
Architecture to Manage and Protect Personal Data Utilising Blockchain

Jens Leicht and Maritta Heisel
paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen, Duisburg, Germany

Keywords: Data Protection, Privacy, Blockchain, Data Management.

Abstract: Many Internet users employ a multitude of online services. Many services require the same data to be entered
and users enter it repeatedly. Instead of entering information for every new service a user wants to use, we
propose a system that allows users to simply share a set of information with any service they want to use. The
information is entered once and stored in a distributed storage system. Users can easily share the data with any
service provider, in order to use a service. Our proposed system makes use of the distributed ledger, provided
by blockchains, to manage access rights. By taking the data away from the service providers, the personal data
is also protected against unwanted data leaks.

1 INTRODUCTION

A tremendous amount of online services access per-
sonal data from their users. The data provided by the
users often must be entered repeatedly, due to several
services requiring the same information. As an ex-
ample, users make purchases at multiple e-commerce
providers. Every time they submit an order in a new
online shop, shipping and payment information needs
to be re-entered. However, this is error prone, due
to typing errors, and might be considered annoying.
In this paper we propose a system called Data Pro-
tection and Management System (DPMS) that allows
users to manage their data with a decentralized sys-
tem. Data only must be entered once and can after-
wards be accessed by service providers. Rights man-
agement and logging of data access are realised with a
distributed ledger in a blockchain (Nakamoto, 2008).
For the storage of users’ data, a distributed hash table
(DHT), with additional redundancy is used.

In a real-world scenario our system could for ex-
ample be used by online merchants. Every merchant
could be providing and using our DPMS interface and
users can store their billing and shipping information
in the DPMS. Every time users place an order, they
can allow the merchant to access their shipping and
billing information and thus do not have to enter their
information repeatedly.

The paper is structured as follows: At first some
necessary background information is presented in
Section 2, before we introduce the architecture of our
proposed system in Section 3. In a next step, the en-

coding of access policies is explained in detail in Sec-
tion 4. Afterwards, in Section 5 we explain some pro-
cedures from our system, that allow a better under-
standing of how it is going to work. Next, we present
a short discussion of our system in Section 6 and re-
lated work in Section 7. Finally, Section 8 presents a
conclusion and future work.

2 BACKGROUND

The system that we propose utilises multiple dis-
tributed techniques, which are presented in a short
overview in this section. First, the blockchain tech-
nology and its use for the proposed system is ex-
plained, followed by a brief introduction to distributed
hash tables.

2.1 Blockchain

Blockchain technology is mostly known through the
crypto-currency system bitcoin (Nakamoto, 2008).
The bitcoin system uses the ledger functionality of a
blockchain to store transactions in an immutable man-
ner. Meaning that transactions cannot be altered, af-
ter they have been verified by the participants of the
blockchain. These participants are called miners, be-
cause they get rewards for the computing power they
spend on the verification of the transactions. To re-
move the trust needed in a single miner, all miners
verify the transactions.

340
Leicht, J. and Heisel, M.
Architecture to Manage and Protect Personal Data Utilising Blockchain.
DOI: 10.5220/0007724203400349
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 340-349
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The system is called blockchain, because all trans-
actions are stored in so called blocks, and each new
block references its predecessor, thus creating a chain
of blocks. Each block consists of the hash of the pre-
ceding block, the root of a hash tree of the transac-
tions stored in that block and the transaction data it-
self. The transaction data states how much currency is
transferred from one address to other addresses. The
chaining ensures that past blocks cannot be altered
without replacing all the following blocks, because
the hashes contained in the following blocks would
not match the content of the manipulated block.

This, however, requires several blocks to be cre-
ated, after a transaction has been stored, to prevent
miners with high computing power to manipulate the
block and all currently following blocks. Only after a
certain number of blocks has been created, following
the block containing the transaction, a transaction is
considered persistent.

Two distinct methods for the creation of new
blocks have been developed. On the one hand the
proof-of-work method can be used, which requires
miners to spend their computing power and thus high
amounts of electricity on computing a high number of
hashes. This technology is used by the bitcoin system.
On the other hand, the proof-of-stake method (Kiayias
et al., 2017) can be used, which does not require the
miners to calculate many hashes, but instead allows a
random miner to create a new block by just calculat-
ing one hash. Besides the difference in energy con-
sumption (one hash compared to millions of hashes),
the time needed to create a new block is reduced by
the proof-of-stake method.

