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Keywords: Software Product Quality, Software Metrics, Metric Correlations, Longitudinal Case Study.

Abstract: Assessment of software quality remains the focus of important research efforts, with several proposed quality
models and assessment methodologies. ISO 25010 describes software quality in terms of characteristics such
as reliability, security or maintainability. In turn, these characteristics can be evaluated in terms of software
metric values, establishing a relation between software metrics and quality. However, a general metric-based
model for software quality does not yet exist. The diversity of software applications, metric definitions and
differences between proposed quality models all contribute to this. Our paper proposes a longitudinal evalu-
ation of the metric values and their relations in the context of three complex, open-source applications. We
cover the entire 18 year development history of the targeted applications. We explore typical values for metrics
associated with software product quality and explore their evolution in the context of software development.
We identify dependant metrics and explore the effect class size has on the strength of dependencies. At each
step, we compare the obtained results with relevant related work in order to contribute to a growing pool of
evidence towards our goal - a metric-based evaluation of software quality characteristics.

1 INTRODUCTION

Software development has undergone large changes
in the past decades. Technological advancement, to-
gether with large-scale digitization have lead to in-
creasing customer expectations regarding functional-
ity, ease of use and security. Software applications are
increasingly complex. Methodologies such as Agile
were developed to provide timely response to changes
in requirements, as well as to deliver working soft-
ware faster.

Increased system complexity requires new
methodologies and tools to ensure that software
remains reliable, maintainable and secure. Given
that ”you cannot control that which you cannot
measure” (DeMarco, 1986), it stands that software
measurement plays an important role in assessing
software quality characteristics. The field of software
metrics has kept pace with the rapid development of
programming languages and paradigms, with many
proposed metrics that can play a role in assessing
software products.

Standards and methodologies for management
and quality assurance, such as those of the ISO fam-
ily1 depend on quantitative data in order to measure

1ISO 9126 and the newer ISO 25010 more specifically

key aspects of software product quality. Software
metrics provide such data, and there exists a large
body of research illustrating the relation between soft-
ware metric values and product quality (Chidamber
and Kemerer, 1994; Marinescu, 2005; Xu et al., 2008;
Kanellopoulos et al., 2010; Molnar and Motogna,
2017).

However, many of the studies that explore the re-
lation between software metrics and product quality
acknowledge that more data is required before general
models can be developed (Barkmann et al., 2009).
This is especially true given research that evaluates
metric data in a new light (Landman et al., 2014),
or that which challenges generally held assumptions
(Emam et al., 2001).

Our paper’s main objective is to provide a sound
foundation that can be leveraged in studying the rela-
tion between software metric values and product qual-
ity attributes. To achieve this, we propose a study that
complements and extends existing research on one
hand, and which fills identified gaps in the existing
body of knowledge. Our paper’s contributions can be
summed up as follows:

(i) A quantitative evaluation of metric values for all
released versions of three complex, open-source
software applications.
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(ii) A long-term exploratory study on the evolution
of metric values associated with software prod-
uct quality. Our study evaluates the entire public
development history of the target applications
over the course of 18 years.

(iii) Identification of statistically correlated method
pairs. We evaluate correlation strength in the
context of each application together with study-
ing the confounding effect of class size on de-
pendent metrics.

(iv) An evaluation of our results in the context
of previous research that employed similar
methodology and compatible software tooling.
Most of the related work consists of singular ef-
forts difficult to incorporate in future work due
to unclear study methodology, software tooling
or differences between metrics.

A first important difference between the existing
literature and our proposed study lays in the selec-
tion of target applications. The prevalent approach
is to either hand-pick a number of applications for
which several versions are studied (Kanellopoulos
et al., 2010; Silva and Costa, 2015), or to carry out
a cross-sectional study of a large number of applica-
tions (Barkmann et al., 2009; Landman et al., 2014;
Lenhard et al., 2018). Our study includes the initial
application versions, which are rudimentary with re-
gards to functionality and bug-prone. We also study
the most current implementations, that have an ex-
panded feature set and enjoy a large user base. This
allows us to study how the values and relations be-
tween studied metrics evolve during long-term soft-
ware development.

A second important difference regards the selec-
tion of software metrics and extraction tools. We se-
lected metrics that express the most important charac-
teristics of object-oriented software: complexity, in-
heritance, coupling and cohesion (Marinescu, 2005;
ARISA Compendium - Understandability for Reuse,
2018) and that were also employed in previous re-
search targeting software quality (Landman et al.,
2014; Silva and Costa, 2015; Lenhard et al., 2018).

Given that for most metrics there exist several def-
initions (Lincke et al., 2008; Bakar and Boughton,
2012), the choice of metric tool is crucial for ob-
taining comparable results. This is compounded by
the fact that existing papers based on metric val-
ues often omit to specify the software tooling em-
ployed for value extraction. To address this, we’ve
used the VizzMaintenance tool2, which provides clear
definitions for the metrics. We discuss these in

2http://www.arisa.se/vizz analyzer.php

the following section. More so, our approach al-
lows us to directly compare our results with (Bark-
mann et al., 2009), where authors undertake a cross-
sectional study of 146 software projects that are san-
itized in a manner similar with ours and where the
same tooling is used to extract metric information. To
the best of our knowledge, (Barkmann et al., 2009)
is the most relevant paper that we can use to validate
and further explore our findings.

