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Abstract: Today, there is a critical need to develop new solutions that enable classical ontologies to deal with uncertain
knowledge, which is inherently attached to the most of the real world’s problems. For that need, several
solutions have been proposed; one of them is based on fuzzy logic. Fuzzy ontologies were proposed as
candidate solutions based on fuzzy logic. Indeed, they propose a formal representation and reason in presence
of vague and imprecise knowledge in classical ontologies. Despite their indubitable success, they cannot
handle the probabilistic knowledge, which is presented in most of the real world’s applications. To address
this problem, this paper proposes a new solution based on fuzzy Bayesian networks, which aims at enhancing
the expressivity of the fuzzy ontologies to handle probabilistic knowledge and benefits from the highlights of
the fuzzy Bayesian networks to provide a fuzzy probabilistic reasoning based on vague knowledge stored in
fuzzy ontologies.

1 INTRODUCTION

Ontologies provide an important key factor for rep-
resenting, reasoning, sharing, and reusing the knowl-
edge of domains. They provide the key to machine-
processbale data and permit to use it in more efficient
way. They have been successfully used in order to
represent and reasoning with the knowledge in sev-
eral areas such semantic Web, artificial intelligence,
etc. Despite the great success of the classical ontolo-
gies, they were deemed inappropriate and fail when
handling uncertain knowledge that can appear inher-
ently in most of the real world’s problems. Indeed, the
uncertainty is a ubiquitous aspect of most real world
problems. It exists in almost every aspect of ontology
engineering(Pan et al., 2005).

To cope with uncertainty in ontologies, great deals
of efforts have been carried out. Fuzzy ontologies
were proposed in this context as promising solu-
tion, they benefit from the power of fuzzy logic to
cope with vagueness in classical ontologies (Zadeh,
1975). Fuzzy ontologies handle effectively the lin-
guistic vagueness, which is attached inherently to the
most of the natural language. Moreover, they permit
to make lots of reasoning tasks based on vague con-
cepts and assertions in fuzzy ontologies using some
reasoners such as(Bobillo et al., 2012)(Bobillo and
Straccia, 2016). Despite the fact that fuzzy ontologies

were successfully applied in many challenging tasks,
they suffer from their inability to handle the proba-
bilistic knowledge.

Besides, Fuzzy Bayesian Networks (FBNs) have
been proposed as an extension of the classical ones to
cope with vagueness that may be attached to the ran-
dom variables. They can deal with probabilistic and
vague knowledge at the same time and execute proba-
bilistic reasoning based on fuzzy evidences. However,
they cannot represent the probabilistic knowledge in
a semantic formal way that is treatable by machine.

In fact, uncertainty is present in most of the real
world’s problems, and it becomes a serious challenge
to model and resonate with it in ontologies. Espe-
cially, when semantic Web agents are dealing with
open data such in Internet, where information is com-
bined from different sources and is often incomplete,
vague, etc. Indeed, imperfection is a common prop-
erty of the most real world applications. Therefore,
it is important to develop hybrid models that allow
handling these uncertainties simultaneously in on-
tologies. Thus, this paper proposes a novel solution
that tackles this problem, it combines fuzzy ontolo-
gies with fuzzy bayesian networks in order to bene-
fit from the advantages of the both, where fuzzy on-
tologies allow handling vagueness in ontologies and
fuzzy Bayesian networks permit to cope with proba-
bilistic knowledge and make probabilistic reasoning
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over vague knowledge.
The rest of this paper is organized as follows. In

Section 2, we briefly introduce fuzzy ontologies then
we give a summary about Fuzzy Bayesian Networks.
In Section 3, we present our proposed approach. In
section 4 we discuss the related work and section 5
concludes this paper and talks about future works.

2 BACKGROUND

In this section, some background knowledge is pre-
sented including fuzzy ontologies and fuzzy Bayesian
networks.

