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Abstract: The monitoring and management of urban vegetation is an important issue nowadays due to the multiple 
benefits of vegetation for people well-being and for maintaining the balance of ecosystem. In that context, the 
following study explore to what extent remote sensing imagery could be used to detect and to characterize 
urban vegetation. Two types of imagery were tested which are low-resolution satellite (i.e. Sentinel 2 and 
Landsat 8 OLI) and high resolution airborne (i.e. Rikola hyperspectral sensor), the study assessed the 
detectability of vegetation species over Kaunas city (Lithuania) for different seasonal acquisitions. Satellite 
imagery showed accurate detection of 3 coarse classes of vegetation with overall accuracies (O.A.) superior 
to 90%, and airborne hyperspectral imagery showed decent detection of 13 fine classes of vegetation with 
O.A. of up to 73%. 

1 INTRODUCTION 

Urban vegetation mapping using remote sensing 
imagery is an emerging branch, indeed, the interest of 
studying, mapping, and managing green spaces is of 
capital importance for several actors including 
agronomists, urban architects, and environmental 
scientists. The availability of satellites imagery 
including Sentinel and Landsat programs permits 
several possibilities in terms of green areas detection, 
including temporal monitoring, extraction of specific 
species depending on the season of acquisition, and 
extraction of useful green areas maps for urban 
architects and cities actors. Nevertheless, due to the 
limited spatial and spectral resolutions of these data, 
recognition of trees species will be not feasible. 

The recognition if tree species is a complex 
procedure, which requires high spectral and spatial 
resolution imagery. Indeed, 1) if pixels size are not 
small enough, misclassifications could occur due to 
mixed-pixels phenomenon and 2) intra-class and 
inter-class spectral variabilities of vegetation species 
could affect badly the classification performance (i.e. 
appearance of salt and pepper effect within classes). 

In this context, several studies have explored 
vegetation species mapping, and the obtained 

performance is mixed. In (Brabant et al., 2018), 19 
vegetation species were mapped using 4m and 8m 
airborne hyperspectral imagery (i.e. up to 192 bands). 
The authors showed that a band reduction using 
Minimum Noise Fraction (MNF) (Green et al, 1988), 
or using a number of uncorrelated spectral indices 
permits an increase in term of identification accuracy 
(i.e. best Overall accuracy (O.A.) equal to 55%). In 
(Ouerghemmi et al., 2018a), 8 vegetation species 
were mapped using airborne hyperspectral data (i.e. 
up to 64 bands at 0.5m). The authors compared a 
distance based and a machine learning classifier using 
fixed training samples number, best results were 
obtained with machine learning classifier with MNF 
transform, with best O.A. equal to 46%. In (Mozgeris 
et al., 2018), the authors used an objects-based 
method for 6 trees species identification over 0.5m 
hyperspectral and 0.2m color infrared images. 
Several classifiers were trained using the segmented 
objects, best accuracies were obtained using 
hyperspectral images and Multilayer Perceptron with 
O.A. of 62%. Several studies claimed superiority of 
objet-based approach over pixel-based approach for 
vegetation species identification (e.g. Kamal and 
Phinn, 2011; Ballanti et al., 2016). Nevertheless, such 
approaches are more time consuming and final result 
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will depends on the accuracy of the used 
segmentation methods. 

In this study, a critical analysis on the use of 
different types of remote sensing imagery to identify 
vegetation species was carried. The goal was to first 
define the classes of interest in accordance to the 
image spatial resolution, and then to evaluate the 
accuracy performance for each type of imagery and 
for different seasonal acquisition when available.  

2 MATERIALS AND METHOD 

2.1 Data and Study Zone 

For this study, 4 satellite images of different dates 
were used; a Landsat 8 OLI image (i.e. summer: 15-
08-2015), and 4 Sentinel 2A images acquired at 
different seasons (i.e. respectively spring: 12-05-
2017, summer: 28-08-2016, autumn: 17-10-2016 and 
winter: 25-01-2017) were used. Landsat 8 image was 
pan-sharpened to 15m with 9 bands in VIS-NIR-
SWIR domain, Sentinel-2A images were pan-
sharpened at 10m with 13 bands in VIS-NIR-SWIR 
domain, pan-sharpening step was carried using 
nearest-neighbour (NN) interpolation method.  For 
Sentinel-2A, the acquisition of four seasonal mono-
annual images was not possible due to cloud 
presence, images of 2016 and 2017 were used instead. 
In parallel, two summer images from airborne 
hyperspectral imaging system Rikola were used, with 
respectively 16 bands and 64 bands in VIS-NIR 
domain at 0.7m and 0.5m of spatial resolution (i.e. 
acquired respectively at July 2015 and September 
2016). 

