
Policy-based Deployment
in a Hybrid and Multicloud Environment

Giuseppe Di Modica1, Orazio Tomarchio1, Hao Wei2 and Joaquin Salvachua Rodriguez2

1Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy
2Departamento de Ingeniera de Sistemas Telemáticos, Universidad Politécnica de Madrid, Madrid, Spain

Keywords: Policy based Management, Multi Cloud, Cloud Provisioning, Cloud Orchestration, TOSCA, BPMN.

Abstract: Hybrid and multi-cloud become prominent infrastructure strategy of enterprise. However, the complexity of
such infrastructure is a considerable challenge. It is common to see that multi-cloud infrastructure is divided
into several smaller units to facilitate the management. The division criteria are geolocation, cost, security,
etc. Therefore, how to manage application deployment in such partitioned environment is an intriguing topic
of multi-cloud management. We propose a policy-based deployment in multi-cloud infrastructure, which
contains policy evaluation and TOSCA standard based orchestration. The system architecture is introduced
and a case study with two empirical scenarios is discussed. The results indicate that the proposed policy-based
deployment is useful in finding suitable resource and improving deployment efficiency.

1 INTRODUCTION

Based on deployment models, cloud computing can
be classified into private cloud, public cloud, and hy-
brid cloud (Mell and Grance, 2010). The hybrid cloud
model combines the public cloud and private cloud,
and it delivers the best of both types of clouds. A
deep analysis of the economics of cloud computing
suggested that for enterprise hybrid cloud can offer
the best economic benefits (Weinman, 2016). In ad-
dition to this, the compliance issue, legacy IT sys-
tem, etc. make the hybrid cloud model the optimal
choice for enterprise. A RightScale survey in 2017
(RightScale, 2017) confirms that 67% of enterprises
worldwide currently adopt hybrid cloud.

Despite the fast growth of cloud computing, the
barriers of adopting a cloud solution still exist. Cloud
Administrators’ main concerns regard which technol-
ogy best suites the enterprise needs, which third party
cloud provider is to be preferred, how to avoid be-
ing locked-in, how to correctly and smoothly integrate
geographically distributed private resources and pub-
lic resources, how to enforce the same security level
across all resource domains (Di Modica and Tomar-
chio, 2016). When in particular a hybrid approach
has been adopted, the complexity of the management
gets higher. In this case a good strategy is to split
the multi-cloud environment into multiple infrastruc-
ture domains in a way that simplifies the manage-

ment and, at the same time, preserves the flexibility.
This paper proposes a policy based application de-
ployment method, which aims to relieve the admin-
istrative burden of the cloud service provisioning and
accelerate the deployment of applications in hybrid
cloud environments. The proposed approach sepa-
rates the non-functional requirements from the func-
tional ones of cloud applications. The former are ad-
dressed by means of policies, while a TOSCA-based
cloud provisioning framework caters for the latter. To
further study the insights of the proposal, realistic ex-
periments were conducted on a concrete case study.
The experimental results elucidate the viability of the
proposed approach.

The rest of this paper is organized as follows.
Section 2 summarizes the related work. Section 3
sketches the proposed system’s architecture. Section
4 presents an overview of proposed policy based ap-
plication deployment model. A case study experiment
is discussed in Section 5. Section 6 concludes the pa-
per and anticipates the future work.

2 RELATED WORK

Many cloud industry players have developed
cloud management platforms for automating the
provisioning of cloud services (e.g. Amazon

388
Di Modica, G., Tomarchio, O., Wei, H. and Rodriguez, J.
Policy-based Deployment in a Hybrid and Multicloud Environment.
DOI: 10.5220/0007726503880395
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 388-395
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

CloudFormation(Amazon, 2016), Rightscale Cloud
Management Platform(Rightscale, 2016), RedHat
CloudForms(RedHat, 2016), IBM Cloud Orchestra-
tor(IBM, 2016)). The most advanced platforms also
offer services and tools for the management of cloud
applications’ lifecycle. None of these commercial
products are open to the community, nor the solutions
they offer are portable across third-party providers.

