele-
gate reasoning about policy subsumption to off-the-
shelf DL reasoners. In addition, our approach enables
—by virtue of semantic inferencing— the generation
of new knowledge artefacts which potentially allows
the detection of subsumption relations in situations in
which the knowledge artefacts encoded in the policies
are syntactically incomparable.

The rest of this paper is structured as follows. Sec-
tion 2 proposes an ontological representation of an
XACML-based model for policies and provides an
ontological representation for access requests. Sec-
tion 3 articulates a semantic characterisation of the
conditions under which a policy is enforceable upon
an access request. Section 4 outlines an approach to
determining subsumption between policies and pol-
icy sets. Finally, Section 5 presents related work and
Section 6 conclusions.

2 ACCESS CONTROL POLICIES
AND REQUESTS

Attribute-Based Access Control (ABAC) policies (Hu
et al., 2014), due to their inherent generality stem-
ming from their reliance on the generic concept of an
attribute, are deemed particularly suitable for captur-
ing such knowledge (Veloudis and Paraskakis, 2016)
and are therefore adopted in our work.

2.1 Representing Attributes

The Context Model (CM) proposed in (Verginadis
et al., 2015) provides a suitable ontological frame-
work for the representation of the various knowl-
edge artefacts, or attributes, associated with access re-
quests, hence with access control policies. At the core
of the model is the class ContextAttributes which, as
its name suggests, encompasses concepts that repre-
sent contextual attributes such as the physical or net-
work location from which a request originates, the
chronological point —or interval— that may charac-
terise the action associated with a request, as well as
information pertaining to the connection (e.g. which
cipher suite is utilised) —or type of device (e.g. desk-
top, smart phone, etc.)— used for issuing a request.
Other attributes include the subjects and objects of
requests, which are represented as instances of the
classes Sub ject and Ob ject respectively, are are asso-
ciated with the contextual attributes that characterise
them through the object property associatedWith. A
request also incorporates an action (e.g. a read, write
or execute action) which is represented as an instance

of the class Action. For more details on the CM, the
interested is referred to (Verginadis et al., 2015)

2.2 ABAC Policy Model

Following the XACML standard (XAC, 2013), an
ABAC policy comprises one or more ABAC rules.
Rules are the most elementary structural elements and
the basic building blocks of policies. In this respect,
they are the carriers of the core logic that dwells in
policies. Each ABAC rule consists of an antecedent
and a consequent. The former articulates a (pre-
)condition (or ‘target’ in the XACML jargon) that
must be satisfied in order for the rule to be enforce-
able. More specifically, it incorporates a set of rele-
vant knowledge artefacts, its so-called attributes, that
are captured in terms of the concepts introduced by
the CM, and whose values need to be taken into ac-
count when deciding whether to permit, or deny, a
particular request. On the other hand, the consequent
of an ABAC rule captures the decision associated with
the rule; such a decision invariably resolves to either
a ‘permit’ or a ‘deny’.

An ABAC policy is also invariably linked to a
rule-combining algorithm (XAC, 2013) that deter-
mines which one of the policy’s rules (if any) is to
be applied when responding to an access request. It
follows that, for each access request, an ABAC policy
resolves to at most one of its constituent rules; a pol-
icy that does not resolve to any of its constituent rules
for a particular request is considered ‘NotApplicable’
for that request.

ABAC policies may also be grouped into ABAC
policy sets which potentially comprise, in addition to
policies, other policy sets as well. Each ABAC policy
set is linked to a policy-combining algorithm (XAC,
2013) that determines which one of its elements (if
any) is to be enforced when responding to a particular
access request.

2.3 Ontological Representation

Our ontological representation of the ABAC policy
model comprises four main concepts1: Policy, Rule,
PolicySet and CombiningAlg (see Figure 1). Evi-
dently, instances of these concepts represent, respec-
tively, ABAC policies, ABAC rules, ABAC policy
sets and combining algorithms (both rule- and policy-
based ones). As depicted in Figure 1, each ABAC
policy and policy set is associated, via the property

1All concepts and properties of the ABAC policy model
belong to the pac namespace (Veloudis and Paraskakis,
2015); in order to avoid notational clutter, we omit the pac
prefix from concept and property identifiers.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

356

Figure 1: ABAC model (numerical annotations near arrows indicate cardinality constraints).

hasCombAlg, with exactly one combining algorithm,
and each ABAC rule is associated, via the properties
hasAnt and hasCons, with exactly one antecedent and
exactly one consequent respectively; the consequent
invariably evaluates to one of the individuals permit
or deny.