2 PRELIMINARIES

2.1 Software Metrics

Software metrics are functions used to measure some
property of source code or its specification. The
number and type of metrics available closely follows
software development trends. Some of the earliest
defined metrics are some of the most widely used
and measure the number of source code lines, func-
tions, or modules in a system. Paradigms such as
object-orientedness resulted in new metrics, suited
to describe their specific concepts. In the case of
object-oriented software, these are structural com-
plexity, coupling, cohesion and inheritance (Mari-
nescu, 2005). Perhaps the most well-known suite of
such metrics is the Chidamber & Kemerer (CK) met-
ric suite (Chidamber and Kemerer, 1994).

Values for most established metrics can be ex-
tracted using metric extraction tools. These are avail-
able both as plugins, such as Metrics2 3 for Eclipse,
MetricsReloaded4 for IntelliJ, or standalone tools
such as JHawk5. When doing so, one must take
into account the exact definition employed by the ex-
traction tool. Considering comment or empty lines
changes the reported number of lines of code. Count-
ing inherited attributes and methods affects the num-
bers reported for a class. The lack of cohesion in
methods (LCOM) metric, first defined by CK in (Chi-
damber and Kemerer, 1994), was refined by Li and
Henry (Li and Henry, 1993a), and then by Hitz and
Montazeri (Hitz and Montazeri, 1995). Studies such
as (Lincke et al., 2008; Bakar and Boughton, 2012)
explore these differences as well as their impact when
building metric-based software quality models.

The situation is further confounded by differences
between programming languages. Basili et al. (Basili
et al., 1996) find that C++ features such as multiple
inheritance, templates or friends are not covered by

3http://metrics.sourceforge.net
4https://plugins.jetbrains.com/plugin/93-metricsreloaded
5http://www.virtualmachinery.com/jhawkprod.htm
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CK metrics. (Xu et al., 2008) and (Succi et al., 2005)
show that apparent relations between metric values
and software quality are language dependent.

As such, this section details the metric definitions
that were used in our research. Our selection includes
established size metrics together with some of the
most studied object-oriented metrics, including the
CK suite. All reported values were extracted using
VizzAnalyzer. Formal definitions for calculated met-
rics are available at (ARISA Compendium - Under-
standability for Reuse, 2018). The tool was previ-
ously used in (Barkmann et al., 2009; Lincke et al.,
2008), making our reported results directly compara-
ble.

• Coupling Between Objects (CBO) - number of
classes coupled to the one being measured. Two
classes are said to be coupled when one of them
uses methods or variables declared in the other
one. CBO is a cohesion metric that is indicative of
the effort needed for maintaining a class, as well
as testing it (Rodriguez and Harrison, 2001).

• Data Abstraction Coupling (DAC) - measures the
coupling complexity by counting the number of
referenced abstract data types. The measurement
excludes classes from the Java platform.

• Depth of Inheritance Tree (DIT) - measures the
maximum length of a path from the class node to
the inheritance hierarchy’s root. This definition
also covers the possibility of C++ like multiple
inheritance. DIT is a structural metric defined for
object-oriented systems (Rodriguez and Harrison,
2001).

• Lack of Cohesion in Methods (LCOM) - the num-
ber of method pairs which have no cohesion via
common instance variables minus the number of
method pairs which have (Rodriguez and Harri-
son, 2001).

• Improvement to Lack of Cohesion in Methods (IL-
COM) - employs Hitz and Montazeri’s updated
definition for the LCOM metric (Hitz and Mon-
tazeri, 1995).

• Locality of Data (LD) - ratio between the local
and all the variables accessed by the class. LD is
a coupling metric defined in (Hitz and Montazeri,
1995). Local data includes non-public and inher-
ited attributes, together with attributes accessed
via getters. Existing research (ARISA Com-
pendium - Understandability for Reuse, 2018)
posits a relation exists between LD and potential
for reuse and testability.

• Lines of Code (LOC) - number of lines of code for
the given class. While LOC belongs to the first

software metrics, it remains applicable among the
widest varieties of programming languages and
retains utility when investigating the quality of a
software product (Rodriguez and Harrison, 2001).
Furthermore, studying the relation between LOC
and object-oriented metrics provides information
about the relation between system size and struc-
ture. Furthermore, existing research (Emam et al.,
2001) shows LOC to have a confounding effect
that must be controlled when building metric-
based quality models.

• Message Pass Coupling (MPC) - the number of
method calls to methods defined in other classes.
MPC is a coupling metric illustrating the depen-
dency on other system classes.

• Number of Attributes and Methods (NAM) - size
metric that provides the number of static and in-
stance attributes and methods defined by the class.
Does not count constructors, inherited fields or at-
tributes.

• Number of Children (NOC) - measures the num-
ber of classes that inherit from the given class. To-
gether with DIT, NOC is an inheritance related
metric (Rodriguez and Harrison, 2001; Sarker,
2005).

• Number of Methods (NOM) - measures the num-
ber of methods locally defined by a class. Does
not count inherited methods, or constructors. The
number of locally added attributes for a class can
be computed as NAM−NOM.

• Response For a Class (RFC) - measures the num-
ber of methods that can be invoked in response
to a message of an object of a certain class or of
some method from that class. This metric counts
the number of calls to other classes from a cer-
tain one (Rodriguez and Harrison, 2001). RFC is
a complexity metric.