As to open-source Cloud orchestration frame-
works, the OpenStack platform 1 includes an Orches-
tration service which provides a template-based way
to describe a cloud application based on TOSCA. The
templates, written according to the HOT (Heat Or-
chestration Template) template language2, enable to
create most OpenStack resource types, such as in-
stances, storage volumes, networking information, se-
curity policies, and all the other required cloud infras-
tructure to run an application. Another notable ex-
ample of orchestration platform in the open source
domain is Cloudify(GigaSpaces, 2016): it allows to
model applications and automate their entire lifecycle
through a set of built-in workflows.

Some minor research initiatives have come up
with open source solutions as well. Roboconf (Pham
et al., 2015) is an open sourced hybrid cloud or-
chestrator for application deployment. It implements
the basic administration mechanisms which are called
Autonomic Computing Systems (ACS). Roboconf
has simple and extensible design, many of its com-
ponents are reusable. A Domain Specific Language
(DSL) is also presented for fine-grain definition of
applications and execution environments. Their re-
search has tended to focus on installation and con-
figuration of applications rather than addressing the
management issues of hybrid and multi-clouds.

With respect to standardizing initiatives, OASIS
is the most active on the cloud provisioning topic.
TOSCA, which stands for Topology and Orchestra-
tion Specification for Cloud Applications, is a stan-
dard designed by OASIS to enable the portability of
cloud applications and the related IT services (OA-
SIS, 2013). This specification permits to describe
the structure of a cloud application as a service tem-
plate, that is in turn composed of a topology_template
and the types needed to build such a template. The
TOSCA Simple Profile (OASIS, 2017) is an isomor-
phic rendering of a subset of the TOSCA v1.0 XML
specification in the YAML language. It provides a
more accessible syntax as well as a more concise and
incremental expressiveness of the TOSCA language
in order to speed up the adoption of TOSCA to de-
scribe portable cloud applications.

1www.openstack.org
2https://wiki.openstack.org/wiki/Heat

A couple of initiatives regarding the use of poli-
cies to support the deployment of cloud application
are worth to be cited. A scheduling method based
on SLA metrics for deploying application in cloud
(Emeakaroha et al., 2011) is discussed. This method
takes into account the amount of required CPU, net-
work bandwidth and storage. The resource with con-
strained SLA in IaaS, Platform as a Service (PaaS),
Software as a Service (SaaS) is provided by the
scheduling method. This research outlines a novel as-
pect of application deployment in cloud. In the paper,
the resources are differentiated only by the metrics of
SLA. However, in enterprise hybrid cloud there are
far more parameters which need to be considered to
classify a cloud resource. Similarly, a cost based dat-
acenter resource decision model (Strebel and Stage,
2010) is proposed for application deployment in hy-
brid cloud. It builds optimization model to com-
pare virtual machines’ tariffs to achieve economic ef-
ficiency of application operation. A major limitation
of this research is that it takes only one factor into
account the cloud resource selection in hybrid cloud.

3 SYSTEM ARCHITECTURE

For the enterprise that owns or uses a large scale IT
infrastructure with multi-clouds, the common practice
is to divide the infrastructure into several independent
infrastructure domains based on business and IT re-
quirements. For example, a global multi-clouds in-
frastructure can be divided into two management do-
mains, because it owns two data centers in two differ-
ent locations (e.g., one in Frankfurt and one in Paris).
Should private resources be insufficient to sustain the
enterprise’s business growth, publicly provided re-
sources come to the aid (Amazon AWS3, Microsoft
Azure4, etc.). The depicted scenario can become very
problematic to manage, as it includes the presence of
hybrid and geographically distributed resources. Is-
sues can arise from both the technical point of view
(different APIs to access resources provided by third
parties) and the administrative point of view (different
law restrictions on data enforced by countries, hetero-
geneous security and SLA guarantees offered by third
parties).