Our ontological representation also includes the
concepts OrderedRule and OrderedElement (see
Figure 1). These are intended to capture the partic-
ular order that the creator of a policy, or of a pol-
icy set, imposes upon the rules of a policy, or upon
the elements of a policy set; they are also intended to
capture the precedence that these rules, or elements,
enjoy during their enforcement upon an access re-
quest. More specifically, as depicted in Figure 1, each
instance of the concept OrderedRule is associated,
through the property hasRule, with exactly one ABAC
rule and, through each of the properties hasOrder and
hasPrecedence, with exactly one non-negative integer
that indicates that rule’s order and precedence respec-
tively in a containing policy. The OrderedElement
concept comprises two kinds of element: ordered
policies and ordered policy sets. An ordered policy
is associated, through the property hasPolicy, with
exactly one ABAC policy; it is also associated —
with the same properties as above— with two non-
negative integers that represent the policy’s order and
precedence. Similarly, an ordered policy set is associ-
ated, through the property hasPolicySet, with exactly
one (nested) ABAC policy set and, through the same
properties as above, with two non-negative integers
that represent that policy set’s order and precedence.
An ABAC policy is associated with its constituent
ordered rules through the property hasOrderedRule
(see Figure 1), whilst an ordered ABAC policy, or an

ordered policy set, is associated with its encompass-
ing policy set(s) through the property hasSet.

The ontological model outlined above is formally
articulated in terms of terminological (TBox) and as-
sertional (ABox) axioms expressed in the SR OI Q
Description Logic2 (DL) (Horrocks et al., 2006).

2.3.1 Delving into the Antecedent of an ABAC
Rule

Below we elaborate on constraints regarding the at-
tributes embodied in the antecedent of an ABAC rule.
The first constraint states that the antecedent must em-
body exactly one protected asset. Ontologically, this
is captured by demanding that each instance of the
concept Antecedent is associated with exactly one in-
dividual from the class Ob ject of the CM, and that
this association should be realised through the object
property hasOb j (see Figure 1). The second con-
straint articulates that each ABAC rule must be as-
sociated with exactly one action from the class Action
(i.e. with exactly one action that is to be performed on
the protected asset), and that this association should
be realised through the property hasAct (see Figure
1). The third constraint states that each ABAC rule
must be associated with at least one subject (either
human or machine) from the class Sub ject (i.e. with
at least one entity requesting access to the protected
asset), and that this association should be realised
through the property hasSub j. Finally, the fourth con-
straint demands that each ABAC rule refers to at most
one context expression —i.e. to at most one expres-

2SR OI Q is the DL underlying OWL 2; in our work, we
resort to SR OI Q due to the conciseness and rigorousness
of its notation.

An Ontological Framework for Reasoning about Relations between Complex Access Control Policies in Cloud Environments

357

sion that constrains the values of the contextual at-
tributes that pertain to an access request— and that
this association should be realised through the prop-
erty hasCE. Context expressions are further elabo-
rated below.

A context expression (CE) is a propositional logic
formula that articulates the contextual conditions that
must hold in order to permit, or deny, a request. Such
conditions may refer to the subject and/or object of a
request, or to the request itself. Ontologically, a CE is
represented as an instance of the class ContextExpr
(see Figure 1). The various attributes that it binds,
i.e. its parameters, are represented as instances of the
classes encompassed by the CM. These parameters
are associated with their encompassing CE through
the object property hasParam and may be combined
through the usual propositional logic connectives. A
CE invariably enjoys at least one association with a
parameter through the property hasParam. Moreover,
a CE may be defined recursively, in terms of one or
more other CEs; this is captured by including the class
ContextExpr in both the domain and the range of the
property hasParam. A CE is attached to the entity that
it refers to through the object property re f ersTo. As
an example, consider a CE identified by the individ-
ual e that articulates that the subject s resides either in
the physical location identified as ‘EU’, or in the net-
work location identified by the subnet 144.0.0.0/8.
Ontologically, such a CE is expressed in SR OI Q as
follows3:

{e} v((≤ 1 hasParam.{EU})t
(≤ 1 hasParam.{144.0.0.0/8}))u
(≤ 1 re f ersTo.{s})

(1)

2.4 Access Requests

Similar to the antecedent of an ABAC rule, an access
request may embody attributes that specify the partic-
ular protected asset that it targets (i.e. its object), the
action that it attempts to perform on that object, its
subject, as well as a context expression that reflects
the relevant contextual circumstances under which it
is issued. Ontologically, an access request is repre-
sented as an instance of a concept named Request;
it is associated with its attributes through the same
properties as the ones used for associating ABAC rule
antecedents with their attributes, namely: hasOb j,
hasAct, hasSub j and hasCE.