• Tight Class Cohesion (TCC) - measures the cohe-
sion between the public methods of a class. De-
fined as the ratio between the number of public
method pairs that use the same instance of a class
attribute divided by the total number of public
method pairs of the class (Ott et al., 1970).

• Weighted Method Count (WMC) - measures the
complexity of a class, using the McCabe cyclo-
matic complexity to weight methods. Like RFC,
WMC is a complexity metric which provides an
indication of the effort required to maintain the
class (Rodriguez and Harrison, 2001).
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2.2 Software Quality Models

One of the first models for software quality was the
McCall model developed in 1976. It consisted in 55
quality characteristics, or factors, grouped in 11 main
characteristics. The Boehm model added new fac-
tors to the McCall model and emphasized the main-
tainability aspect. Several others were created, in-
cluding the Dromey and FURPS models (Bassam Al-
Badareen et al., 2011; Al-Qutaish and Ain, 2010).
Further development was taken up by the ISO, which
issued the ISO/IEC 9126 standard in 1991. The ISO
9126 provides a hierarchical model consisting of six
characteristics and 21 subcharacteristics. It draws
from previously developed standards, and is applica-
ble for every kind of software. ISO 9126 was fol-
lowed by the current version of the standard, ISO/IEC
25010:2011, which expands to 8 characteristics and
31 subcharacteristics. As an example, Maintainabil-
ity is one of the 8 characteristics, having subcharac-
teristics Modularity, Reusability, Analysability, Mod-
ifiability and Testability.

2.3 Related Work

The importance given to software metrics is illus-
trated by the number of works that aim to build a
relation between metric values and software quality.
(Chidamber et al., 1998) explore the relation between
CK metrics and productivity, rework and design ef-
fort for managerial use. In (Li and Henry, 1993b),
authors employ object-oriented and size metrics to in-
vestigate whether metrics can be used as a predictor
of maintenance effort, which they define as the num-
ber of source code lines added, deleted or modified
at class level. Their case study consisted of three
years worth of maintenance changes for two Ada sys-
tems. They confirmed the existence of a relation be-
tween metric values and class-level changes in source
code. In (Basili et al., 1996), authors employ the
same metrics to assess them as predictors of fault-
proneness using eight systems developed using C++.
They adapt CK metric definitions to C++ and empiri-
cally validate that all CK metrics, with the exception
of LCOM to be good fault predictors. In the case
of LCOM, authors theorize that the definition pro-
vided by CK is not conductive for detecting faults in-
duced by coupling. Another intriguing result is the
inverse relation found between NOC and fault prone-
ness. This is explained knowing that reused classes
are less fault prone, as reported by existing research
(Melo et al., 1995). (Tang et al., 1999) employ three
C++ systems with a known fault history to validate
the use of CK metrics, together with proposing ad-

ditional object-oriented metrics geared towards iden-
tifying fault-prone classes. Among established met-
rics, RFC and WMC are indicated as suited to the
task. CK metrics are again used by (Gyimothy et al.,
2005) as fault predictors within the Mozilla web and
mail open-source suite, using the project’s Bugzilla
repository as ground truth. Authors report that CBO
and LOC reliably indicate fault-prone classes, while
DIT and NOC are untrustworthy. In (Xu et al., 2008),
authors indicate LOC, WMC, CBO and RFC to be re-
liable in defect estimation when applied on a public
NASA data set, of which LOC appeared most reli-
able. However, they consider further research to be
required to identify further relations between metric
values, as well as those with dependent variables.

A number of works link object-oriented metrics
with quality attributes as defined within ISO stan-
dards. (Kanellopoulos et al., 2010) links ISO 9126
software characteristics together with CK and other
object-oriented metrics and undertakes an experimen-
tal evaluation using two open-source Java software
servers. In (Molnar and Motogna, 2017), authors
propose a model based on the values for CBO, DIT,
WMC and ILCOM to describe changes to maintain-
ability as defiend by ISO 9126 and validate the pro-
posed model in a longitudinal study of open source
software. (Mohd and Khan, 2012) studies the un-
derstandability characteristic, which is modeled as
a linear combination of coupling, cohesion and in-
heritance, with coefficients and representative met-
rics assigned to each. Interestingly, it is one of
the approaches where metric values are derived from
class diagrams and not directly using the source code.
(Dandashi, 2002) demonstrates a method to assess di-
rect quality attributes using indirect ones. The pa-
per also proposes relations between object-oriented
metrics and quality attributes. (Elish and Alshayeb,
2012) continue the work presented by (Dandashi,
2002) and study the six external quality attributes as
defined by the ISO standard and the correlation be-
tween them and several software metrics. The paper
is focused on undertaking refactoring without affect-
ing software quality, as well as refactoring with the
purpose of improving specific quality attributes. In
(Gyimothy et al., 2005), authors study the relation be-
tween object-oriented metrics and software reliability
and evaluate it using open source software.

(Barkmann et al., 2009) carry out a large-scale
cross-sectional study of 146 Java applications. The
methodology is described in detail. Projects are
downloaded from open-source software repositories,
imported into an IDE and compiled to ensure the ab-
sence of syntax errors and missing dependencies. In-
formation about 16 metrics linked with product qual-
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ity is extracted using the VizzMaintenance tool. Au-
thors present metric distributions, descriptive statis-
tics and calculate metric dependencies.