2.1 Fuzzy Ontologies

Several definitions have been presented in the scien-
tific literature for what is a fuzzy ontology, but there
is no common definition. Indeed, many researchers
have proposed to extend ontologies with fuzzy logic.
The most shared characteristic of these propositions
is that they extend the components of the classical
ontologies in order to allow them representing vague
and imprecise knowledge. Refereeing to (Bobillo and
Straccia, 2011) , a fuzzy ontology is an ontology that
uses fuzzy logic to represent the world in a natu-
ral representation of imprecise and vague knowledge.
Therefore, eases reasoning over it.

A fuzzy ontology consists of a set of components:

• Fuzzy Concepts: are the concepts that have no
clear boundaries, they can be used to represent
fuzzy sets of individuals and allow representing a
gradual belonging of individuals to their classes;

• Fuzzy Roles: are divided into two classes, Fuzzy
object properties that are fuzzy binary relations
among concepts or individuals. They permit to
assign some degree to the association among the
instances of concepts (crisp or fuzzy). And fuzzy
data properties that permit to assign a degree to
the association among a data value and an instance
of fuzzy concept;

• Fuzzy Data Types: fuzzy data types are used to
fuzzify attributes values of concepts, such as the
range of data properties. They can also be at-
tached to a concept instance;

• Fuzzy Modifiers: are generally used in order to
change the interpretation of fuzzy concepts and
fuzzy datatypes.

2.2 Fuzzy Bayesian Networks

Fuzzy Bayesian networks proposed as hybrid models
that enhance the classical ones in order to cope with
vague and imprecise knowledge that may be attached
to the random variables. They combine the capabili-
ties of Bayesian networks and fuzzy logic to benefit
from the advantages of the two models.

FBN is a Bayesian network extension that con-
sists of two types of nodes; crisps nodes are the nodes
whose meaning is precise, and the fuzzy nodes are the
nodes whose meaning is vague. Many experiments
have proved the benefits of FBNs in wide diversity do-
mains and applications. Nonetheless, there is no uni-
fied model which defines fuzzy Bayesian networks. In
fact, many solutions have been proposed in the scien-
tific literature in order to incorporate the membership
degrees with probabilities, which are:

• First, the weighted method (Mrad et al., 2012):
the main idea of this method is to extend the dif-
ferent rules used in the Bayesian networks by as-
sociating a membership degree value to each rule
as weight; then the fuzzy Bayesian rules can be
defined to support the fuzzy Bayesian inference
in FBN model.

• Second, fuzzy distribution method (Ryhajlo et al.,
2013): in this method, the fuzzy membership de-
grees will be integrated directly in the probability
distribution, where in the first step the fuzzy mem-
bership degree must be represented like a proba-
bility distribution, then this later will be integrated
in the probability distribution in order to gener-
ate the Fuzzy Probability Distribution. The Fuzzy
Probability Distribution is a hybrid representation
of the fuzzy membership degree and the probabil-
ity distribution.

• Finally, virtual evidence method (Li, 2009)(Peng
et al., 2010): this method consists to add new
nodes in the bayesian network called virtual evi-
dence nodes. Then incorporate the fuzzy evidence
in these latters, the fuzzy evidence will be rep-
resented as a probability distribution in the con-
ditional probability table (CPT) of each virtual
node. Then the fuzzy probabilistic inference can
be done by setting the evidences on the virtual
nodes and applying classical algorithms of infer-
ence.

3 THE PROPOSED APROACH

The study of the literature has showed that existing
works, when dealing with uncertainty residing in on-
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tologies are not enough expressive and suffer from the
inability to deal with rich-uncertainty domains; where
vague, imprecise and probabilistic knowledge appears
simultaneously. Indeed, probabilistic knowledge and
fuzzy knowledge have been treated separately in on-
tologies and unfortunately, there is no efforts have
been devoted to cope with the two simultaneously in
the ontologies. In this paper, we consider this prob-
lem; we propose a probabilistic extension of fuzzy on-
tologies, which provides a strong mean foundation to
enable the fuzzy ontologies to cope with the proba-
bilistic knowledge based on fuzzy Bayesian networks.
It permits to handle both probabilistic knowledge and
fuzzy knowledge at the same time in ontologies.