3For any object property P and concept C, (≤ 1P.C) rep-
resents the abstract class that comprises all those individuals
that have at least one association through P with an instance
of C. The symbols t and u represent, respectively, class
union and intersection.

3 DETERMINING ABAC RULE
ENFORCEABILITY

Reasoning about the enforceability of an ABAC rule
upon an access request is a crucial part of our mecha-
nism for determining inter-policy relations. This sec-
tion outlines how such reasoning is performed.

An ABAC rule r is enforceable upon an access
request q iff q entails r’s antecedent, i.e. iff r’s an-
tecedent is semantically inferable from q. As an ex-
ample, let r’s antecedent enjoy exactly one associa-
tion, via the properties hasOb j, hasAct, hasSub j and
hasCE, with the individuals o, w, s and e respectively.
e represents the CE of assertion 1 of Section 2.3.1.
Suppose now that the request q is associated, via the
same properties, with the individuals o, w, s and e′

respectively. e′ represents a CE that conveys the fact
that s resides in, say, the city of Athens. r is enforce-
able on q as: (i) q is associated with the individuals
o, w, s as demanded by r; (ii) e′ entails e — an en-
tailment that is based upon semantic inferencing that
generates the knowledge that the city of Athens is in-
deed located in the EU.

Evidently, determining the enforceability of a rule
on an access request may entail semantic inferencing
in the CM. For such inferencing to be possible, how-
ever, certain knowledge artefacts must be encoded in
the CM. For instance, in the example above, the con-
cept PhyLocation needs to include such concepts as
Area, Country and City, along with the appropriate
instances; it also needs to include the transitive prop-
erty isLocatedIn that interrelates these instances4.

We are now ready to outline our approach for de-
termining the enforceability of a rule r upon an access
request q. Firstly, we programmatically construct an
abstract OWL class that comprises all those individ-
uals that could, potentially, play the role of r’s an-
tecedent. Such an abstract class, call it Ar, includes all
those individuals that are associated, through the ap-
propriate properties, with certain attribute instances
from the CM. For instance, going back to the exam-
ple above, Ar takes the form (in SR OI Q):

Ar ≡((= 1 hasOb j.{o})u (= 1 hasSub j.{s})u
(= 1 hasAct.{w})u (= 1 hasCE.C)

(2)

where5 C is the abstract class of assertion 1 of Section
4These concepts, instances and properties are introduced

during the process of priming the CM — a process under-
taken by the stakeholders who adopt our framework and
aims at tailoring the CM to suit their particular purposes.

5For any object property P and concept C, (= 1P.C) rep-
resents the abstract class that comprises all those individu-
als that feature exactly one association through P with an

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

358

2.3. Secondly, the same process is followed for con-
structing an abstract class, call it Rq, that comprises
all those individuals that may potentially play the role
of the request q.

The rule r is enforceable upon q iff Rq is a subclass
of Ar, i.e. iff Rq v Ar. The validity of this subclass
relation is automatically assessed through the use of
the Pellet reasoner (Sirin et al., 2007) (although any
other DL reasoner could have been used instead).

4 RULE, POLICY AND POLICY
SET SUBSUMPTION

4.1 Rule Subsumption

For any two ABAC rules r1 and r2, r1 is subsumed by
r2 iff r1 and r2 are associated with the same decision
and r2 is enforceable on any access request on which
r1 is enforceable. Clearly, for this to be possible, the
abstract class of all individuals that could potentially
play the role of the antecedent of r1 must be a sub-
class of the corresponding class of all individuals that
could potentially play the role of the antecedent of r2,
i.e. Ar1 v Ar2 , where Ar1 and Ar2 are constructed as
outlined in Section 3. For instance, consider the rule
r of the example of Section 3 and let r′ be another
rule whose antecedent enjoys —through the proper-
ties hasOb j, hasAct and hasSub j— exactly the same
associations as r’s antecedent (i.e. with the individu-
als o, w and s respectively); also, let the antecedent of
r′ be associated, through the property hasCE, with an
individual e′′ that represents a CE that demands that s
resides in, say, Greece — formally:

{e′′} v(≤ 1 hasParam.{Greece})u
(≤ 1 re f ersTo.{s})

(3)

As long as r and r′ are associated with the same de-
cision, r subsumes r′ for the former is enforceable on
any request that the latter is: any request that orig-
inates from Greece (as demanded by the latter) also
originates from the EU or the subnet 144.0.0.0/8 (as
demanded by the former). In other words, seman-
tic inferencing allows us to conclude that the abstract
class appearing in assertion 3 above is a subclass of
the abstract class appearing in assertion 1.

Rule subsumption may be automatically deter-
mined by a DL reasoner.

instance of C; it is an abbreviation for the SR OI Q notation
(≤ 1 P.C)u (≥ 1 P.C).

4.2 Policy Subsumption

Determining whether one ABAC policy is subsumed
by another requires consideration of the precedence
values possessed by the rules of these policies; these
values are assigned on the basis of the rule-combining
algorithm associated with each of the policies. For
any two rules r1 and r2 of a policy p, r2 takes prece-
dence over r1, denoted r1 <p r2, iff the precedence
value associated with r1 in p (see Section 2.3) is lesser
than the precedence value associated with r2 in p. Let
us now briefly outline how precedence values are as-
signed to rules on the basis of rule-combining algo-
rithms.

4.2.1 Rule-combining Algorithms

In (XAC, 2013), the following rule-combining algo-
rithms are defined: ‘deny overrides’ (DO), ‘permit
overrides’ (PO) and ‘first applicable’ (FA). The DO
algorithm imposes the following precedence on p’s
ruleset Sp: (i) all ‘deny’ rules (if any) are assigned
an equal precedence; (ii) all ‘permit’ rules (if any)
are assigned an equal precedence; (iii) any ‘deny’ rule
is assigned higher precedence than any ‘permit’ rule.
Entirely symmetrical precedence values are imposed
by the PO algorithm: (i) all ‘permit’ rules (if any)
are assigned an equal precedence; (ii) all ‘deny’ rules
(if any) are assigned an equal precedence; (iii) any
‘permit’ rule is assigned higher precedence than any
‘deny’ rule. Finally, the case of the FA algorithm is
quite different for it does not impose by itself any
precedence on Sp: instead, it relies on the order im-
posed by p’s creator through the hasOrder property
(see Section 2.3).

4.2.2 Propagating Access Control Decisions to
the Policy Level

We now determine how access control decisions are
propagated from the rule level to the policy level. For
an access request q to invoke the decision v from p
(where v ::= permit|deny), the following conditions
must conjunctively hold. Firstly, there must exist a
non-empty subset of Sp, say Sp,v, that solely com-
prises rules that yield the decision v, formally: Sp,v =
{r ∈ Sp|Cr ≡ {v}} where Cr is the class that repre-
sents r’s consequent. Secondly, at least one of these
rules must be enforceable on q. In other words, the
abstract class Rq must be a subclass of the union of
all the abstract classes Ar where r ∈ Sp,v; formally,
Rq v

⊔
r∈Sp,v Ar. Thirdly, there must exist a rule r in

Sp,v that is enforceable on q such that no other rule
(if any) that yields a decision different than v and has
a precedence higher than r is enforceable on q. In

An Ontological Framework for Reasoning about Relations between Complex Access Control Policies in Cloud Environments

359

other words, none of the rules that belong to the set
Hp,v,r = {r′ ∈ Sp|Cr ≡ {v̄}∧r <p r′}must be enforce-
able on q for otherwise one of these rules would be
enforced on q yielding a decision different than v (v̄
represents here the opposite decision than v). It fol-
lows that the class of all requests for which p yields
the decision v, denoted Rp,v, is defined by the follow-
ing assertion:

Rp,v ≡
⊔

r∈Sp,v

(Ar u¬(
⊔

r′∈Hp,v,r

Ar′)) (4)

Note that, for any abstract class C, the notation ¬C
denotes the complement of C, i.e. the class of all in-
dividuals that are not instances of C.

4.2.3 Determining Policy Subsumption

A policy p1 is considered to be subsumed by a policy
p2 with respect to the decision v, iff the class of all re-
quests for which p1 yields the decision v is subsumed
by the class of all requests for which p2 yields v, i.e.
iff Rp1,v vv Rp2,v; p1 is considered to be subsumed by
a policy p2, denoted Rp1 v Rp2 , iff p1 is subsumed by
p2 for both values of v. Policy subsumption may be
automatically determined by a DL reasoner.