The complexity of multi-domain infrastructures
can be faced with the help of policies. A policy ap-
plies to a specific context and defines a set of pos-
sible actions that can be triggered according to the
activation of given rules. So, for instance, a policy

3aws.amazon.com
4azure.microsoft.com

Policy-based Deployment in a Hybrid and Multicloud Environment

389

could define the security level that is to be granted in a
given domain upon specific conditions. Policies could
even span multiple, geographically distant domains
(e.g., the same policy may apply in both Frankfurt and
Paris domains). Figure 1 depicts the data model on
which the design of the hereby proposed framework is
grounded. Basically, an enterprise’s cloud infrastruc-
ture is composed of multiple Cloud pools, whereas by
pool we mean a cluster of resources residing in a spe-
cific place and managed in a cloud fashion by way of
any IaaS software. A Policy context defines the logi-
cal boundaries of a set of resources. Resources taken
from different pools can be part of the same context.
Finally, a Policy can apply to one or multiple contexts,
and more policies can be grouped to form a Policy
Group.

Cloud
Infrasctructure

Cloud Pool

IaaS platform

1..n

Policy context

1..n

Policy

1..n 1

1..n

1

Policy Group

1..n

1

Figure 1: Data Model.

In Figure 2 the framework’s System Architec-
ture is depicted on top of a typical hybrid Cloud In-
frastructure consisting of both private and public re-
sources. In the figure, the Cloud infrastructure is rep-
resented by a number of silos of resources (Cloud
Pools). A Pool can either be privately managed (e.g.,
by way of the Openstack software) or be constituted
by aggregating resources rented from a public Cloud
Provider (Amazon in the example). Policy contexts
have also been highlighted in the figure. Some con-
texts refer to a single domain (PolicyContext1, Poli-
cyContext2, PolicyContext4, PolicyContext6, Policy-
Context7), others span two domains (PolicyContext3,
PolicyContext5).

The System Architecture layer hosts the software
components responsible for the policy-based deploy-
ment of cloud services. A deployment process is
started upon a customer’s submission of a Cloud Ser-
vice Request, which is a combination of two inputs: a
Cloud Service Policy and a Cloud Service Blueprint.
The role of the System Architecture’s components are
explained below:

• Manager. The Manager is the component in
charge of handling the customer’s Cloud Service
Request. Upon the reception of a Request, the

Manager triggers and coordinates cloud resource
allocation and cloud service deployment activi-
ties.

• Policy Engine. The policy engine loads the pol-
icy and evaluates the request against it, and then
the engine gives back the response. The policy
engine’s request evaluation has two steps. Firstly,
it matches each deploy condition to the policy and
gets the corresponding policy contexts. Secondly,
it finds the intersected domains from the result of
the previous step.

• Cloud Infrastructure Broker. The cloud infras-
tructure broker plays a key role as facade of multi-
ple Cloud Resource Pools. It has the responsibil-
ity of selecting the resources that match the target
policy context and the resource requirement.

• Cloud Orchestrator. The Cloud Orchestrator re-
ceives in input application’s deployment require-
ments, turns them into a pipeline of activities of
deployment/configuration of the cloud application
components and finally run the activities’ execu-
tion. Details on the cloud orchestration process
can be found in Section 4.2.

Figure 2: System Architecture.

In order to give the reader a sense of how the
whole system actually works, we provide a dynamic
view highlighting the components’ interaction upon
the arrival of a Cloud Service Request.

The sequence diagram depicted in the Figure 3
shows the actions taken by the System Architecture
components in reaction to the submission of a request.
The service request specifies two types of require-
ments: policy requirements, embedded in the Cloud

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

390

:Manager :Policy
Engine

filter(Policy)

:Infrastructure
Broker

filter()

:Cloud
Orchestrator

:Cloud
Pool #1

:Cloud
Pool #2

submit(ServiceRequest)

ServiceEndPoint

getPolicyContext(Policy)

PolicyContext

getResourcePools(PolicyContext,resourceRequirements)

resourcePools

deployService(resourcePools,Blueprint)

ServiceEndPoint

deploy(ServiceComponent_1)

return

deploy(ServiceComponent_2)

return

Figure 3: Sequence diagram.