The main idea behind our proposal is to deal with
the probabilistic knowledge in fuzzy ontologies by
creating an FBN based on an existing fuzzy ontol-
ogy in order to capture the probabilistic knowledge
involved within. In addition, incorporate this proba-
bilistic knowledge in the fuzzy ontology using a high-
level ontology in order to represent it in a formal way.
The proposed solution is described by a general pro-
cess that eases creating probabilistic fuzzy ontologies.
It refers to the phases illustrated in the Fig1.

The input of the proposed process is an fuzzy on-
tology (F1) that must confront probabilistic knowl-
edge which is involved in its elements.

3.1 Phase 1 (Specification of
Requirements)

This phase aims to specify explicitly the purpose
that must be achieved by constructing a probabilis-
tic fuzzy ontology. In this step, the ontology engineer
must justify the needs and the requirements behind
the creation of ProbFuzzOnto ontology for the studied
domain. This step serves to identify the probabilistic
components of the fuzzy ontology that are relevant
for the considered problem and must be modeled in
the next steps.Thus, the main objectives of this step
are:

• To specify the objectives and the needs for creat-
ing probabilistic fuzzy ontology.

• To identify the probabilistic components of the
fuzzy ontology that are relevant to the studied do-
main.

3.2 Phase 2 (Probabilistic Knowledge
Design)

This phase is the core of our proposed solution, it
aims to model the probabilistic knowledge involved

in the fuzzy ontology using an Fuzzy Bayesian Net-
work. This is done by constructing an FBN based on
the requirements specified in the previous step, which
captures the probabilistic knowledge of the studied
domain. Therefore, the probabilistic knowledge de-
sign goes through three steps:

3.2.1 Constructing Structure of Bayesian
Networks.

In this step ontology engineer has to represent the
probabilistic components of the fuzzy ontology se-
lected in the previous phase in an FBN. The main
tasks of this step are:

• Node creation. Each selected concept will be rep-
resented by a node in the FBN.

• The ontology engineer must define the states of
each created node.

• Arcs creation. Each probabilistic role will be rep-
resented by an arc in the FBN.

3.2.2 Estimate the Conditional Probability
Tables (CPTs)

The aim of this step is to estimate the conditional
probability tables of the Bayesian network (parame-
ters). The most efficient solution is to use machine-
learning algorithms in order to estimate the proba-
bility distributions from available data. However, in
practical cases, the data are incomplete and usually
contain missing values, where some random variables
are observed only partially or never.

For this reason, we propose the use of the most
applied method of estimating parameters with incom-
plete data. It is based on the iterative Expectation-
Maximization (EM) algorithm proposed by Dempster
in (Dempster et al., 1977). The EM algorithm al-
ternates between executing an expectation (E) step,
which creates a function for the expectation of the
log-likelihood evaluated using the current estimate for
the parameters, and maximization (M) step, which
computes parameters maximizing the expected log-
likelihood found on the E step. These parameter-
estimates are then used to determine the distribution
of the latent variables in the next E step.

3.2.3 Fuzzify the States of each Fuzzy Node

The objective of this step is to attribute to each state
of each fuzzy node a membership function, which is
already defined in the fuzzy data types represented in
the fuzzy ontology.
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Figure 1: The proposed process for constructing Probabilistic Fuzzy Ontologies.

3.3 Phase 3 (Probabilistic Knowledge
Integration)

Despite the probabilistic knowledge involved in the
fuzzy ontology has been modeled and represented
in the previous steps in an Fuzzy Bayesian network
model. Nevertheless, this knowledge needs to be rep-
resented and formalized in a way that it can be read
and processable by machine. In other words, it needs
to be represented semantically. For this purpose, we
propose a high level ontology of FBN that permits to
represent semantically the fuzzy Bayesian networks
and then incorporate it in the fuzzy ontology.

Besides, the fuzzy Bayesian network created in
the previous step will be represented and described
in this high level ontology, which facilitates the
integration of the probabilistic knowledge in the
fuzzy ontology.

Definition 1. Fuzzy Bayesian Networks. An
Fuzzy Bayesian Network is defined by 3-tuple
F =≺ G,M,P�
, where:

1. G= (N, A) is an acyclic graph.

(a) N = {n1,n2,n3, ...,nm} is the set of the nodes
that constitute G. Where, N= Φ∪Ψ.