4.2.4 Redundant Rules

In addition to reasoning about policy subsumption,
our mechanism may also detect any redundant rules
in Sp. A rule r is redundant iff it is never enforced on
any access request. This occurs when the antecedent
of at least one rule from Sp that has higher prece-
dence than r subsumes the antecedent of r; formally:
Ar v

⊔
{r′∈Sp,v|r<pr′}Ar′ .

4.3 Policy Set Subsumption

We turn now our attention to defining subsumption
between ABAC policy sets. Recall from Section 2.3
that a policy set may comprise both policies and/or
nested policy sets. Let Sps = {ei|i ∈ [1..n]} be the el-
ements of a policy set ps. Determining subsumption
between policy sets entails consideration of the prece-
dence values possessed by the elements of these sets,
hence of the policy-combining algorithms associated
with them. For any two elements e1,e2 ∈ Sps, e2 takes
precedence over e1 in ps, denoted e1 <ps e2, iff the
precedence value associated with e1 in ps is lesser
than the precedence value associated with e2. Let us
briefly outline how precedence values are assigned
to elements of policy sets on the basis of policy-
combining algorithms.

4.3.1 Policy-combining Algorithms

In (XAC, 2013), the following policy-combining al-
gorithms are defined: ‘deny overrides’, ‘permit over-
rides’, ‘first applicable’ and ‘only one applicable’
(OOA). The DO and PO algorithms, as opposed to
their rule-based counterparts, do not assign any par-
ticular precedence values on the elements of a policy
set. Turning now to the FA algorithm, this is similar
to its rule-based counterpart: the precedence values
assigned to the elements of a policy set coincide with
the order of these elements as this has been defined
by the creator of the policy set. Finally, the OOA al-
gorithm ensures that exactly one element of a policy
set is applicable to a request and responds to that re-
quest with that element’s decision; if two or more el-
ements are applicable, an ‘Indeterminate’ decision is
returned, whereas if no elements are applicable, the
decision is ‘NotApplicable’. As we would expect, the
OOA algorithm does not impose any precedence to
the elements of a policy set.

4.3.2 Propagating Access Control Decisions to
the Policy Set Level

We now determine how access control decisions are
propagated to the policy set level. Let RCA

ps,v denote the
class of all requests that invoke the decision v from a
policy set ps, where CA::=DO|PO|FA|OOA. The fact
that some combining algorithms do not assign prece-
dence values to policy set elements precludes the pro-
vision of a single assertion, analogous to assertion 4
of Section 4.2.2, that characterises all requests that
may be permitted, or denied, by a policy set with-
out taking into account the combining algorithm as-
sociated with that policy set. We thus consider each
policy-combining algorithm in turn; initially we focus
on policy sets that only comprise policies.

Deny Overrides and Permit Overrides. We start
with the DO algorithm. The class of all access re-
quests for which ps yields a ‘deny’ decision is defined
as:

RDO
ps,deny ≡

⊔
e∈Sps

Re,deny (5)

These are effectively all requests which cause at least
one element of Sps to yield a ‘deny’ decision. Sim-
ilarly, the class of all requests for which ps yields a
‘permit’ decision is defined as:

RDO
ps,permit ≡ (

⊔
e∈Sps

Re,permit)u¬RDO
ps,deny (6)

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

360

These are effectively all requests which cause one or
more elements of Sps to yield a ‘permit’, but not a
‘deny’, decision.

The case of the PO algorithm is entirely analo-
gous. The class of all access requests for which ps
yields a ‘permit’ decision is defined as:

RPO
ps,permit ≡

⊔
e∈Sps

Re,permit (7)

Similarly, the class of all requests for which ps yields
a ‘deny’ decision is defined as:

RPO
ps,deny ≡ (

⊔
e∈Sps

Re,deny)u¬RPO
ps,permit (8)

First Applicable. The class of all access requests
for which ps yields v is defined as:

RFA
ps,v ≡

⊔
e∈Sps

(Re,vu
⊔

e′∈Sps∧e<pse′
Re′,v̄) (9)

These are effectively all requests which cause an ele-
ment e in Sps to yield v without causing any element
e′ in ps with a precedence higher than e to yield a
decision different than v (denoted as v̄).