While several presented papers study metric val-
ues and correlations, they are geared towards identi-
fying a relation between metric values and software
quality characteristics, such as those defined by the
ISO standards. We believe that further work needs
to be undertaken to ensure the validity of these con-
clusions. This is especially true given the findings in
(Emam et al., 2001), where authors show that class
size affects metric correlation values. Their experi-
mental study involving a large scale framework shows
that in many cases, strong correlations are the result
of larger class sizes, instead of some other property.

Furthermore, a prevalent issue regards the use
of different definitions for metrics, tools to extract
them and target applications under study. This makes
follow-up studies difficult to undertake, and compari-
son between studies impossible. As such, our objec-
tives included ensuring that the methodology, tooling
and results we obtained facilitate follow-up examina-
tion. The present paper discusses our methodology,
tooling, as well as our most important findings. Our
data set, including processed results for all consid-
ered metrics are available on our website6. Further-
more, we ensure that our study methodology and soft-
ware tooling is compatible with that used in (Bark-
mann et al., 2009). As such, we compare and eval-
uate our results with those already presented. This
enables us to employ results of existing research and
draw stronger conclusions.

3 EVALUATION

3.1 Target Applications

Selection of target applications was guided by sev-
eral criteria. First, we wanted our evaluation to be
representative for a large number of existing systems.
Second, given the popularity of large-scale, widely
used open source projects, as well as our require-
ment of having free access to application source code,
we settled on employing several such systems. We
searched for applications that are easy to set up and
which come without complex dependencies. This was
important in the context of existing research (Bark-
mann et al., 2009) that reported that over one third of
downloaded projects required additional work in or-
der to properly compile and run. Last but not least,

6http://www.cs.ubbcluj.ro/ se/enase2019

we searched projects with a long development his-
tory, and with a large number of available versions.
This allows us to carry out a longitudinal study, an
observational research method in which metric data
is collected from each available version of the studied
applications, over a significant period of time. This is
rather difficult in the context of open-source software,
as many projects with a development time frame of
years undergo development hiatuses.

The applications chosen for our evaluation are the
jEdit7 text editor, the FreeMind 8 mind mapping ap-
plication and the TuxGuitar9 tablature editor. All
three are GUI-driven applications developed in Java
and hosted on SourceForge 10.

jEdit is an open-source text editor in development
since 2000. The system already served as target ap-
plication for previous research in application testing
(Arlt et al., 2012; Yuan and Memon, 2010). jEdit has
a large number of users, having over 80k downloads
in 2018, and reaching over 8.9 million downloads in
its 18 years of existence11. jEdit also has plugin sup-
port, but no plugin source code was included in our
study.

FreeMind is a widely used mind-mapping appli-
cation. The application had 775k downloads in 2018
and similar to jEdit, it was also employed for empiri-
cal evaluation in software research (Arlt et al., 2012).
The source code evaluated in our study was down-
loaded from the project website and did not include
plugin code.

TuxGuitar is a multitrack guitar tablature edi-
tor that provides features for importing and exporting
various tablature formats. TuxGuitar is also a popu-
lar application, having over 229k downloads for 2018.
In contrast to jEdit and FreeMind, TuxGuitar source
code is bundled with code for importing and exporting
from various data formats, implemented in the form
of plugins. Since the code was included with the ap-
plication distribution, and it provides core functional-
ity for the system, it was included in our evaluation.
Table 1 provides information regarding the size of the
first and last version of the evaluated target systems,
as an indication of their complexity.

All three projects have a full development log on
SourceForge, allowing us to analyze all released ver-
sions. In this paper, we are interested in a long-term
study of the applications. We analyze all their re-
leased versions, leading to 43 versions for jEdit, 38
for FreeMind and 26 for TuxGuitar.

7http://jedit.org
8http://freemind.sourceforge.net/wiki/index.php/Main Page
9http://www.tuxguitar.com.ar

10https://sourceforge.net
11Download data points taken on December 23rd, 2018
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Table 1: First and last studied version of each target appli-
cation.

Application Version LOC Classes

jEdit 2.3.pre2 33,768 322
5.5.0 151,672 952

FreeMind 0.0.3 3,722 53
1.0.Beta2 63,799 587

TuxGuitar 0.1pre 11,209 122
1.5.2 108,495 1,618

All 107 resulting versions were imported into an
IDE. Each version was manually checked for the in-
clusion of library source code; when found, such code
was separated from application code into library files
on the application classpath, to ensure that it does
not distort measurement results. As applications were
tested under the Java 8 platform, several compilation
errors had to be addressed in the case of older appli-
cation versions developed under earlier platform ver-
sions. This was done with consideration not to affect
resulting metric values. Each application version was
started, and its functionalities were thoroughly tested
in order to ensure all required code was included.
Raw metric data was exported into spreadsheet format
and is available on our website. Scripts were devel-
oped to extract and aggregate metric and dependency
information. This was done for every application ver-
sion, as well as aggregated over each application as
well as overall.

3.2 Descriptive Statistics

We considered five data sets within our evaluation.
The first one is the (Barkmann et al., 2009) data set,
consisting of a large cross-sectional study of singular
versions from 146 applications. The aggregated data
for each of our three studied applications resulted in
three per-application data sets. Finally, the aggregated
data from all 107 studied application versions resulted
in the overall data set. For the purposes of brevity,
the present section discusses the overall data set, and
references per-application information only where re-
quired.