When two blocks are created at the same time, a
so-called fork happens. The blockchain gets extended
at two ends in parallel. After some time, the longest
chain is accepted as the actual chain and transactions
from the forked chain are placed in later blocks of the
accepted chain.

The addresses used in transactions are the public
part of an asymmetric key pair, which is generated by
the users of the blockchain. To create new transac-
tions the user needs to use the private part of the key
pair, to sign previous transactions. There is no need
for certificate authorities (CAs) as the key pair is only
needed on the users’ side and is generated by the users
themselves.

Some blockchain systems provide a so-called
faucet, that provides some amount of free crypto-
currency to users, who are interested in using the sys-
tem.

Although blockchain technology is widely known
through the bitcoin hype, it can also be used outside
the bitcoin and crypto-currency territory. We propose

a use case for a blockchain in a privacy and data man-
agement context. Our system is based on the work
from (Zyskind et al., 2015a), which is further ex-
plained in the related work described in Section 7.

2.2 Distributed Hash Table

A distributed hash table (DHT) is a system that allows
efficient localisation of data in a distributed and de-
centralized peer-to-peer system. Nodes and data are
addressed through hashes.

DHTs can, for example, be used for file sharing
systems, distributed file systems or content distribu-
tion systems. An example DHT protocol is Chord
(Stoica et al., 2001), and Kademlia (Maymounkov
and Mazières, 2002) is an implementation of a DHT.
Based on these protocols several applications have
been developed, for example RetroShare1, a secure
communications application, or GlusterFS2, a dis-
tributed file system.

Through distribution of the data and removal of a
central authority, the users do not have to trust a sin-
gle party in maintaining the confidentiality, availabil-
ity, security and integrity of their data. Additionally,
redundant storage, on multiple nodes, decreases the
risk of data loss.

3 SYSTEM ARCHITECTURE

Figure 1 shows the architecture of our proposed sys-
tem. The DPMS consists of a data manager API, a
DHT, a blockchain and a naming service. A service
provider is providing a service, which is used by a
user.

3.1 API: Data Manager

This is the main component of our proposed system,
which manages access policies on the one hand and
user data on the other hand. This part of the system
could be implemented as a small library that can be
used in applications and web services. In order to
manage access to their data, users need to have their
private key, which is used by the blockchain system
to store transactions containing the access policies.

The data manger is an application programming
interface (API) provided to service providers, who use
the provided API to allow their users to make use of
the DPMS.

1http://retroshare.net/
2https://www.gluster.org/

Architecture to Manage and Protect Personal Data Utilising Blockchain

341

DHT

Blockchain

Legend

API:Data
Manager

Service
Provider

MinerPolicy

Service

Data

Naming
Service

Interac�on

Technology

User

Key
Management

Miner User

DHT
Node

Service
Provider

Node

Figure 1: Architecture of the DPMS.

However, the data manager also has to be pro-
vided as a standalone web service or application to
provide users a service-provider-independent access
to the stored data and policies. This is necessary, es-
pecially if users want to withdraw access rights from
a service provider, who stopped providing the data
manager to the users. The application and web ser-
vice can be hosted on the DHT to avoid additional
costs for hosting services.

3.2 Blockchain

The blockchain, visualised as computers interacting
in a network, is powered by miners. A possible
way of powering the blockchain is to offer incen-
tives, like a crypto-currency, to miners that are in no
other way concerned with the DPMS. This however
induces costs that need to be covered by users or ser-
vice providers, which may lead to bad acceptance of
the overall system.

Therefore, we suggest powering the blockchain
from computing power provided by users and service
providers. Both parties do not need additional in-
centives to be willing to provide some computational
power, as they are benefiting from the running system.

Additionally to storing access policies, the ledger
is used to log access to the data, and even attempted

access can be logged. This enables users to see who
accessed and who tried to access their data.

Instead of the proof-of-work method used in the
bitcoin blockchain, we propose to use the proof-of-
stake method. This is due to the massive energy con-
sumption required for proof-of-work mining and the
speed at which new blocks can be created.