Only One Applicable. The class of all access re-
quests for which ps yields the decision v is defined
as:

ROOA
ps,v ≡

⊔
e∈Sps

(Re,vu¬
⊔

e′∈Sps∧e6=e′
(Re′,denytRe′,permit))

(10)
These are effectively all requests which cause exactly
one element in Sps to yield v.

The class RCA
ps,v may be generalised to policy sets

that potentially comprise nested policy sets as fol-
lows: the class Re,v in assertions 5-10 above is re-
placed by a construct Xe,v which evaluates to Re,v if
e is a policy, and to RCA

e,v if e is a policy set where CA
is the combining algorithm associated with e.

4.3.3 Determining Policy Set Subsumption

We are now ready to define subsumption between pol-
icy sets. A policy set ps1 is considered to be sub-
sumed by a policy set ps2 with respect to the decision
v, iff the class of all requests for which ps1 yields the
decision v is subsumed by the class of all requests for
which ps2 yields the decision v, i.e. iff RCA1

ps1,vvv RCA2
ps2,v

where CA1 and CA2 are the combining algorithms as-
sociated with ps1 and ps2 respectively. ps1 is consid-
ered to be subsumed by ps2, denoted RCA1

ps1 v RCA2
ps2 , iff

p1 is subsumed by p2 for both values of v.

5 RELATED WORK

The work reported in (Kolovski et al., 2007) presents
a formalisation of XACML using DLs. Similar to our
work, it proposes an approach to reasoning about sub-
suming policies based on a semantic characterisation
of the class of access requests for which these policies
emit identical decisions. Nevertheless, as opposed to
our work, it fails to provide an underlying ontological
model for rules, policies and policy sets. This entails
the following disadvantages. Firstly, it fails to explic-
itly model combining algorithms, hence the prece-
dence that they impose on policies and policy sets. To
overcome this problem, the work in (Kolovski et al.,
2007) employs a formalism alien to OWL, namely
Defeasible DLs (DDLs), for capturing precedence im-
plicitly. Nevertheless, such an approach incurs the
overhead of reducing provability in DDLs to concept
satisfiability in OWL; in addition, as the authors con-
cede, it hinders the expression of certain combining
algorithms such as the OOA algorithm. Secondly,
it fails to model the potentially complex contextual
knowledge that may be associated with rules and thus
precludes the performance of semantic inferencing
for detecting subsumption between rule attributes, in
particular between CEs. This is clearly a drawback in
dynamic cloud environments.

On a different note, a number of approaches have
been proposed for semantically representing policies
(Uszok et al., 2004; Kagal et al., 2003; Nejdl et al.,
2005). These generally rely on OWL (OWL, 2004)
for capturing the various knowledge artefacts that re-
side in policies. In (Uszok et al., 2004) KaoS is pre-
sented — a generic framework offering: (i) a human
interface layer for the expression of policies; (ii) a
policy management layer that is capable of resolving
conflicting policies; (iii) a monitoring and enforce-
ment layer that encodes policies in a programmatic
format suitable for enforcing them. KaoS lacks any
mechanism for explicitly reasoning about subsuming
relations between access control policies.

In (Kagal et al., 2003) Rei is proposed: a frame-
work for specifying, analyzing and reasoning about
policies. Similar to our work, a policy comprises a list
of rules that take the form of OWL properties; it also
comprises a context that defines the underlying policy
domain. Rei resorts to the use of constructs adopted
from rule-based programming languages for the def-
inition of policy rules. This essentially prevents Rei
from exploiting the full inferencing potential of OWL
as policy rules are expressed in a formalism external
to OWL. In addition, it does not provide any mecha-
nism for reasoning about subsumption in access con-
trol policies.

An Ontological Framework for Reasoning about Relations between Complex Access Control Policies in Cloud Environments

361

In (Nejdl et al., 2005) the authors propose POLI-
CYTAB for facilitating trust negotiation in Semantic
Web environments. POLICYTAB adopts ontologies
for the representation of policies that guide a trust
negotiation process ultimately aiming at granting, or
denying, access to sensitive Web resources. These
policies essentially specify the credentials that an en-
tity must possess in order to carry out an action on a
sensitive resource that is under the ownership of an-
other entity. Nevertheless, no attempt is made to se-
mantically model the context associated with access
requests, rendering POLICYTAB inadequate for the
dynamic nature of cloud environments.