Figure 1 illustrates metric histograms and the
overall data set, including descriptive statistics from
(Barkmann et al., 2009). The first observation is that
metric distribution is similar in both studies, with
none of the metrics having a normal distribution.
With regards to extreme values, minimums are always
0, the lowest possible value, except for the LOC met-
ric, where it is 1. Differences between maximum val-
ues reported by us and (Barkmann et al., 2009) are as
expected much larger and due to outliers. These ob-
servations also hold for the application specific data

0, 5.61, 285, 3, 1
0, 6.71, 184, 4, 1

0, 4.62, 285, 3, 0
0, 6.04, 175, 4, 1

0, 0.65, 6, 0, 0
0, 1.46, 9, 1, 0

0, 0.97, 45, 1, 0
0, 0.99, 298, 1, 0

0, 147.41, 39813, 1, 0
0, 210.11, 1415498, 2, 0

0, 0.4, 22, 0, 0
0, 0.38, 36, 0, 0

1, 124.37, 7001, 43, 13
1, 166.9, 11045, 62, 13

0, 12.12, 552, 4, 0
0, 11.99, 1225, 3, 0

0, 9.42, 329, 4, 1
0, 11.12, 2297, 5, 1

0, 0.54, 300, 0, 0
0, 0.97, 2843, 0, 0

0, 6.11, 267, 3, 1
0, 7.28, 1190, 3, 1

0, 13.46, 407, 6, 2
0, 13.46, 1195, 6, 0

0, 0.14, 1, 0, 0
0, 0.16, 1, 0, 0

0, 12.85, 763, 5, 1
0, 14.87, 2475, 5, 1

Figure 1: Each histogram: minimum, mean, maximum, me-
dian, modus. Our results on top row, results from (Bark-
mann et al., 2009) on bottom row for comparison.

sets. Furthermore, metrics follow the distribution
shown in Figure 1 in each version of the studied ap-
plications.

Exploring the values for mean, median and modus
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Table 2: Mean metric values per application.

Application CBO DAC DIT ILCOM LCOM LD LOC MPC NAM NOC NOM RFC TCC WMC
FreeMind 5.36 4.21 0.78 0.99 197.61 0.48 108.61 10.92 9.75 0.64 6.87 13.54 0.13 12.50

jEdit 4.66 4.09 0.41 0.77 124.83 0.34 156.43 9.46 8.40 0.37 5.15 10.62 0.15 13.40
TuxGuitar 7.32 6.07 0.87 1.25 130.81 0.40 90.96 17.48 10.67 0.70 6.80 17.78 0.15 12.36

values proves more interesting. First, median and
modus values are very close in all five data sets, with
those presented in Figure 1 representative of applica-
tion specific data. Mean values however show more
variability. Table 2 shows mean metric values for each
application data set. Mean values for CBO, NAM,
NOM, TCC and WMC are close across all data sets.
However, the data for ILCOM, MPC and RFC can
be confounding. While overall aggregate results are
similar in our data set and (Barkmann et al., 2009),
they also indicate that application specific differences
exist.

3.3 Longitudinal Evaluation

In this section we discuss how metric values change
during target application development. Due to space
considerations, we eschew from including all descrip-
tive statistical data points12, which can be found on
our website.

The data points presented in Figure 1 were com-
puted for every metric and application version. Values
follow the distributions already presented for all met-
rics and application versions. Minimum and median
values are close to the overall ones presented in the
table. Maximum values show much greater variabil-
ity, but since these are represented by outliers we do
not detail them.

The rest of this section is dedicated to a discussion
of mean metric values. We believe our following ob-
servations are best accompanied by a description of
the minimum and maximum mean metric values, as
illustrated in Table 3. For each application, data under
the all header includes all application versions, while
data on the right-hand side was calculated taking into
consideration only the given versions. In the case of
FreeMind, these are versions later than, but including
1.0.0Alpha4.

For each application, we examined the changes to
mean values across the versions, and corroborated the
information with manual source code analysis. Each
application version was also run in order to determine
existing functionalities, as well as changes from pre-
vious versions.

The first observation is that most significant
changes to metric values are linked with the develop-

12107 application versions x 14 studied metrics x 5 data
points = 7490 data points.

ment of the earliest application versions, before their
full feature set is implemented. This is most readily
observable for FreeMind and TuxGuitar, as their earli-
est versions (0.0.3 and 0.1pre respectively) are buggy
and lack a number of features prominent in future ver-
sions. For jEdit, the first public version is 2.3pre2 and
it appears more feature complete and undergoes less
significant changes. This is reflected both at applica-
tion functionality as well as metric value level.

The second observation is that for all three appli-
cations, there exist versions where mean metric val-
ues are greatly disrupted. Source code examination
revealed two culprits. The first are changes to applica-
tion functionality. For jEdit, version 2.5 adds support
for FTP and virtual file systems, functionalities imple-
mented using a small number of classes having high
LOC and WMC. Many versions also include signifi-
cant changes for the management of the text-editing
area, such as versions 4.0pre4, 4.3pre8, and 4.3pre16.
Version 5.0 also incorporates important changes, with
updates to most of the source code packages. Many
versions also included or updated complex code for
custom GUI components, such as versions 4.3pre4
and 4.3pre16. This situation is similar in the case
of FreeMind and TuxGuitar. The second culprit is
represented by versions that include important code
refactorings, which in many cases were not accompa-
nied by functional changes. This is the case for jEdit
2.4.2, where 21 classes having high LOC and WMC
values used to parse source code were replaced with a
unified implementation based on a general parser and
XML descriptors. Similarly, in version 3.0final, 153
event handler classes with low LOC and WMC were
replaced with a centralized handler implementation.
We find similar changes in FreeMind as well as Tux-
Guitar. We acknowledge that observed modifications
raise the question of how to measure source code de-
veloped in several languages, not all of which use an
imperative paradigm. However, while an important
topic in itself, it is beyond the scope of our current
work.