Service Policy file, and application deployment re-
quirements, contained in the Cloud Service Blueprint
file. The Policy and the Blueprint files carries in-
formation on the cloud service’s non-functional and
functional requirements respectively. In Sections 4.1
and 4.2 insights on the two documents’ structure can
be found.

The Manager receives the service request and co-
ordinates the provisioning operations. The first com-
ponent to be invoked is Policy Engine. It is in charge
of matching the policy requirements specified in the
Cloud Service Policy file to the enterprise’s policies
that are pre-loaded form a private policy storage. The
output of the task will be the Policy Context that best
accommodates the request. In the subsequent step the
Cloud Infrastructure Broker is engaged in the process.
The Broker is the component responsible for selecting
those Cloud resources belonging to the just identified
Policy Context which also match the request’s func-
tional requirements (e.g., number and type of VMs,
RAM size, etc.). Output of this selection will be
a list of Cloud Pools where resources will be taken
from. This information, along with the Cloud Service
Blueprint, is handed over to the Cloud Orchestrator
in order to run the deployment routine. In the spe-
cific case depicted in the figure, we have assumed that
the application to be deployed consists of two compo-
nents, which are eventually deployed in CloudPool#1
and CloudPool#2 respectively.

4 POLICY-BASED DEPLOYMENT

The cloud service deployment process is jointly car-
ried out by the Policy Engine and the Cloud Orches-

{
"policyName": "NameOfThePolicy",

"rules": {

"rule_1": ["PolicyContext_1", "PolicyContext_2",
".........", "PolicyContext_m"],

"rule_2": ["PolicyContext_1", "PolicyContext_2",
".........", "PolicyContext_m"],

"........" : [""],

"rule_n": ["PolicyContext_1", "PolicyContext_2",
".........", "PolicyContext_m"]

}
}

Listing 1: Policy structure.

trator, which are the two core components of the Sys-
tem Architecture. The former identifies which of
the multiple enterprise contexts are eligible for host-
ing the service, the latter interacts with the selected
contexts and runs the service deployment procedures.
The following subsections provide insights on the
policy management and the service deployment re-
spectively.

4.1 Policy Management

Basically, a Policy file is the smallest unit in policy
management (Wei and Rodriguez, 2018). It may con-
tain one or multiple rules. Each rule is a key-value
pair. The purpose of rules is organizing and sorting
Policy contexts with their features or standards. The
structure of a Policy file is reproduced in Listing 1.
For example, a rule can describe all policy contexts
that are bound to the Frankfurt data center. When a
cloud service request requires the Frankfurt premise,
the policy containing that rule will match and return
all policy contexts associated to that premise.

As mentioned earlier, the Policy Engine’s task is
to receive the policy request, load the available enter-
prise policies and evaluate the request against them.
We designed an ad-hoc algorithm, called "match-and-
select", to evaluate the request. The match-and-select
is a counting sort based algorithm. It features two
different steps. Firstly, it matches each deploy condi-
tion to the policy and gets the corresponding contexts.
Secondly, it finds the intersected contexts from the re-
sult of last step. The pseudo code for this algorithm
is shown in Algorithm 1. To evaluate the request, the
algorithm iterates each condition of the request. For
each condition, the algorithm finds the corresponding
policy and gets the contexts which are defined in the
policy. The results from all conditions are sorted by
count sort. Then the algorithm iterates through the
sorted set and returns an array of intersected contexts.
If no intersected domains are found, null is returned.