The study zone concerns Kaunas city (Lithuania) 
(Figure 1) which is characterized by an important 
green areas inside and around the city consisting in a 
heterogeneous scheme combining public parks, 
individual gardens, urban forests, and free green 
spaces. With such an important green area, the use of 
aerial and satellite imagery could facilitate the 
management and monitoring of these areas.   

Ground truth validation and training points were 
extracted from a tree inventory over Kaunas 
(Straigytė and Vaidelys, 2012), and from google 
street images. Indeed, the inventory was first released 
in 2012, and slightly updated since, thereby, some 
trees were missing or badly georeferenced when 
comparing to our test images, 2012 inventory and 
dated google street images were used in conjunction 
to produce accurate ground truth samples that will be 
used for classification training and for results 
validation. Ground truth points were then, manually 

converted to each dataset resolution, in order to fulfill 
the fineness of identification scale of each dataset. 
Coarser images will require less effort in ground truth 
point’s definition. The gap between the inventory 
data acquisition and images acquisition, will not 
affect too much the ground truth accuracy since few 
changes were made to the existing trees. Furthermore, 
an additional verification was carried using other 
available datasets (i.e. Google Street pictures, ground 
pictures, and field verification). 

 

 

Figure 1: True colour composition of the study zone, 
Kaunas city (Lithuania), Sentinel 2A (October 2016). 

2.2 Method 

The proposed method is composed of three main 
steps which are 1) optimal Normalized Difference 
Vegetation Index (NDVI) thresholding calculated 
over reflectance images, 2) vegetation species 
mapping using Support Vector Machine (SVM) 
classifier (Vapnik, 1995), and 3) seasonal vegetation 
monitoring (Figure 2). 

NDVI ൌ ሺሺNir_IR െ Redሻሻ/ሺሺNir_IR  Redሻ (1)
 

First, the images were pre-processed if necessary, 
satellite imagery were pan-sharpened to the highest 
spatial resolution, no atmospheric correction was 
needed since the available images were already 
corrected. Airborne imagery doesn’t requires pan-
sharpening since all bands were acquired at the same 
resolution, they were nevertheless converted to 
reflectance using MODTRAN radiative transfer 
model (Matthew et al., 2000). First step of the method 
aims at defining an optimal threshold of NDVI for 
vegetation pixels extraction, for that purpose, a 
precise study of NDVI useful bands (i.e. red and 
infrared) was carried for all the available datasets. 
The goal was to test NDVI index behaviour over 
vegetated pixels, for this purpose, ten pixels were 
randomly chosen from a collection of ground truth 
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vegetation pixels, the bands corresponding to 
minimum and maximum peaks in red and infrared 
intervals were extracted for each pixel, optimal NDVI 
bands will corresponds to the most recurrent bands 
from the 10 test samples. Sometimes, more than one 
combination of optimal NDVI bands are revealed, the 
determined combination or set of combinations are 
then used to calculate a threshold of NDVI, best 
threshold will correspond to the narrower one. 

Second step concerns vegetation species 
identification at different scales depending on the 
input datasets. From satellite imagery, coarse 
identification of 3 vegetation classes was carried, and 
from airborne hyperspectral imagery, finer 
identification of 13 vegetation species was carried. 
For each dataset, SVM classifier was trained using 
two strategies; 1) fixed and limited amount of training 
samples (i.e. 100 samples from ground truth data, per 
class), 2) variable amount of training samples (i.e. 
50% of ground truth data, per class). The vegetation 
mapping was validated using the whole ground truth 
data available. 

Last step concerns seasonal vegetation 
monitoring, using times series imagery. Four 
Sentinel-2A were used to extract a climatic optimum 
for vegetation extraction, and to monitor vegetation 
behaviour along different seasons, the results were 
compared to a Landsat 8 OLI at coarser resolution for 
summer season. Second aspect of this part concerns 
the feasibility assessment of specific vegetation 
species identification following specific seasonal 
acquisitions. 

 

Figure 2: Vegetation species mapping by multi-temporal 
satellite imagery and airborne hyperspectral imagery 
(Method). 