(b) Φ = { f n1, f n2, f n3, ..., f nk} is the list of the
fuzzy nodes of F with size of k, with Φ⊆ N.

(c) Ψ = {cn1,cn2,cn3, ...,cn j} is the list of the
crisp nodes of F with size of j, with Ψ⊆ N.

(d) A = {(ni,n j)/ni ∈Nandn j ∈N} is a set of arcs,
each (ni,n j) ∈ A represents a dependency link
between ni and n j (i.e, ni influences directly on

n j).

2. M = {m1,m2,m3, ...,ml} is a finite set of the mem-
bership functions used to fuzzify fuzzy nodes.

3. P is the probability distribution of F.

Furthermore, each node ni ∈ N has a set of finite
states S={s1,s2,s3, ...,st} , when ni ∈Φ. i.e., is fuzzy,
per each si ∈ S, a membership function mi ∈ M will
be associated to si in order to fuzzify this last.

Definition 2. Membership Function. Let Ω

be the universe of the discourse of s.
Then, a membership function m is defined in Ω as
follows:
m: Ω→ [0, 1].
Per each x ∈ Ω, the value m(x) is called the degree
of membership of x in s .

Definition 3. Mapping Function. A mapping
function Γ is a function that maps to each state s, its
membership function m.
Formally, Γ: S x M→ False, True.

Property 1. Let s ∈ S and m ∈ M. Then Γ(s, m) =
True if only if m is the membership function used to
fuzzify s.

Each nodes ni ∈ N has a probabilistic distribu-
tion, when a node is a root node (without parents)
its probabilistic distribution called Prior Probability
represented in prior table, when a node has parents its
probabilistic distribution is named Conditional Proba-
bilistic Table represented by a set of conditional prob-
abilities.
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Figure 2: The upper ontology UOFBN.

Definition 4. A Prior Table. A prior table of a node
n ∈ N is a set of couples (s, P) that link to each state
si with its prior probability Priori. Formally:

PriorTab (n) = {Prior1, ...,Priora} , with a is the
number of states of the node n.
Priori = (si, Pi), where,
si ∈ S: represents a state of the node n.
Pi ∈ [0, 1] : represents the prior value.

Definition 5. A Conditional Probabilistic Table. A
Conditional Probabilistic Table of a node n ∈ N is a
set of conditional probabilities, it is defined as:
CondTab (n) = {Condi, ...,Condb}, with b is the
number of states of the node n.
Condi = (si,nei,sei,Pi), with :
si ∈ S : represents the state of the node n.
nei : represents the nodes of the evidence (observed
nodes).
sei : represents the states of the evidences nodes .
Pi ∈ [0, 1] : represents the conditional probability
value.

The UOFBN allows representing the semantic of
FBN and it is illustrated in the Fig. 2. It consists of a
set of class and properties:

1. Node Class. The nodes of the FBN will be rep-
resented by individuals of the class Node. In fact,
the nodes in an FBN can be crisp or fuzzy, for this
purpose, we created two subclasses of the class
Node in order to make a distinction between the
two types. The Fuzzy Node class, which includes
all the fuzzy nodes of the FBN, each fuzzy node
f ni ∈ Φ, will be represented by an individual I fi
of the class FuzzyNode. The Crisp Node class,
which includes all the crisp nodes of the FBN,
each crisp node cn j ∈Ψ will be represented by an
individual Ic j of the class CrispNode. Moreover,
the arcs between nodes can be represented by the
object property ”hasParent”.

2. State Class. The elements of this class are the
states related to each node ni, thus, per each state
si ∈ S, an individual Is will be created to represent
that state. Moreover, Is will be linked with
the node ni via the object property ”hasState”.
Moreover, when ni is fuzzy, all its states will be
fuzzified using membership functions, for this
reason. An object property named ”Attached” is
defined, which links each state with its member-
ship function mi.
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3. Membership Function Class. This class rep-
resents the membership functions, it contains
five sub-classes (left-shoulder, right-shoulder,
triangular, linear function, and trapezoidal),
each membership function sub-class has a set
of arguments represented by data properties (A,
B, C, D, E). Thus, to each membership function
mi, an individual of the class ”Membership func-
tion” Imi will be created to represent that function.