3.3 Naming Service

Due to its nature the blockchain does not reveal who
is behind a public key. So, users can only see which
public key tried to access their data, when looking at a
logging transaction. However, a DNS (dynamic name
service) like system can be deployed, which reveals
the service provider that relates to a given public key.
The naming service should only be used for service
providers, in order to preserve users’ anonymity and
thus improving their privacy. Only service providers
that have access to users’ data can identify who is re-
lated to a public key, any outside party cannot assert
the relation between public key in the blockchain and
user.

The naming system is enforced by only allow-
ing access requests from the owner of the data and
registered service providers. Any public key, that is
not registered in the naming service, is prohibited to

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

342

access any data. By expanding the functionality of
the DHT, the naming service could be hosted and en-
forced by the DHT nodes.

Even service providers’ privacy can be protected,
by only allowing name lookups by users, whose data
has been accessed/attempted to be accessed by a given
service provider.

3.4 Distributed Hash Table

Parties that are already involved in our system, e.g.
by using it to access or store data, can become par-
ticipants in the DHT. These parties do not need any
further incentive to participate, because they already
benefit from using the system.

Our proposed system is not yet implemented, but
we provide some ideas on how it could be imple-
mented. The DHT part of our system could be imple-
mented using the chord protocol (Stoica et al., 2001).
An alternative could be Kademlia (Maymounkov and
Mazières, 2002). Both protocols provide some basic
features for a DHT.

However, the DHT implementation needs to be
adjusted so that it provides redundancy over multi-
ple nodes. The access control also needs to be im-
plemented into the DHT system. The DHT needs to
make sure that a service provider is registered in the
naming service and has a current access granted trans-
action in the blockchain.

Another important thing to mention is the fact that
a DHT node should not have access to the data it is
storing. Although the data itself is encrypted, a DHT
node could possibly have access to the encryption key.
By restricting the node’s access to the stored data, a
higher level of security can be provided. This could be
achieved by storing the data in an encrypted storage,
not providing the key to the node host.

The DHT implementation should have small com-
puting needs, as this would allow a deployment on
devices like routers at the users’ homes. These de-
vices are already running all day and are capable to
participate in a DHT. BitTorrent3 clients like trans-
mission4 already make use of these always online de-
vices. Transmission is available for various router
models.

3.5 Key Management

One of the most important parts of our system is
the key management. Users create a set of informa-
tion and encrypt it using symmetric encryption. Sym-

3A peer-to-peer file sharing service using a DHT
(http://www.bittorrent.org/)

4https://transmissionbt.com/

metric encryption is used, to enable multiple service
providers to decrypt the same data. If an asymmet-
ric algorithm was used, only one service provider, the
one providing the public key, would be able to decrypt
the data. This would stop our system from reducing
the recurring entering of the same information, be-
cause the data would have to be encrypted for every
service provider separately.

For service providers to be able to access the
stored data, they must be able to decrypt the stored
information.

We suggest that the user creates a secured con-
nection to the service provider and then transmits the
encryption key through the encrypted connection to
the service provider. Once the service provider gains
access rights for the data, it can be downloaded from
the storage system and decrypted to access the infor-
mation.

When users withdraw access rights or get in-
formed about an encryption key disclosure, they need
to be able to withdraw the data, that was encrypted
with the key, from the system. We propose to add
a functionality to the DHT that allows users to re-
voke data from the system. However, this function-
ality should not just delete the data, since a user may
not have a local copy of the data at hand, which is
needed for replacing the data, after using a new en-
cryption key. We suggest that the DHT nodes, stor-
ing the encrypted data, encrypt it with a node specific
key. Only when the owner of the data wants to access
it, the DHT decrypts the data and returns the origi-
nal encrypted data. This stops anybody other than the
owner to access the data. After downloading the data,
the user can request a deletion of the secured data and
upload the newly encrypted data, afterwards.

In cases where the re-encryption of the data is not
needed instantly (no key breach occurred) the user
can download the original data, delete it and then re-
upload a newly encrypted version.

The DHT re-encryption approach mentioned
above allows the system to automatically react to data
breach notifications from service providers, by auto-
matically re-encrypting all data that was shared to that
service provider. This ensures privacy even when data
breaches at service providers occur.