3 RESULTS 

3.1 NDVI Thresholding  

For Landsat 8 OLI, bands 4 and 5 (i.e. respectively at 
654nm and 864nm) have been revealed for all tested 
pixels as optimal NDVI bands, once the NDVI bands 
revealed, an NDVI mask of [0.08-max] was 
determined for the OLI 8 summer image (e.g. Ganie 
and Nusrath, 2016). 

For Sentinel 2A, band 4 (i.e. at 665nm) was 
revealed as red optimal band for all tested pixels, and 
three bands were revealed as potentially optimal 
infrared bands which are band 7, band 8 and band 8A 
(i.e. respectively 783nm, 842nm and 865nm). For the 
spring image, the combination of bands 4 and 8 
seemed to be the most adequate with an NDVI mask 
of [0.46-max]. For the summer image any of the used 
bands combination resulted in the same NDVI 
thresholding with a mask of [0.46-max]. For the 
autumn image, the combination of bands 4 and 8 
seemed to be the most adequate with an NDVI mask 
of [0.46-max], the chosen mask almost fulfil the 
recommendation of Sentinel Hub platform for green 
vegetation extraction (i.e. from 0.4 to max-value, e.g. 
Gao, 1996; Piragnolo, 2018). Finally, for the winter 
image, previous mask was not enough efficient for 
vegetation detection (e.g. Sicre et al., 2016), the 
combination of bands 4 and 8 seemed to be the most 
adequate with an NDVI mask of [0.2-max], this latter 
mask was a good compromise for winter season and 
permit an accurate extraction of coniferous trees. 

Concerning hyperspectral images of 16 bands, the 
study revealed more combination of NDVI bands for 
the 10 test pixels, the best combination concerned 
bands 7 and 13 (i.e. respectively at 653nm and 
803nm) with an NDVI mask of [0.7-max]. The 64 
bands image was more stable in terms of NDVI bands 
selection, indeed, any of the used bands combination 
resulted in the same NDVI thresholding with a mask 
of [0.55-max]. This last result could be explained by 
the increasing of bands number that compensate the 
spectral variability of the test pixels. The chosen 
vegetation thresholds for hyperspectral images are 
slightly different from conventional thresholds of [0.4 
– max] and [0.5 – max], which are commonly used 
for green vegetation extraction (e.g. Ouerghemmi et 
al., 2018a; Piragnolo, 2018), nevertheless, we have 
checked their accuracy in preventing non-vegetation 
pixels inclusion after NDVI masking.  
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3.2 Vegetation Species Discrimination 
by Satellite Imagery 

In the following study, several satellite images 
acquired at different seasonal intervals were used for 
vegetation species discrimination over Kaunas city. 
The idea was to evaluate the identification accuracy 
of three main group of vegetation species that are 
deciduous trees, coniferous trees and grass areas. The 
classes of interest were defined in accordance to the 
available spatial resolution offered by Sentinel-2A 
and Landsat 8 OLI that range from 10m to 15m in 
pan-sharpened mode. Given these resolution it was 
not reasonable to consider identifying trees individual 
species, nevertheless such resolution could be a 
useful tool for large-scale species identification. 

For Sentinel-2A, the identification concerned four 
acquisition dates corresponding to four different 
seasons. The best accuracies were obtained for spring 
and summer seasons (Figure 3.a-b), with O.A. 
superior to 90%, and individual accuracies superior to 
66% (Table 1). Spring season seems to be slightly 
accurate than summer one in terms of statistical 
accuracy, and could be considered therefore as 

optimum season for vegetation extraction; deciduous 
trees and grass accuracies were higher in spring 
season, while coniferous trees accuracy increased in 
summer season. Grass accuracy decreased in summer 
season due to its sensibility to drought conditions.  
For the autumn season (Figure 3.c), the identification 
accuracy of coniferous trees and grass was not much 
affected, the identification accuracy of deciduous 
trees was nevertheless decreased to 66% (Table 1) 
due to an important decrease in chlorophyll 
concentration. O.A. decreased also slightly under 
90%. Winter image gives best identification accuracy 
of coniferous trees, while no detection of deciduous 
nor grass was possible, due to snow coverage and 
leaves loss (Figure 3.d). When comparing Landsat 8 
OLI result with Sentinel-2A result of summer 
acquisition; O.A. are comparable with values superior 
than 95% (Table 1), nevertheless, Sentinel-2A 
showed to be more efficient in individual classes’ 
identification thanks to more efficient spatial 
resolution and spectral resolution. Landsat 8 OLI 
showed an important decrease of deciduous trees 
accuracy compared to Sentinel-2A due to its coarser 
resolution, coniferous trees accuracy slightly 
decreased, and grass was over-classified.