4. The probabilistic table of each node will be rep-
resented using the classes ”CondTab” and ”Pri-
orTab”.

(a) CondTab. For each root node, an instance
”pr” of this class will be created to repre-
sent its probabilistic table. Moreover, a set of
prior probabilities P= {Prior1, ...,Priorn} will
be created as instances of the class “PriorProb”.
These instances will be linked with their table
”pr” via the object property ”hasPriorTab”.

(b) PriorTab. For each node with parents, an
instance ”cpt” of this class will be created
to represent its probabilistic table. More-
over, a set of conditional probabilities C=
{Condi, ....,Condn} will be created as instances
of the class ”CondiTab”. These instances will
be linked with their conditional table ”cpt” via
the object property ”hasCondTab”.

At the end of the proposed process, the fuzzy ontol-
ogy F1 will be augmented and enriched with proba-
bilistic knowledge; it can represent both fuzzy knowl-
edge and probabilistic one and make a probabilistic
reasoning based on fuzzy evidences stored in the on-
tology.

4 RELATED WORK AND
DISCUSSION

Many solutions have been provided in the scientific
literature to cope with uncertainty in ontologies; in
this section we investigate the most relevant works.

Authors in (Yang and Calmet, 2005), proposed
an extension of the ontology Web language (OWL),
which is named Bayes OWL; it allows a set of rules
for translating OWL ontology to a Bayesian network.
It also provides a method for incorporating avail-
able probability constraints when constructing the
Bayesian network especially when constructing the
conditional probability tables.

In (Ding et al., 2006), the authors proposed an
extension called OntoBayes. It enhances knowledge

representation in OWL and enables agents to act un-
der uncertainty; the authors defined additional OWL
classes that can be used to markup probabilities and
dependencies in OWL. Both OntoBayes and Bayes
OWL are unable to cope with the vague an imprecise
knowledge.

In (Costa et al., 2008) (Carvalho et al., 2017),
PROWL was proposed as an extension that enables
ontologies represented in OWL to model and res-
onate under uncertain knowledge in complex real-
world applications. It can encode probabilities dis-
tributions on the interpretation of an associated first-
order theory as well as repeated structure based on
the Multi-Entity Bayesian Network (MEBN) formal-
ism (Laskey, 2008). Despite its robustness in terms
of expressivity, its use remains very complicated for
non-expert users of its modeling details. Moreover, it
is based on MEBN. However, the MEBN community
is not broad enough to consider it as a new standard
for modeling uncertainty (Setiawan et al., 2015).

In (Ishak et al., 2011), an extension of ontolo-
gies based on Oriented Object Bayesian Networks
(OOBNs) has been developed. In this approach, au-
thors defined a set of mapping rules in order to con-
struct an OOBN based on ontology. Despite the fact
that this extension can cope with complex problems
based on OOBNs, the vague and imprecise knowl-
edge is not taken into account by this extension.

In (Emna et al., 2016a)(Emna et al., 2016b), a
probabilistic extension of OWL 2 Meta-Model is
presented which is named Probabilistic Ontology
Definition Meta-Model (PODM). This is done by
adding some new components such as Probabilis-
tic Class, Probabilistic Individual, Probabilistic Data
Property. . . etc. The main defect of this approach is
that it cannot cope with the vague knowledge in the
ontology.

Lately, in (Mohammed et al., 2016), an extension
named hybrid probabilistic ontology based on the hy-
brid Bayesian networks is proposed. The merit of
this extension is that it allows handling simultane-
ously distributions over discrete and continuous quan-
tities in the ontology. Nevertheless, it cannot deal
with vague and imprecise knowledge in the ontolo-
gies, neither reason with it.