To further protect data integrity, the encrypted
data can be enhanced with a signature of the user, to
make sure that the stored data originates from the user
itself.

3.6 Participants

The Venn diagram in Figure 1 shows the partic-
ipants of our system and illustrates that all four

Architecture to Manage and Protect Personal Data Utilising Blockchain

343

groups can overlap. Users sharing their data via the
DPMS can voluntarily provide computing and net-
work power to host a DHT node or perform mining
on the blockchain, however they are also free to just
use the service, relying on other participants hosting
it. As mentioned earlier, always on-line devices like
routers could be utilised by voluntary participants to
strengthen the network.

3.7 Operation

Personal data is handled only in an encrypted state,
protecting the user’s privacy as neither the data man-
ager nor participants of the DHT can access the data.

The policy containing access rights is encoded
into blockchain transactions and committed to the
chain (cf. Section 4). Users can provide access to
a piece of their data by adding a service provider to
the access list of that data and sharing the encryption
key with that service provider, instead of providing
the same data repeatedly to every service they want to
use. Example procedures for data creation and access
are explained in Section 5.

Both users and service providers interact with the
data manager API, users to store data and manage ac-
cess rights, and the service providers to retrieve data,
that has been shared by users. Service providers also
have to register at a naming service.

In order to enhance the privacy of the users, they
can create multiple key pairs when using the system.
This allows users to share data with different ser-
vices without service providers knowing what other
services the users are employing.

4 TRANSACTION ENCODING

The access policy is encoded into transactions on
the blockchain. As these transactions can transfer
crypto-currency from multiple addresses to others, the

crypto-currency is used to encode the policy. The cur-
rency consists of coins (1c) and these coins can be di-
vided into 100 million smallest units (100.000.000s).
First, we describe a policy transaction, which encodes
access rights, followed by an access transaction, log-
ging a service provider accessing the data. As our
system uses a custom blockchain the currency has no
actual value and no established name.

4.1 Policy Transaction

Table 1 shows the structure of a transaction, encod-
ing the access rights of two service providers to the
user’s data. The general idea is based on work by
(Zyskind et al., 2015a). However, our system does not
require shared identities and instead addresses each
entity with its own public key.

A transaction is indexed with a transaction id
(txid), which is calculated as the double hash of the
transaction itself. It is possible that two transactions
have the same double hash, which makes the index
unusable. To circumvent collisions the output at posi-
tion six can optionally be added to the outputs, chang-
ing the hash of the transaction. In a non-colliding
case, this output is not present. The symbolic value of
this output is one smallest unit and it is sent to a sink
address, which can output coins through a faucet. The
faucet provides users with free coins in order to allow
them to use the system.

The input of the transaction is the previous trans-
action that granted the user coins, for example from
the faucet to the user, or a previous policy transaction.
The input transaction is signed by the user issuing the
policy transaction. The value of x is provided by this
previous transaction.

The first two outputs are symbolic and encode the
SHAKE256 hash (Dworkin, 2015), with a length of
320 bits, of the encrypted data, which is used to ad-
dress the data in the storage system and to check the
integrity of the data. Both outputs are provided with
a symbolic value of one smallest unit each.

Table 1: Policy Transaction: Structure and contents of an example blockchain transaction, encoding an access policy for two
service providers.

txid: h(h(transaction))
Input Value Output Value

user signed
previous

transaction
x

0: bytes 1-20 of shake256(data,320) 1s
1: bytes 21-40 of shake256(data,320) 1s
2: service provider 1’s address 1c
3: service provider 2’s address 1c
4: user’s address x-nc-1.5c-2s/[x-nc-1.5c-3s]
5: logger address 1.5c
[6: sink address] 1s

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

344

The table shows an example structure for two ser-
vice providers, but it can be easily extended by just
adding more outputs for more service providers. Each
service provider is granted one coin, which allows for
50 million access transactions to be created before
the user needs to refresh the policy transaction. This
number is less than the 100 million smallest units be-
cause of the access transaction encoding described in
the next section. This value could also be adjusted to
create temporary access to the data by using smaller
values. If two smallest units were granted, a one-time
only access could be encoded.

The output to the user’s address (4) is used to
preserve the user’s remaining coins for later use in
other policy transactions. The value transferred to
this address is calculated based on the input value x,
the number of service providers in the policy (n) and
whether the sink output was needed.