Our third observation is that once the application
architecture is stable and its core set of functionalities
is implemented, the variation in metric values is sig-
nificantly reduced. This is also illustrated in Table 3.
For FreeMind and TuxGuitar, we considered the ear-
liest public release of versions 1.0 to be the first ma-
ture version. As the first public release of jEdit was
version 2.3pre2, we studied the development and fea-
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Table 3: Extreme values for metric means per all application versions (left-hand side) and mature versions (right-hand side).

FreeMind jEdit TuxGuitar
all after 1.0.0Alpha4 all after 4.0pre4 all after 1.0rc1

Metric Min Max Min Max Min Max Min Max Min Max Min Max
CBO 3.89 6.15 5.33 5.57 3.85 4.91 4.29 4.91 6.03 7.88 7.06 7.88
DAC 2.67 5.30 4.20 4.38 3.45 4.30 3.77 4.30 4.76 6.97 5.16 6.97
DIT 0.15 1.69 0.70 1.03 0.32 0.70 0.32 0.43 0.45 1.07 0.78 1.07

ILCOM 0.81 1.04 0.99 1.04 0.49 0.83 0.79 0.83 1.07 1.46 1.15 1.46
LCOM 84.85 237.90 196.85 237.90 43.44 149.31 126.79 149.31 90.94 176.79 117.15 176.79

LD 0.30 0.52 0.48 0.51 0.23 0.37 0.34 0.37 0.35 0.50 0.35 0.50
LOC 63.35 157.84 100.05 110.79 91.29 177.37 158.64 177.37 73.13 116.69 73.13 115.25
MPC 6.99 13.20 10.59 10.92 6.79 10.05 9.34 10.05 14.26 22.85 14.65 22.85
NAM 7.06 10.09 9.85 10.09 5.18 9.19 8.53 9.19 9.41 12.98 9.41 12.98
NOC 0.15 1.44 0.59 0.63 0.29 0.65 0.29 0.38 0.45 0.92 0.58 0.92
NOM 5.26 7.06 6.88 6.99 3.16 5.49 5.28 5.46 6.13 8.13 6.13 8.13
RFC 9.74 15.17 13.49 13.62 7.91 11.14 10.39 11.14 14.81 22.21 15.80 22.21
TCC 0.03 0.16 0.14 0.16 0.06 0.17 0.14 0.17 0.12 0.22 0.12 0.18

WMC 8.52 14.41 12.32 12.55 8.52 15.05 13.43 15.05 10.63 15.38 10.63 15.38

ture history and settled on version 4.0pre4, released
January 2002 as its first mature release. Table 3 illus-
trates that in the case of mature application versions,
the range of variation of mean metric values is nar-
rowed. Furthermore, we observe that trends exist in
the case of every applications. In our opinion, this is
a strong indication that further case studies focused
on longitudinal evaluation need to be undertaken, as
cross-sectional studies tend to coalesce all values and
lose application-specific context.

Our final observation is related to an expectation
that mean metric values increase as applications be-
come more complex. While mitigated by functional
changes and refactorings, we find this to be true in
the case of FreeMind and jEdit, especially for the size
metrics LOC, NAM and NOM. For TuxGuitar, the
observation holds until version 1.3.0, where a large
number of small-complexity classes were added to the
system, lowering mean metric values. For example,
mean LOC decreases from 115 in version 1.2.0 to 80
in 1.3.0, while mean NAM decreases from 12.96 to
9.85. This illustrates that first of all, statistical data by
itself is of limited value when not complemented by
understanding the application context. Second of all,
it shows that application architecture has important,
measurable effects.

3.4 Dependent Metrics

Our goal is to identify dependent metrics and com-
pare our results with (Barkmann et al., 2009)’s cross-
sectional study. We aim to identify which metric
pairs show consistent correlation across applications
and application versions, as well as identify non-
dependent metrics. Furthermore, as existing research

identifies class size to have a confounding effect on
metric dependency (Emam et al., 2001), we account
for class sizes by partitioning application classes into
quartiles.

As illustrated in Figure 1, none of the studied met-
rics are normally distributed. As such, the Spearman
rank correlation was used to calculate correlation in-
formation. Table 4 presents per application correla-
tion data, with strong correlations highlighted. We
also included data from (Barkmann et al., 2009), as it
is directly comparable.

We observe that our results are in agreement with
those of (Barkmann et al., 2009). Strong correlation
exists between certain metrics expressing coupling
(CBO and DAC), size (LOC, NOM and NAM) and
complexity (MPC, RFC and WMC). Inheritance met-
rics DIT and NOC are not dependent with any other
metrics, including each other. LD and TCC show
much stronger correlation in (Barkmann et al., 2009)
than in our study. Meanwhile, we find LCOM to be
correlated with both size (LOC, NAM and NOM) as
well as complexity (MPC, RFC and WMC) metrics.