 

  

Figure 3: Vegetation species mapping by Sentinel-2A images of a) spring (12-05-2017), b) summer (28-08-2016), c) autumn 
(17-10-2016), and winter (25-01-2017) at 10m resolution. 

Table 1: Vegetation species identification accuracy by satellite imagery. 

Vegetation species 
S2A 

Spring 
S2A 

Summer 
S2A 

Autumn 
S2A 

Winter 
Landsat 8 OLI  

Summer 

Deciduous trees (%) 100 98.3 66.4 0 69.4 
Coniferous trees (%) 96.6 99.3 97.5 100 98.4 

Grass (%) 94.7 90.5 94.7 0 100 
O.A. (%)/Kappa 98.0/0.97 97.5/0.96 89.1/0.80 96.3/0.00 96.3/0.84 

 

(c)                                                                  (d) 

(a)                                                                  (b) 
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3.3 Individual Vegetation Species 
Discrimination by Airborne 
Hyperspectral Imagery 

In the previous study, three vegetation classes were 
identified using satellite images at 10m and 15m of 
spatial resolution, given such resolution, it was not 
possible to identify vegetation individual trees 
species. In the following study, two images acquired 
using hyperspectral camera Rikola were used, with 
respectively 0.7m and 0.5m of spatial resolution, and 
a number of bands equal to 16 and 64 bands. Airborne 
hyperspectral imagery offers technically more 
efficient images than satellite imagery in terms of 
both spectral and spatial resolution, in the other hands 
such solution is less cost effective but still relatively 
more profitable than other airborne acquisition 
solutions (Mozgeris et al., 2018).  

Two training strategies were used to train the 
SVM classifier; 1) using 100 fixed spectral samples 
from the available samples, and 2) using 50% of the 
available total samples per class. First strategy would 
be useful in case of limited availability of training 
samples, second strategy will ensure better classes 
modeling (Zhang and Xie, 2013, Fassnacht et al., 
2014). The comparison include a 16 and 64 bands 
images with respectively 0.7m and 0.5m of spatial 
resolution, first part of results concerned 
identification of 13 vegetation species including 
deciduous trees, coniferous trees and a grass variety 
(Figure 4.a-b), second part include coarser 
classification of the vegetation species into 3 classes. 

The identification accuracy showed an important 
dispersion per species, some species are well 

identified, some other are less accurately identified or 
not identified at all (Table 2, 1st part). The first 
training strategy seems less efficient in terms of 
classification accuracy, with O.A. less than 30%, the 
second training strategy showed much better 
identification performance with O.A. of up to 73% 
and an increase of accuracy performance of up to 
59%. Second strategy permits the identification of 
certain species that were not detected by first training 
strategy, in the other hand, some previously detected 
species were not detected using second training 
strategy; when increasing the training samples, some 
outliers could be added and then cause this behavior. 

The second part of this study consists in 
identifying 3 coarser classes which are deciduous 
trees, coniferous trees and grass (Table 2, 2nd part). 
For the first training strategy, the identification 
accuracy slightly increased compared to individual 
species identification, nevertheless, the overall 
performance still poor (i.e. barely superior to 30% at 
best). The second strategy gives on the other hand, 
more accurate identification accuracy (i.e. slightly 
inferior to 80% at best), when comparing to satellite 
imagery case, the identification accuracy is less 
efficient, with a percentage of decrease that vary from 
32% to 23% approximatively. The decrease could be 
explained by the fact that the grouping of classes was 
carried using individual species maps, and the 
validation was carried using a grouping of ground 
truth pixels of individual species. Knowing that some 
individual species were not detected using 
hyperspectral imagery (Table 2, 1st part), the global 
accuracy after grouping classes was therefore 
affected by the undetected fine species. 

Figure 4: Vegetation species mapping by airborne hyperspectral images of a) 16 bands at 0.7m resolution (08-2015) and b) 
64 bands at 0.5m resolution (09-2016). 

 

 

 

(a)                                                                                (b) 
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Table 2: Vegetation species identification accuracy by airborne hyperspectral imagery of 16 bands and 64 bands. 