Output 5 transfers one and a half coins to a log-
ger address, that is used by the DHT to create logging
transactions in cases where a service provider tried
to access the data without permission. The amount
transferred to the logger makes 50 million logging
transactions possible.

4.2 Access Transaction

Table 2 shows the structure of an access transaction,
encoding the access of the data by a service provider.
The input is either the original policy transaction, in
case the transaction is the first access transaction after
creation of the policy transaction, or the last access
transaction by the service provider for this data. The
value of x depends on the amount received/remaining
from the previous transaction.

The first two outputs contain the txid of the orig-
inal policy transaction with some additional padding.
Both outputs have symbolic values of one smallest
unit. The last output (2) returns the residual value to
the service provider. This is used in the next access
transaction that the service provider needs to create
for the data.

Additionally to the outputs shown in Table 2, a
sink output can be added in the case of a transaction

id collision, like output six from Table 1.

5 EXAMPLE PROCEDURES

This section describes different procedures of our sys-
tem. First, we explain how the user can add data
and corresponding access rights to the system. After-
wards, we explain how a service provider can access
the data that a user shared with the service and how
the system protects user data from unwanted access.

5.1 Sharing Data

In this section we describe two methods for users to
provide access to their data. First, we explain the ini-
tial storage of the data in our system, followed by an
update of an existing access policy to share existing
data with a new service provider.

5.1.1 Data Storage

Figure 2 shows the messages that are passed, when a
user tries to access a service that needs some infor-
mation and the user decides to store the data using the
DPMS.

First, the user requests a service from a service
provider. The service provider asks the user to supply
all needed data and provides the user with the public
key (pubKey sp) of the service provider, which is used
in the access policy on the blockchain.

As users are using the DPMS, they create a sym-
metric encryption key and share it with the ser-
vice provider via an encrypted connection. Users
also provide their public key (pubKey u), from the
blockchain, to the service provider, which is used as
the identifier of the user.

Using the encryption key, the user encrypts the
data that needs to be provided and creates an access
policy that states that the service provider is granted
access. To specify this policy the user provides the
public key of the service provider to the data man-
ager. The user also provides the transaction that sent
some blockchain currency to the user’s public key,

Table 2: Access Transaction: Structure and contents of an example blockchain transaction, encoding the access of data by a
service provider.

txid: h(h(transaction))
Input Value Output Value

signed
previous

transaction
x

0: bytes 1-20 of txid of permission transaction 1s
1: bytes 21-32 of txid of permission transaction

1s
+ 8 bytes padding

2: service provider’s address x-2s

Architecture to Manage and Protect Personal Data Utilising Blockchain

345

sd InitialDataStorage

 request
service

 request data,
pubKey_sp

 encryptionKey,
pubKey_u

 encrypted data,
policy(pubKey_sp),
signedTransaction

 encrypted data

 hash

 create
transaction

 txid

 verify stored
transaction

 success

 txid,
pubKey_u

 success, hash

User

Service
Provider

Data
Manager Block Chain DHT

 verify
policy

create
block

Figure 2: Sequence diagram of the initial storage of a user’s
data and corresponding access policy.

signed with the user’s private key. This transaction
can be another access policy or a transaction from the
blockchain faucet.

The data manager first verifies that the policy
is formatted correctly and checks that the service
provider’s public key supplied is registered in the
naming service. Both steps are part of the policy ver-
ification in Figure 2.

After successful verification, the data manger up-
loads the encrypted data to the DHT and receives the
hash of the data, which is also the address needed
to access the data in the system. Using this hash
and the verified policy, a transaction is created in the
blockchain (cf. Section 4). This transaction is then
processed by miners and stored in a block.

Once the transaction is stored, the data manager
verifies the transaction by waiting for enough new
blocks to be created, thus checking that the transac-
tion is persistent in the blockchain. The time spent
waiting depends on the block creation time of the
blockchain, which can be several seconds per block,
and the number of blocks needed for a transaction to
be considered persistent. The smallest block creation
time possible still needs to be evaluated.

After the persistence is verified, the data manager

informs the service provider about the txid for the user
with the supplied pubKey u. Finally, the user is in-
formed about the success in sharing the data and is
supplied with the hash of the stored data.