6 CONCLUSIONS

We have presented an approach to reasoning about
subsumption between access control policies in dy-
namic cloud environments. The reasoning is based
on a semantic characterisation of all those access re-
quests to which the policies respond in an identical
manner, whilst it is performed automatically through
semantic inferencing that is carried out by off-the-
shelf reasoners. As part of future work we intend to
perform further performance tests in order to more ac-
curately determine the scalability of our approach to
larger underlying CMs. In addition, we intend to in-
corporate our approach in an editor that we are cur-
rently developing for facilitating the construction of
ABAC rules, policies and policy sets. This way, each
time a new rule, policy or policy set is created, the
editor will determine whether it is subsumed by an
existing rule, policy or policy set and thus assist de-
velopers in devising effective access control policies
and policy sets.

REFERENCES

(2004). W3C Recommendation. 2004. OWL Web Ontology
Language Reference. W3C. https://www.w3.org/TR/
owl-ref.

(2013). eXtensible Access Control Markup Language
(XACML) Version 3.0. OASIS. http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

(2015). Paasword - a holistic data privacy and security by
design platform-as-a service framework. https://www.
paasword.eu.

(2015). What’s Hindering the Adoption of Cloud Com-
puting in Europe? Cloud Security Alliance.
https://blog.cloudsecurityalliance.org/2015/09/15/
whats-hindering-the-adoption-of-cloud-computing-
in-europe/.

Horrocks, I., Kutz, O., and Sattler, U. (2006). The even
more irresistible sroiq. In Doherty, P., Mylopoulos, J.,
and Welty, C. A., editors, Proc. of the 10th Int. Conf.
on Principles of Knowledge Representation and Rea-
soning, pages 57–67. AAAI Press.

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., San-
dlin, K., Miller, R., and Scarfone, K. (2014). Guide
to Attribute Based Access Control (ABAC) Definition
and Considerations. NIST. http://nvlpubs.nist.gov/
nistpubs/specialpublications/NIST.SP.800-162.pdf.

Kagal, L., Finin, T., and Joshi, A. (2003). A policy language
for a pervasive computing environment. In Proceed-
ings POLICY 2003. IEEE 4th International Workshop
on Policies for Distributed Systems and Networks,
pages 63–74.

Kolovski, V., Hendler, J., and Parsia, B. (2007). Analyz-
ing web access control policies. In Proceedings of the
16th International Conference on World Wide Web,
WWW ’07, pages 677–686, New York, NY, USA.
ACM.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L.,
and Leaf, D. (2011). NIST Cloud Computing Refer-
ence Architecture.

Nejdl, W., Olmedilla, D., Winslett, M., and Zhang, C. C.
(2005). Ontology-based policy specification and
management. pages 290–302, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz,
Y. (2007). Pellet: A practical owl-dl reasoner. Web
Semant., 5(2):51–53.

Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,
Dalton, J., and Aitken, S. (2004). KAoS policy man-
agement for semantic web services. IEEE Intel. Sys.,
19(4):32–41.

Veloudis, S. and Paraskakis, I. (2015). Access Policies
Model. PaaSword Project Deliverable D2.2.

Veloudis, S. and Paraskakis, I. (2016). Defining an on-
tological framework for modelling policies in cloud
environments. In 8th IEEE International Conference
on Cloud Computing Technology and Science (Cloud-
Com’16).

Veloudis, S., Paraskakis, I., Petsos, C., Verginadis, Y., Pa-
tiniotakis, I., and Mentzas, G. (2017). An ontologi-
cal template for context expressions in attribute-based
access control policies. In Proceedings of the 7th In-
ternational Conference on Cloud Computing and Ser-
vices Science - Volume 1: CLOSER,, pages 151–162.
INSTICC, ScitePress.

Veloudis, S., Verginadis, Y., Paraskakis, I., Patiniotakis, I.,
and Mentzas, G. (2016). Context-aware security mod-
els for paas-enabled access control. In Proceedings of
the 6th International Conference on Cloud Comput-
ing and Services Science (CLOSER 2016) Vol. 1 and
2, pages 201–212. INSTICC, ScitePress.

Verginadis, Y., Patiniotakis, I., and Mentzas, G. (2015).
Context-aware Security Model, PaaSword Project
Deliverable D2.1. https://www.paasword.eu/wp-
content/uploads/2016/09/D2-1\ Context-
awareSecurityModel.pdf.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

362