Two or more policies can be grouped into a Policy
group. Other than policies, a policy group contains

Policy-based Deployment in a Hybrid and Multicloud Environment

391

Algorithm 1: Policy engine match-and-select algo-
rithm.

Input: Set of deploy conditions
C = (c1,c2, . . . ,cn), n is the number of
conditions

Output: Set of infrastructure contexts
C = (C1,C2, . . . ,Cm), m is the
number of contexts

1 for ci ∈C do
2 p = f indPolicy(ci)

PCi = getContexts(p,ci)
PC = addToSet(PCi)

3 PC = countSort(PC,1,Ncontexts);
/∗Ncontexts = numberO f AllContexts∗/
D← null

4 for d← 1 to Ncontexts do
5 if PCd = n then
6 D = addToArray(d)

7 return D;

configuration options, which could be useful to han-
dle complicated evaluation results. The configuration
options are the select algorithm and the evaluation
strategy respectively. The select algorithm is useful
when more than one data center is returned from pol-
icy engine. Two options are available in this case:
random and all. The random option selects one data
center randomly. The all option keeps all the returned
data centers, later the resources will be equally dis-
tributed to the selected data centers. The evaluation
strategy is useful when the request has multiple sub-
requests. This algorithm has two options, strict and
easy. The strict option only returns the success re-
sponse when all subrequests are successful. The easy
option returns success response from any successful
subrequests.

4.2 Service Deployment

The Cloud Orchestrator component depicted in Fig-
ure 2 is responsible for carrying out the cloud pro-
visioning process. In Figure 4 the orchestrator’s ref-
erence scenario is depicted. The Cloud Orchestra-
tor takes a TOSCA service template (in the YAML
format) as input, translates it into BPMN schemes
(OMG, 2011) and feeds such schemes to a BPMN
Engine which eventually orchestrates the provision-
ing tasks. Provisioning tasks, in turn, invoke provi-
sioning services in a SOA (Service Oriented Archi-
tecture) fashion. This enables a scenario of a market
of services in which many Providers advertise their
services and Customers can get the best combination
of services that meet their own requirements. We en-

Create Network
Service

Create VM
Service

Create Storage
Service

Deploy DB
Package Service

Service BUS

Service
Broker

Deploy App Container
Package Service

Deploy …

Cloud Orchestrator BPMN
Engine

YAML
to BPMN

BPMN

Se
rv

ic
e

C
on

ne
ct

or
s

La
ye

r
O

rc
he

st
ra

tio
n

La
ye

r
Se

rv
ic

e
Pr

ov
is

io
ni

ng
 L

ay
er

Tosca
YAML

Service
Registry

Figure 4: Cloud Orchestration scenario.

vision two categories of provisioning services: Cloud
Services and Packet-based Services. The first cat-
egory consists of resources offered by way of any
Cloud delivery model (IaaS, PaaS, SaaS), be them
virtual machines, platforms or even software appli-
cation instances hosted on a third-party provider’s
premises; by contrast, the second category includes
all the downloadable software “packets” which re-
quire a pre-configured runtime environment to run (be
it a database management system or a web server ex-
ecutable, to name a few).

A novelty introduced by this approach is the sep-
aration between the orchestration of the provisioning
tasks and the invocation of the provisioning services
themselves. Since there is a multitude of providers of-
fering a huge variety of services (each with different
features and QoS), an intermediate Service Connec-
tors Layer has been introduced. This layer is popu-
lated with REST services called Service Connectors.
Connectors provide a unified interface model for the
invocation of the provisioning services. The unified
model allows to achieve service location transparency
and loose coupling between the BPMN provisioning
tasks and the actual provisioning services.