The LOC metric correlates with both size as well
as complexity metrics. Given the findings of (Emam
et al., 2001), the next step was to ascertain the ef-
fect of class size on identified correlations. We par-
titioned class sizes to quartiles and calculated the de-
pendency below the first quartile (below Q1), in the
inter-quartile range as well as above the third quartile
(above Q3). The LOC metric was omitted, as it was
already used to partition the data. Table 5 presents the
mean metric correlations obtained. As the domain for
Spearman’s rank correlation is [−1,1], mean correla-
tions were calculated by summing the absolute values
of correlation. Our observation confirms the results
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Table 4: Correlation between studied metrics in FreeMind (top row), jEdit (second row), TuxGuitar (third row) and as reported
in (Barkmann et al., 2009) (bottom row).

Metric CBO DAC DIT ILCOM LCOM LD LOC MPC NAM NOC NOM RFC TCC WMC

DAC

0.978
0.988 1.000
0.969
0.982

DIT

0.289 0.303
0.182 0.202 1.000
0.186 0.100
0.529 0.528

ILCOM

0.460 0.496 0.086
0.446 0.464 -0.003 1.000
0.075 0.111 -0.296
0.539 0.414 0.391

LCOM

0.530 0.562 0.054 0.559
0.559 0.562 -0.038 0.406 1.000
0.209 0.210 -0.126 0.376
0.539 0.551 0.405 0.478

LD

0.200 0.221 0.076 0.403 0.111
0.184 0.211 0.153 0.561 0.070 1.000
0.031 0.068 -0.206 0.437 0.114
0.315 0.334 0.430 0.794 0.449

LOC

0.587 0.617 0.090 0.562 0.770 0.257
0.773 0.781 -0.001 0.554 0.848 0.215 1.000
0.467 0.460 -0.146 0.345 0.667 0.160
0.581 0.600 0.142 0.477 0.580 0.325

MPC

0.837 0.817 0.229 0.468 0.604 0.173 0.661
0.837 0.828 0.064 0.448 0.759 0.150 0.871 1.000
0.620 0.567 0.035 0.185 0.564 0.042 0.825
0.830 0.813 0.534 0.576 0.597 0.505 0.667

NAM

0.690 0.729 0.111 0.720 0.867 0.329 0.850 0.714
0.711 0.720 -0.010 0.653 0.850 0.292 0.947 0.829 1.000
0.301 0.305 -0.230 0.571 0.783 0.290 0.788 0.597
0.519 0.533 0.165 0.632 0.682 0.468 0.837 0.627

NOC

-0.005 0.021 -0.035 0.106 0.148 0.014 0.062 0.021 0.133
-0.046 -0.031 -0.050 0.028 0.014 -0.005 0.017 -0.028 0.014 1.000
-0.029 -0.036 -0.062 0.024 0.014 0.023 -0.028 -0.026 0.015
0.061 0.087 0.406 0.572 0.380 0.620 -0.110 0.216 0.061

NOM

0.564 0.600 0.104 0.658 0.913 0.231 0.823 0.636 0.954 0.163
0.688 0.693 -0.055 0.590 0.907 0.207 0.947 0.841 0.966 0.032 1.000
0.327 0.334 -0.231 0.559 0.830 0.274 0.836 0.675 0.928 0.032
0.563 0.580 0.238 0.598 0.799 0.480 0.791 0.650 0.911 0.144

RFC

0.746 0.748 0.185 0.625 0.842 0.234 0.804 0.881 0.911 0.114 0.907
0.830 0.824 0.023 0.535 0.823 0.189 0.929 0.961 0.914 -0.004 0.935 1.000
0.539 0.494 -0.028 0.324 0.623 0.123 0.880 0.924 0.733 -0.003 0.821
0.717 0.709 0.277 0.529 0.715 0.019 0.801 0.817 0.837 0.022 0.907

TCC

0.020 0.025 0.021 0.112 -0.042 0.226 0.039 0.040 0.051 -0.022 0.021 0.043
0.058 0.070 0.051 0.252 -0.003 0.430 0.095 0.066 0.126 -0.049 0.087 0.081 1.000
0.081 0.094 -0.054 0.040 -0.053 0.258 0.039 -0.001 0.078 -0.050 0.026 0.011
0.336 0.355 0.543 0.781 0.468 0.803 0.269 0.510 0.411 0.841 0.455 0.367

WMC

0.534 0.559 0.087 0.618 0.861 0.232 0.891 0.693 0.903 0.124 0.932 0.904 0.047
0.708 0.708 -0.049 0.530 0.888 0.160 0.959 0.879 0.933 0.003 0.964 0.939 0.081 1.000
0.388 0.386 -0.173 0.373 0.725 0.160 0.950 0.820 0.792 -0.009 0.883 0.881 0.009
0.599 0.606 0.204 0.570 0.725 0.440 0.844 0.712 0.880 0.054 0.939 0.930 0.405

in (Emam et al., 2001), as class size has an important
effect on correlation strength. This is especially ob-
servable in the case of size and complexity metrics,
and less so for coupling and inheritance metrics.

At this point, we have identified metric pairs hav-
ing strong dependency, and checked our results with
those obtained by (Barkmann et al., 2009). Given the
longitudinal nature of our data, we were also inter-
ested in checking metric correlation strength across

application versions. In broad terms, our observations
mirror those presented in the previous section. Met-
ric correlations show greater variability in earlier ap-
plication versions, and tend to stabilize once applica-
tions mature. Strongly dependant metric pairs exhibit
this behaviour across all applications and application
versions. In the case of metric pairs having mean cor-
relation over 0.8 for each application, the minimum
correlation in a single application version was above

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

88



Table 5: Mean metric correlations partitioned by class size
(LOC). Top row represents classes below Q1, middle row
is inter-quartile range, bottom row represents classes above
Q3.