5.1.2 Access Permission

Similar to the initial storage of the data, users can
share previously uploaded data with new service
providers. The first three steps of the process are the
same as for the initial storage.

Users request a service from a service provider
that they did not use before. The service provider
requests some data and provides its public key (pub-
Key sp) to the user. Users share the encryption key for
the data, that was created when initially uploading the
data, and their public key with the service provider.

Instead of handing the encrypted data to the data
manager, just the hash of the encrypted data is needed
together with the updated access policy. The up-
dated policy contains all previously permitted service
providers and the one that should be allowed access.
Additionally, the user provides the signed transaction
that sent some blockchain currency to the user’s pub-
lic key, similarly to the initial process from the previ-
ous section.

The data manager verifies the policy and that the
service provider is registered in the naming service,
before creating the new transaction on the blockchain.
Miners then create a block containing the transac-
tion. The data manager verifies that the transaction
is persistent on the chain and then informs the service
providers from the original access policy, as well as
the newly added service provider, about the txid for
the policy transaction in combination with the user’s
public key (pubKey u). Finally, the user is informed
about the successful adaptation of the access policy.

5.2 Data Access

This section describes two cases of the data access
communication. First, a service provider that was
granted access requests the data. Afterwards, a ma-
licious service provider trying to access data without
permission is shown.

5.2.1 Access Granted

The sequence diagram in Figure 3 shows the mes-
sages passed when a service provider, that has access
rights on the data, tries to access a user’s data.

The service provider requests the data via the data
manager supplying the txid of the policy transaction
and a signed version of the policy transaction. The

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

346

sd DataAccess

 request data, txid,
signedTransaction

 create access
transaction

 txid_a, hash

 request data, txid_a, hash

 verify access
transaction

 result

 encrypted data

 encrypted data

 access denied

 access denied

alt

Service Provider

[result==success]

[else]

Data Manager Block Chain DHT

 create
block

Figure 3: Sequence diagram of a service provider accessing
a user’s data. The service provider has access rights.

transaction is signed using the service provider’s pri-
vate key from the blockchain key pair. The data man-
ager tries to create a transaction that logs the access to
the data. This transaction requires the policy transac-
tion from the previous section in order to be created
on the blockchain. Each access costs two smallest
units of the blockchain currency (2s) from the origi-
nal policy transaction or a previous access transaction
(cf. Section 4).

After the blockchain created the transaction, the
txid a of the logging transaction and the hash of the
data is returned. The data manager requests the data
from the DHT supplying the txid a and the hash of the
data. The DHT verifies that a current access transac-
tion (txid a) is persistent in the blockchain.

If a persistent transaction is found, the encrypted
data is returned to the data manager. If the transaction
was not found, for example because it was created in
a forked chain, the access is denied.

The data manager finally either returns the en-
crypted data to the service provider or informs the
service provider about the failed access.

Using the encryptionKey, that was shared by the
user, the service provider can now decrypt the data.

5.2.2 Access Denied

When no access policy was granted to a service
provider trying to access some data, the following
procedure kicks in.

The service provider requests the data from the
data manager. The data manager tries to create
the necessary transaction on the blockchain. The
blockchain will not allow the creation of the logging

transaction, because the service provider is not part of
the policy transaction.

This is the first access denial, which is returned
to the service provider. However, even if the service
provider manipulates the data manager and tries to ac-
cess the data on the DHT directly, the DHT will stop
the process, because of the missing transaction on the
blockchain. The DHT then performs the logging ac-
tion, that would normally be performed by the data
manager and creates a transaction on the blockchain
that informs the user about the tried access.

And, even if attackers gain access to the data on
the DHT, they still need to obtain the shared encryp-
tion key from either service providers that got access
rights or from the users themselves.

6 DISCUSSION

In this section, we list the benefits and limitations of
our proposed system.

6.1 Benefits

Our proposed system provides a flexible privacy pro-
tecting data management system. The DPMS can be
configured using different back-end systems, like a
DHT or specialised data hosts.

It does not require trust in a single third party,
when a DHT is used. Users do not put their data in
the hands of a single entity that might use the data for
anything it wants to. Instead users that are interested
in using the system for their own data are collaborat-
ing in the operation of the system.