In Listing 2 we provide an example of a two-tiers
application topology file expressed in TOSCA Sim-
ple Profile. The template file describes a web applica-
tion stack hosted on the web server compute resource
("web_server"), and a database software hosted on
the database server compute resource ("db_server").
The application topology file specifies provisioning
constraints by means of the requirements tag. If a
TOSCA node contains a requirement tag, the provi-
sioning of that node must be delayed until the node
pointed by the tag is successfully provisioned. In this
case we say that the pointing node "depends" upon

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

392

topology_template:

inputs:
omitted here for brevity

node_templates:

wordpress:
type: tosca.nodes.WebApplication.WordPress
properties:
requirements:
- host: apache
- database_endpoint: wordpress_db

interfaces:
Standard:
inputs:

apache:
type: tosca.nodes.WebServer.Apache
properties:
requirements:
- host: web_server

web_server:
type: tosca.nodes.Compute
capabilities:
host:
properties:
num_cpus: 1
disk_size: 50 GB
mem_size: 8192 MB

os:

wordpress_db:
type: tosca.nodes.Database.MySQL
properties:
requirements:
- host: mysql

mysql:
type: tosca.nodes.DBMS.MySQL
properties:
requirements:
- host: db_server

db_server:
type: tosca.nodes.Compute
capabilities:
host:
properties:
num_cpus: 2
disk_size: 50 TB
mem_size: 16384 MB

os:

Listing 2: A simple TOSCA topology template.

the pointed node. The Cloud Orchestrator is respon-
sible of parsing the template file, building the graph
of node dependencies and translating the graph into a
BPMN workflow of provisioning tasks. So in the case
of the topology depicted in Listing 2, the wordpress-
apache-web_server dependency will translate into a
workflow in which the web_server provisioning task
precedes the apache provisioning task, which in turn
precedes the wordpress.

In the framework, the provisioning of any Cloud
application is modeled through a variable number of
two kinds of provisioning tasks: cloud service pro-
visioning tasks and packet-based provisioning tasks.
The BPMN scheme governing the cloud application
provisioning is depicted in Figure 5.

The BPMN scheme is composed of a parallel
multi-instance sub-process, i.e., a set of sub-processes
(called "Instantiate Node") each processing a TOSCA
node in a parallel fashion. Since a TOSCA node can

begin

error
escalation

node

Instantiate Node

deploy
<package>

any error

create
<cloud resource>

any error

node

[cloud resource]

node

[package]

cloud resource
error

package
error

complete

any error
escalation

cloud resource

package

Figure 5: BPMN scheme of the cloud application provision
workflow.

be either a cloud resource or a software package, a
sub-process will proceed to either a "create ‹cloud re-
source›" or a "deploy ‹package›" sub-process.

The reader may refer to (Di Modica et al., 2017)
to discover more technical details of the provisioning
process. A concrete use case example of how the pro-
visioning step was combined with the policy filtering
presented in Section 4.1 is discussed in Section 5.

5 CASE STUDY

In this section the viability of the proposal is assessed
through the discussion of a simple case study of two
empirical deployment scenarios.

Let us assume that an enterprise owns a data cen-
ter and that the Openstack software is used to virtu-
alize and manage all internal resources. Following
the business needs, the enterprise intends to deploy
on the Cloud a new web application developed ac-
cording to the classic two-tiers logic. The application
is then composed of a Database for data persistence
and a Business logic. The enterprise’s adopted policy
file is shown in Listing 3. The policy group defines 3
policies, ownership, location and security level. The
select algorithm is random and the evaluate strategy
is set to easy, which means that in the case of sev-
eral matched policy contexts the policy engine will
randomly select one and will return partially succeed
result even though some requests fail.

Scenario One: Private/Public Cloud. Because of
the strict data security policy, the company decides to
internally host all data collected from the application.
However, for a better user experience the application
should be deployed close to user. Unfortunately, due
to the limitation of company’s internal resource and
the cost of the resource, internal resource could not
reach to all the users.