Metric FreeMind jEdit TuxGuitar

CBO
0.25 0.29 0.34
0.30 0.29 0.35
0.44 0.50 0.23

DAC
0.16 0.21 0.29
0.36 0.25 0.30
0.45 0.50 0.21

DIT
0.20 0.15 0.32
0.18 0.13 0.31
0.10 0.09 0.11

ILCOM
0.23 0.16 0.22
0.20 0.23 0.35
0.38 0.35 0.28

LCOM
0.33 0.24 0.29
0.28 0.18 0.33
0.51 0.52 0.39

LD
0.21 0.15 0.14
0.24 0.20 0.21
0.07 0.06 0.13

MPC
0.25 0.26 0.35
0.26 0.26 0.31
0.46 0.54 0.40

NAM
0.39 0.20 0.28
0.41 0.25 0.32
0.56 0.57 0.41

NOC
0.17 0.10 0.11
0.11 0.07 0.10
0.12 0.03 0.10

NOM
0.36 0.27 0.31
0.39 0.30 0.40
0.53 0.57 0.46

RFC
0.35 0.30 0.36
0.44 0.34 0.29
0.56 0.58 0.42

TCC
0.15 0.07 0.16
0.14 0.16 0.11
0.12 0.09 0.10

WMC
0.33 0.26 0.30
0.38 0.27 0.33
0.49 0.56 0.41

0.7. When accounting for the confounding effect of
class size measured as LOC, correlations remained
strong for all identified metric pairs. This held true
both for classes having LOC below Q1 as well as in
the inter-quartile range. We also studied metric pairs
that appear to be uncorrelated. Our observations are
similar, but in reverse, as these metric pairs do not ex-
hibit strong correlation within any of the studied ap-
plication versions. In this case, class size did not seem
to affect measured correlations.

4 THREATS TO VALIDITY

Our study was carried out in four steps: application
preparation, data extraction, data processing and anal-
ysis. We documented all steps required to replicate

our study. All intermediate and complete final re-
sults are available on our website. We ensured that
influencing factors did not exist beside the analyzed
source code. Exact definitions were provided for
the employed metrics. Each application version was
compiled and executed, and its functionalities man-
ually checked, to ensure that source code was com-
plete. Given that different extraction tools can yield
different results (Bakar and Boughton, 2012; Awang
Abu Bakar and Boughton, 2008), we double-checked
extracted metric values using the MetricsReloaded
tool.

To limit external threats to validity, we selected
three GUI-based applications developed in the same
programming language. Applications were prepared
and data extraction finalized before processing, to en-
sure the absence of selection bias. We presented the
most important results both separated by application,
as well as in aggregate form. We compared them with
a relevant large-scale, cross-sectional study of open-
source software that used a well defined methodology.
However, we believe that more research is required
before our conclusions can be generalized to other ap-
plication types, such as libraries or non-GUI applica-
tions. Furthermore, our study remains limited by the
selection of programming language, metric definition
and application types.

5 CONCLUSIONS AND FUTURE
WORK

We carried out an exploratory evaluation regarding
the values of widely used software metrics, as well
as the relation between these values in the context of
three complex open-source, GUI-driven applications.
We analyzed our results for the entire development
history of the studied applications, and evaluated all
publicly released application versions. We structured
our study to ensure it is repeatable and evaluated our
results in the context of a comparable large-scale eval-
uation. The combined results aggregate metric data
from over 250 application versions13 and provide a
sound foundation for further research.

The first conclusion is that metric value distribu-
tions were consistent across the studies. Furthermore,
there is some similarity regarding median and mean
values. This is true especially when examining the
mature application versions in our study. We believe
our work can be used as a starting point to determine
metric threshold values indicating good design prac-

13(Barkmann et al., 2009) evaluated 146 software
projects
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tices. Given the variation in metric values between
early and current application versions, we believe lon-
gitudinal studies to provide valuable contributions in
this regard.

The second conclusion is that strongly dependent
metric pairs can be identified. They are the same both
in our longitudinal evaluation as well as the referred
cross-sectional one. Our longitudinal examination has
shown these relations to be extremely stable across
all application versions, including the earliest ones.
These relations proved to be impervious to the effects
of class size. Their existence should be considered
when building software quality models based on met-
ric values. They can be used to select those metrics
that best express a system property, or to avoid intro-
ducing undesired collinearity.

Our third conclusion regards the differences be-
tween the trends in metric values and dependen-
cies between studied applications. Given that cross-
sectional studies are unable to capture this, it strength-
ens the importance of longitudinal studies.

We aim to extend our research to other applica-
tion types, including mobile as well as applications
where user interface code is not dominant. Our goal
is to study whether metric thresholds indicative of
good design and development practices can be estab-
lished. Furthermore, we aim to extend our research
to applications developed using different platforms,
and study the effect of the programming language
on metric values. The main goal is to establish a
metric-based model for software quality. While such
attempts have already been undertaken, they are not
based on a solid foundation of understanding the soft-
ware development process and its outcomes, narrow-
ing their range of application.
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