Users can manage their entered data and do not
have to re-enter the same information on every service
they want to use. This simplifies users’ experience
with Internet services.

Data leakage on a service provider side does not
endanger the privacy of the user, as the DHT can re-
act quickly and re-encrypt all linked data. Thus, data
stored using our system is protected against data leak-
age and does not require users to react to leakage
news.

Due to the use of proof-of-stake instead of proof-
of-work for the mining process of the blockchain,
less energy is consumed when maintaining the
blockchain, compared to bitcoin’s blockchain.

6.2 Limitations

When users revoke access to their data for one service
provider, they must re-encrypt the stored data. This is
necessary because the service provider, whose access

Architecture to Manage and Protect Personal Data Utilising Blockchain

347

got withdrawn, still knows the encryption key of the
data and thus might gain access to the data.

Another problem is the fact that service providers
could be downloading and decrypting the data and
storing it on internal servers instead of requesting the
data from our system.

Without evaluation, performance issues cannot be
excluded from the limitations of this system. On the
one hand the time needed to create new blocks adds
up, when waiting for transactions to be considered
persistent. On the other hand, searching for trans-
actions can also be considered time consuming, as
searches directly on the blockchain are inefficient, due
to linear search complexity.

7 RELATED WORK

In previous work Zyskind et al. proposed a block-
chain-based system to protect personal data (Zyskind
et al., 2015a). The system uses the immutable ledger
of the blockchain for the storage of policies that define
access rights. Their system has some limitations that
we try to resolve with our proposed system. One lim-
itation of the system is the shared identity that binds
a user to several services, requiring a new identity
when adding or removing a service from the group.
Our system removes this limitation by using the stan-
dard public and private key pair identities from the
blockchain domain. A user just adds new or removes
services from the system by placing transactions on
the blockchain. Services and users are identified by
public key identities.

In the system, Zyskind et al. proposed, users
must upload the same data multiple times to share it
with different services, as an alternative to creating
new compound identities. Our system allows users to
share their data even after the first initial sharing, sim-
ply by creating a new transaction in the blockchain.

In our system, the blockchain and DHT structures
are not connected directly. Instead the DHT imple-
mentation will verify the existence of a specific trans-
action on the chain. After an access transaction has
been created in the blockchain, the DHT will grant
access to the data.

Zhang et al. propose another privacy related sys-
tem based on blockchain technology (Zhang et al.,
2018). Their system is specialized for Internet of
Things (IoT) devices and the data these devices col-
lect. The approach combines the use of a blockchain
with the use of trusted execution environments to pre-
serve the privacy of the user, whose data was collected
by the IoT device.

Another related work is called ”data-exchange

wallet” by Norta et al., which, like the system pre-
sented in this paper, tries to provide a data manage-
ment system for Internet users (Norta et al., 2018).
The wallet, however, provides incentives to users to
sell their data to companies. Norta et al. argue that
this brings the profit, that service providers make sell-
ing their users’ data, back to the owner of the data.
The data-exchange wallet has been implemented5 and
is currently in a beta phase. Our proposed system dif-
fers from this approach by not trying to sell users’ data
but protecting it from misuse and further processing
by the service providers.

Another block-chain-based system, which aims
to protect users’ privacy is Enigma (Zyskind et al.,
2015b). This system has a limited number of use
cases due to the usage of calculations on encrypted
data. It preserves privacy, in cases where these cal-
culations are applicable, by using a decentralised cal-
culation approach based on smart contracts. These
contracts are executed by a blockchain.

Yli-Huumo et al. conducted an extensive system-
atic literature review on the research of blockchain
technologies and revealed that over 80% of the re-
viewed papers were focusing on bitcoin and only less
than 20% dealt with other use cases for the blockchain
technology (Yli-Huumo et al., 2016).

Healthcare Data Gateways were proposed to pro-
vide privacy protected electronic health records util-
ising blockchain technology (Yue et al., 2016). How-
ever, in their paper Yue et al. do not specify how the
blockchain is integrated into their system. Instead,
they just use the term blockchain cloud whenever they
talk about the secure and private storage of the health
records.