Therefore, in order to satisfy both constraints, a
good deployment strategy would be to have the busi-
ness logic installed off premise, i.e., on computing re-

Policy-based Deployment in a Hybrid and Multicloud Environment

393

{
"policyGroup": [
{
"policyName": "ownership",
"rules": {
"on-premises": ["PolicyContext1", "PolicyContext2",
"PolicyContext6", "PolicyContext7"],

"supplier": ["PolicyContext4"]
}

},
{
"policyName": "location",
"rules": {
"muc": ["PolicyContext1"],
"fra": ["PolicyContext2", "PolicyContext4"],
"sgp": ["PolicyContext6", "PolicyContext7"]

}
},
{
"policyName": "securityLevel",
"rules": {
"high": ["PolicyContext3","PolicyContext5"],
"middle": ["PolicyContext2", "PolicyContext4",

"PolicyContext7"],
"low": ["PolicyContext1", "PolicyContext6"]

}
}

],
"selectAlgorithm": "random",
"evaluateStrategy": "easy"

}

Listing 3: Policy file. The policy file contains 3 policies.
Each policy has several rules which is mapping to policy
contexts.

sources leased from a public cloud provider, while
keeping the database running on internal resources
(on premise). The technical burden introduced by this
solution is, of course, the setup of a network overlay
between the public and the private domain.

So, in this scenario we prepared the cloud service
request file to require on premise cloud resources for
the database and external cloud resources for the busi-
ness logic.

The request file is shown in Listing 4. The re-
quest file has two subrequests, each of them has only
one deploy condition and one topology group, which
links to topology template and later will transfer ob-
tained resource to the groups via the Manager. The
deploy conditions require the available resource from
“on-premises” and “supplier”. From the policy file
we can see that both the requests can be satisfied, and
corresponding results will be sent to the Infrastruc-
ture Broker to further require the resource informa-
tion, which later will be passed to the Cloud Orches-
trator.

The Cloud Orchestrator will then receive two in-
puts: the resource information and the Blueprint
(TOSCA topology file). The latter is reported in the
Listing 5. The reader may notice that in the bottom
of the Blueprint file two groups have been defined:
o f f _premise, that collects the business logic nodes,
and onpremise, that includes the database nodes. By
crossing this information with the policy’s, the Cloud
Orchestrator will activate the deployment of the busi-
ness logic in the Policy Context #4 (Amazon Sup-
plier), while the database will be deployed in any of

[
{
"name": "subrequest1",
"deployConditions": {
"ownership": "on-premises"

},
"resourceRequirement": {
"topologyGroup": "on_primes_group"

}
},
{
"name": "subrequest2",
"deployConditions": {
"ownership": "supplier"

},
"resourceRequirement": {
"topolgyGroup": "off_primes_group"

}
}

]

Listing 4: Request file for scenario one. The request file
has two requests which require private cloud resource and
public cloud resource.

topology_template:

inputs:
omitted here for brevity

node_templates:

wordpress:
apache:
web_server:
wordpress_db:
mysql:
db_server:

omitted here for brevity

groups:
off_premise_group:
type: tosca.groups.Root
members: [wordpress,apache,webserver]

on_premise_group:
type: tosca.groups.Root
members: [wordpress_db,mysql,db_server]

Listing 5: Nodes grouping for scenario one.

the policy contexts bound to the private premises.

Scenario Two: Geo-location. To handle the in-
creasing user demand in the German market, the com-
pany decided to scale out the application’s database
layer in Frankfurt data center. In this scenario we
added one extra request to only require the private
cloud resource which is located in the Frankfurt data
center. The request file is shown as in Listing 6.
The request has two deploy conditions "on-premises"
and "fra". The requested resource will be assigned to
"all_group" nodes in the TOSCA topology template.
As expected, the policy engine gave "Policy context2"
as result.