Recently, a method to construct the probabilis-
tic ontologies is developed in (Hlel et al., 2018), it
is based on the classical Bayesian networks to cope
with probabilistic knowledge in the classical ontolo-
gies, this method focuses on converting only the com-
ponents of ontology that can support uncertainty in
a BN graph(focus on instances and roles of the on-
tology). However, when constructing the CPTs, this
method does not consider the missing data and it ig-
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Figure 3: The differences between our approach and the related work.

nores vague and imprecise knowledge.
Based on the study of the related work, we can see

clearly that most of the related work are based on clas-
sical Bayesian networks and their extensions to deal
with probabilistic knowledge in classical ontologies.
Unfortunately classical BNs fail to handle the vague
knowledge that may be attached to the nodes of these
networks and their inference is based on certain evi-
dence.

Indeed, the proposed solution in this paper aims
to model probabilistic knowledge in fuzzy ontolo-
gies, it combines the advantages of fuzzy ontologies
and fuzzy Bayesian networks to benefits from both of
them. Indeed, Fuzzy Bayesian networks allow deal-
ing with probabilistic events based on fuzzy evidence
to perform a fuzzy probabilistic inference. Neverthe-
less, they cannot model this knowledge in a formal
way that is treatable automatically by machine.

Fuzzy ontologies on the other side allow repre-
senting and make some reasoning tasks such as in-
dividual classification based on vague knowledge.
The table 1 compares between the different proposed
solutions in the literature, according to their provided
mechanisms in terms of modeling and reasoning.

In the table 1:

• The Inputs Column: represents the input taken
by each solution, it can be classical ontology or
fuzzy ontology.

• Fuzzy Knowledge Column: it indicates if the so-
lution treats Fuzzy Knowledge and provides alter-
natives in order to represent vagueness in ontolo-
gies.

• Probabilistic Knowledge Column: it indicates
if the solution considers Probabilistic Knowledge
and provides alternatives in order to represent it
semantically in ontologies.

• Probabilistic Inference Column: it indicates if

the solution provides probabilistic reasoning or
not.

• Fuzzy Probabilistic Inference Column: it indi-
cates if the solution provides probabilistic reason-
ing (Fuzzy Probabilistic inference) based on fuzzy
evidences or not.

• The Outputs Column: Represents the results
given by the solutions. It can be probabilistic on-
tology or probabilistic fuzzy ontology.
Indeed, most of the proposed solutions in the lit-

erature focus on exploiting the classical BNs in order
to deal with the probabilistic knowledge in classical
ontologies. Unfortunately, classical BNs fail to han-
dle the vague knowledge that may be attached to the
nodes of these latters.

Moreover, all the probabilistic extensions are
based on extending OWL language to deal only with
the probabilistic knowledge. These extensions are
limited to handle just the probabilistic knowledge and
do not consider the vague and imprecise one.

In the contrary, our solution aims to combine the
advantages of fuzzy ontologies and FBs. Thus, the
underlying key of our proposed solution is that:

• It is a probabilistic extension of fuzzy ontologies,
which is expressive enough to cover the needs of
most of real world’s problems. So far, it allows
handling and representing formally vague, impre-
cise and probabilistic knowledge simultaneously
in ontologies.

• It introduces a process for building ProbFuzOnto
based on fuzzy ontologies.

• It provides several reasoning tasks, where all the
tasks of reasoning that can be applied on fuzzy
ontologies are still valid in our extension.
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5 CONCLUSIONS

In this paper, we introduced a new solution that aims
to improve the knowledge representation and rea-
soning with uncertain knowledge in fuzzy ontolo-
gies. The proposed solution is described by a gen-
eral process, which takes as an input a fuzzy ontol-
ogy and outputs a probabilistic fuzzy ontology. The
merit of our proposal is that it can represent and rea-
son with rich-uncertainty domains, where it models
the vague, imprecise and probabilistic knowledge si-
multaneously and combines the ontological inference
with the fuzzy probabilistic inference.
As future works, we are looking to present real cases
studies with our proposed approach to show its poten-
tial applicability in terms of modeling and reasoning.
Moreover, we are looking to implement an interactive
protégé-plugin in order to help ontology developers to
follow our proposed process.
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