Another system concerned with medical records
was proposed by Xia et al., again using blockchain
technology managing the access of researchers to
medical data. They provide some estimated evalua-
tion showing the growth of the blockchain depending
on the number of transactions, concluding that their
system is more scalable than the bitcoin blockchain
system (Xia et al., 2017).

8 CONCLUSION AND FUTURE
WORK

Overall our proposed DPMS seems to be a promising
system that can make users’ lives easier. It reduces the
effort needed, when using multiple services requiring
the same data to be provided by the users.

5https://datawallet.com/

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

348

Additionally, the DPMS improves the users’ pri-
vacy and protects them from data leakages, as it takes
the data away from the service providers and places
the data in a secured peer-to-peer system. However,
a few limitations still must be addressed before our
system can be deployed for public use.

Trusted computing modules and a verified client
software might be used to stop service providers from
locally storing the user data.

Time spent searching transactions could be re-
duced by using an external index, that allows to find
blocks and transactions with reasonable efficiency.

The system could be extended to allow services to
write data into users’ data sets. Allowing the user to
share data between different services, e.g. shared im-
ages or computed interests could be shared between
multiple social media platforms.

In the future the suggested distributed hash table
could be specified in more detail. Once the DHT is
specified, an implementation of the system would be
possible. The implemented system can then be used
to evaluate the proposed approach of managing per-
sonal data.

Future work could also investigate other storage
systems like the inter planetary file system (IPFS)6 to
replace the DHT.

Instead of sharing the encryption key directly via
an encrypted connection a group key management
method could be used. Examples for such methods
are the certificateless public key cryptography (Al-
Riyami and Paterson, 2003) or attribute-based group
key management (Nabeel and Bertino, 2014).

REFERENCES

Al-Riyami, S. S. and Paterson, K. G. (2003). Certificateless
public key cryptography. In International Conference
on the Theory and Application of Cryptology and In-
formation Security, pages 452–473. Springer.

Dworkin, M. J. (2015). SHA-3 standard: Permutation-
based hash and extendable-output functions. Stan-
dard, Federal Information Processing Standards.

Kiayias, A., Russell, A., David, B., and Oliynykov, R.
(2017). Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Advances in Cryptology –
CRYPTO 2017, pages 357–388. Springer International
Publishing.

Maymounkov, P. and Mazières, D. (2002). Kademlia: A
peer-to-peer information system based on the xor met-
ric. Lecture Notes in Computer Science, 2429:53–65.

Nabeel, M. and Bertino, E. (2014). Attribute based group
key management. Transactions on Data Privacy, 7(3).

6https://ipfs.io/

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. https://bitcoin.org/bitcoin.pdf.

Norta, A., Hawthorne, D., and Engel, S. L. (2018).
A privacy-protecting data-exchange wallet with
ownership-and monetization capabilities. In 2018
International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H. (2001). Chord: A scalable peer-to-
peer lookup service for internet applications. Acm Sig-
comm Computer Communication Review, 31(4):149–
160.

Xia, Q., Sifah, E. B., Smahi, A., Amofa, S., and Zhang,
X. S. (2017). Bbds: Blockchain-based data sharing
for electronic medical records in cloud environments.
Information, 8(2):44.

Yli-Huumo, J., Ko, D., Choi, S., Park, S., and Smolan-
der, K. (2016). Where is current research on
blockchain technology?-a systematic review. PLoS
One, 11(10):e0163477.

Yue, X., Wang, H. J., Jin, D. W., Li, M. Q., and Jiang,
W. (2016). Healthcare data gateways: Found health-
care intelligence on blockchain with novel privacy risk
control. Journal of Medical Systems, 40(10):218.

Zhang, N., Li, J., Lou, W., and Hou, Y. T. (2018). Privacy-
guard: Enforcing private data usage with blockchain
and attested execution. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology, pages
345–353. Springer International Publishing.

Zyskind, G., Nathan, O., and Pentland, A. (2015a). De-
centralizing privacy: Using blockchain to protect per-
sonal data. In 2015 IEEE Security and Privacy Work-
shops, pages 180–184.

Zyskind, G., Nathan, O., and Pentland, A. (2015b). Enigma:
Decentralized computation platform with guaranteed
privacy. https://arxiv.org/pdf/1506.03471.pdf.

Architecture to Manage and Protect Personal Data Utilising Blockchain

349