6 CONCLUSION

The paper proposes a policy based application de-
ployment in hybrid and multi-cloud environment. The
requirements come from a growing adoption of cloud
in large enterprises and increasingly complex hetero-

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

394

[
{
"name": "demoSceneTwo",
"deployConditions": {
"ownership": "on-premises",
"location": "fra"

},
"resourceRequirement": {
"topologyGroup": "all_group"

}
}

]

Listing 6: Request file for scenario two. The request re-
quires private cloud resource which also locates in Frank-
furt.

geneous infrastructure background. In this paper, the
overall system architecture is presented. The Policy
Engine and the Cloud Orchestrator are discussed in
details. A case study of the proposed system is con-
ducted with a practical real world application, and a
set of experiments further show the insights of the sys-
tem. The results suggest that the policy based deploy-
ment can well manage and simplify the deployment
in multi-cloud environment.

In future work, we will continue to investigate in
the following directions. We will first extend the sup-
port of cloud broker to Azure cloud and further de-
velop the proposed system into SaaS service. Then
we will investigate to add user friendly methods for
editing policies, requests and topology templates. Ad-
ditionally, the current design will be integrated with a
container system and extended to support the auto-
matic management the application lifecycle.

REFERENCES

Amazon (2016). Amazon CloudFormation. https://aws.
amazon.com/cloudformation/. Last accessed on 04-
01-2019.

Di Modica, G. and Tomarchio, O. (2016). Matchmaking se-
mantic security policies in heterogeneous clouds. Fu-
ture Generation Computer Systems, 55:176 – 185.

Di Modica, G., Tomarchio, O., Calcaterra, D., and Cartelli,
V. (2017). Combining TOSCA and BPMN to En-
able Automated Cloud Service Provisioning. In Pro-
ceedings of the 7th International Conference on Cloud
Computing and Services Science (CLOSER 2017),
pages 187–196, Porto (Portugal).

Emeakaroha, V. C., Brandic, I., Maurer, M., and Breskovic,
I. (2011). Sla-aware application deployment and re-
source allocation in clouds. In Proc. IEEE 35th
Annual Computer Software and Applications Conf.
Workshops, pages 298–303.

GigaSpaces (2016). Cloudify. http://getcloudify.org/. Last
accessed on 04-01-2019.

IBM (2016). IBM Cloud Orchestrator. https://
www.ibm.com/us-en/marketplace/deployment-
automation. Last accessed on 04-01-2019.

Mell, P. and Grance, T. (2010). The nist definition of cloud
computing. Communications of the ACM, 53(6):50.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications Version 1.0. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-
os.html. Last accessed on 04-01-2019.

OASIS (2017). TOSCA Simple Profile in YAML Version
1.2. http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.2. Last accessed on 04-01-2019.

OMG (2011). Business Process Model and Notation
(BPMN 2.0). http://www.omg.org/spec/BPMN/2.0/.
Last accessed on 04-01-2019.

Pham, L. M., Tchana, A., Donsez, D., de Palma, N., Zur-
czak, V., and Gibello, P. Y. (2015). Roboconf: A
hybrid cloud orchestrator to deploy complex applica-
tions. In Proc. IEEE 8th Int. Conf. Cloud Computing,
pages 365–372.

RedHat (2016). RedHat CloudForms. https://
www.redhat.com/it/technologies/management/
cloudforms. Last accessed on 04-01-2019.

Rightscale (2016). Rightscale Cloud Management
Platform. http://www.rightscale.com/why-cloud-
management-platform/benefits. Last accessed on 04-
01-2019.

RightScale (2017). Rightscale 2017 state of the cloud re-
port. Technical report, RightScale.

Strebel, J. and Stage, A. (2010). An economic deci-
sion model for business software application deploy-
ment on hybrid cloud environments. Multikonferenz
Wirtschaftsinformatik 2010, page 47.

Wei, H. and Rodriguez, J. S. (2018). A policy based applica-
tion deployment method in hybrid cloud environment.
In 2018 IEEE 6th International Conference on Future
Internet of Things and Cloud (FiCloud), pages 93–99.

Weinman, J. (2016). Hybrid cloud economics. IEEE Cloud
Computing, 3(1):18–22.

Policy-based Deployment in a Hybrid and Multicloud Environment

395