Vegetation species 
16 bands hyperspectral Rikola 64 bands hyperspectral Rikola 

100 samples 50% of total samples 100 samples 50% of total samples 

Oak (%) 0 0,21 0 1,56 

Silver Birch (%) 0 0 13,51 44,66 

Norway Spruce (%) 71,32 43,38 64,41 0 

Salix Fragilis (%) 0 0 0 0 

Horse Chestnut (%) 0 2,29 12,8 12,98 

Norway Maple (%) 55,18 77,9 12,06 80,39 

Boxelder Maple (%) 28,85 45,45 0,57 16,38 

Linden (%) 0 23,89 0 75,65 

Black Locust (%) 42,13 38,07 45,66 40,98 

Mountain ash (%) 4,29 6,75 16,39 15,57 

Scots Pine (%) 19,18 0 46,6 0 

Thuja (%) 0 14,38 9,09 29,09 

Grass (%) 31,98 87,14 22,78 97,9 

O.A. (%)/kappa 27,39/0.27 63,22/0.47 14,72/0.10 73,29/0.65 

Deciduous (%) 28,42 39,16 15,62 69,48 

Coniferous (%) 31,27 22,54 36,01 12,44 

Grass (%) 31,98 87,14 22,78 97,9 

O.A. (%)/Kappa 30,51/0.12 65,75/0.47 18,89/0.08 79,28/0.65 

 

4 CONCLUSION 

Satellite imagery presents a cost effective solution for 
main urban vegetation classes, with accurate 
identification accuracy (i.e. superior to 90%), such 
solution is nevertheless not suited for trees species 
identification due to not sufficient spatial resolution. 
High repetitiveness satellite imagery (e.g. Sentinel 
and Landsat programs) offers an interesting solution 
for inter/intra-seasons vegetation monitoring, we 
showed in this study, an inter-season monitoring 
using Seninel-2A imagery that permits first to 
determine an optimum climatic for three main 
vegetation classes identification, and second to 
determine an optimum climatic for coniferous 
vegetation identification. 

The second part of the study focused on the 
individual trees species identification using high 
spatial resolution airborne imagery with higher 
spectral resolution of up to 64 bands. The goal was to 
identify 13 vegetation species within Kaunas city, the 
strategy of fixed training samples gives poor 
identification accuracy (i.e. O.A.<30%), second 
training strategy was more convincing, with 50% of 

the total samples per each class. For the second 
training strategy, SVM classifier showed accurate 
identification accuracy for both images (i.e. O.A. of 
up to 73%). In parallel, the 64 bands image gives 
better accuracy performance than the 16 bands one. 
The increase of bands number permits better 
modelling of the classes of interest and therefore, 
better identification of the corresponding vegetation 
species (e.g. Mozgeris et al, 2018; Ouerghemmi et al; 
2018b), at the price of an increase in terms of 
processing time due to higher resolution and bands 
number. 

High temporal satellite imagery (e.g. Sentinel-
2A), showed to be an accurate solution for coarse 
scale vegetation identification and monitoring, thanks 
to a large spectral interval, and to a good acquisition 
repetitiveness, it could be therefore useful to several 
fields of interest such urban architecture, urban 
planning, agronomy, forest management, etc. At the 
same time, hyperspectral imagery offer more 
potentialities in terms of fine vegetation species 
identification and also determination of other plants 
characteristics such as health condition (e.g. 
Mozgeris et al., 2016), thanks to its better technical 
characteristics. Such imagery could be useful for 
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achieving finer studies at individual vegetation 
species scale and could therefore be complementary 
to satellite imagery. 

The fusion of multi-sensor satellite imagery could 
be an interesting perspective for identification 
accuracy enhancement (e.g. Zhang and Xie, 2014; 
Alonso et al., 2014; Gintautas et al., 2018). The use 
of an airborne hyperspectral of 16 and 64 bands and 
0.7m and 0.5m of spatial resolution permits to 
identify most of the species of interest, nevertheless, 
some additional investigations must be carried to 
improve the identification accuracy. Ground truth 
samples must be enriched and rectified for some 
specific species, the integration of vegetation indices 
in the classification process could be tested (e.g. 
Erudel et al., 2017; Launeau et al., 2017; Brabant et 
al., 2018), the use of some pre-processing steps could 
be taken into consideration for optimal data 
processing (e.g. MNF).   
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