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Abstract: Power systems are facing increasing stress due to modernization changes in both supply, through the growing 

penetration level of renewable sources, and demand due to the spread diffusion of electric vehicles (EVs). In 

this scenario, the use of energy storage systems (ESSs) is becoming technologically attractive but problems 

of economic and ecological sustainability are still evident. For these reasons, II-Life battery modules are a 

possible solution for supporting power systems: they are a promising prospect for the modernization process. 

We propose a method to size an ESS of exhausted plug-in EV battery packs for grid support applications. The 

method estimates the residual value of cycles for II-Life battery modules, the decrease in the supplied power 

due to the battery ageing and the number of EV battery packs to meet service requirements. Then, an economic 

assessment is presented to compare them with an equivalent I-Life storage system. 

1 INTRODUCTION 

Energy storage systems (ESSs) for power system 

application is attracting significant interest and 

attention as an enabling solution for integrating the 

growing penetration of renewable energy resources 

and electric vehicles (EVs) into electrical grids, 

(Calderaro, 2014 – Tejada-Arango, 2018). Likely, 

ESSs are becoming an essential contributor to 

modernization investments of power systems at each 

voltage level. In fact, the ESSs can provide a technical 

solution to face current industry challenges such as 

power quality, network security, congestion 

management, generator’s low utilization factor, and 

fuel price volatility. Consequently, the storage 

devices can propose ancillary services bringing 

benefits to customers and energy operators, (Graber, 

2017 – Ju, 2018). 

However, two main challenges must be faced to 

support the integration of ESSs into the networks: the 

economic and ecological sustainability. Promising 

prospects are coming from the use of II-Life battery 

modules, reusing EV battery packs for alternative 

uses. In particular, they still have significant 
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remaining capacity for grid support applications, 

although this is not sufficient to provide an electric 

driving range. The main advantages of these battery 

modules are the supposed lower cost compared with 

new battery modules and the possibility to delay the 

development of the EV battery packs recycling chain 

(Viswanathan, 2011). 

 

Figure 1: II-Life battery process, (Reid, 2016). 

In the literature, the relationship between II-Life 

batteries and network electrical systems has been the 

subject of several recent investigations. The use of  
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II-Life battery-based ESSs for network support is 

recently analysed in several papers. In particular, in 

(Viswanathan, 2011) the authors propose a method 

for determining the optimal rating of the modules and 

the state of charge (SoC) profile during the operation. 

In (Saez-de-Ibarra, 2016), an optimization study is 

presented in order to maximize the value of an electric 

vehicle battery to be used as a transportation battery 

(in its first life) and, then, as a resource for providing 

grid services (in its second life). Also in (Lacey, 

2013) II-Life batteries are used for provision of 

services with particular emphasis on peak shaving 

and upgrade deferral of low voltage (LV) distribution 

systems, while in (Gladwin, 2013) and (Koch-

Ciobotaru, 2015) a general estimation of the use of 

batteries for electrical systems and a feasibility 

analysis are investigated, respectively. The 

integration of photovoltaic (PV) energy sources is 

proposed in (Mukherjee, 2015), where studies on the 

modular boost-multilevel buck converter to control 

the storage systems are proposed, and in (Gohla-

Neudecker, 2015), where it is deducted an effective 

control strategy for attaining maximum system 

performance with minimum battery cell aging. Ref. 

(Strickland, 2014) and (Tong, 2015 – Hamidi, 2013) 

suggest a more general approach for supporting the 

integration of renewable energy resources. In (Saez-

de-Ibarra, 2016) the important task of II-Life batteries 

sizing, is faced. It is a complex procedure due to many 

uncertainty factors such as degradation factors, 

calendar life, and applications.  

With this in mind, here, we extend (Calderaro, 

2017) by proposing a method to size the II-Life 

battery-based ESSs and assess the economic 

outcomes. The method is based on two main steps: 

the first one allows identifying an approximate value 

of the residual number of cycles and the maximum 

power that battery modules of II-Life ESS can 

deliver, whereas in the second one, we calculate the 

annual cost of energy to compare it with an equivalent 

I-Life storage system. 

2 SIZING METHOD FOR II-LIFE 

BATTERIES 

We propose a method for sizing an ESS consisting of 

II-Life lithium batteries. The method takes into 

account the real calendar life of the battery modules 

and the uncertainty related to the residual capacity 

measurements. The sizing methodology is composed 

of four steps: 

• modelling of the II-Life battery model consisting 

of the series of a resistance and an ideal voltage 

source and their relationship with SoC and 

charging/discharging cycles (CDC); 

• calculation of the residual cycles of the II-Life 

lithium batteries by linearizing the relationship 

between the batteries residual capacity and CDC; 

• estimation of the II-Life battery aging in terms 

of supplied power by linearizing the relationship 

between the batteries internal resistance and CDC; 

• Monte Carlo (MC) analysis to compute the 

number of II-Life battery modules according to the 

capacity and capability requirements. 

2.1 Ii Life Battery Model 

The II-Life battery is modelled as an ideal voltage 

source in series with a resistor. In particular, the ideal 

voltage source represents the open circuit voltage 

(OCV) depending on SoC of the battery module, 

while the series resistor Rint represents its overall 

internal resistance. 

 

Figure 2: Proposed II-Life battery model. 

The equations (1) describes the electric model of 

II-Life battery modules. Specifically, the first 

equation represents the Kirchhoff's voltage law, while 

the second one is the n-polynomial relation between 

OCV and SoC. The third equation models the SoC 

update law, according to the required current from the 

battery modules. 
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(1) 

In (1), β0 … βn are the interpolation coefficients, 

IBATT, VBATT and CBATT are the battery modules current, 

voltage, and capacity, respectively. 

Moreover, battery-aging leads to a decrease in 

battery capacity as CDC increases described by the 

function f as follows: 
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( )BATTC f CDC  (2) 

In Section 2.2, we present a method to estimate 

the function f starting from EV battery datasheet. In a 

similar way, the g function describes the increase of 

Rint by increasing CDC as follows: 

int ( )R g CDC  (3) 

The method to estimate the function g is presented 

in Section 2.3. 

2.2 Residual Capacity vs. CDC 
Approximation 

Often, manufacturers do not provide any information 

about relationships between the battery residual 

capacity CBATT and its maximum number of CDC 

performed at different depth of discharge (DoD) or 

they give only some curves at certain DoD. In the 

following, we describe a methodology to approximate 

this relationship at different DoD. 

Figure 3 shows the typical trend (in logarithmic 

scale) between the calendar life in terms of maximum 

number of CDC and the DoD of a battery module 

(Julien, 2016). Generally, the functional dependency 

between CDC and DoD can be formalized by a test 

curve, a table, or a mathematical relationship based 

on measured data, which allows us to estimate the 

number of CDC before the battery module reaches its 

end of life (EoL). The EoL identifies the maximum 

acceptable reduction of the battery rated capacity and 

it is strongly dependent on the battery application 

(traction, energy, etc.). 

 

Figure 3: Lithium batteries typical trend - maximum 

number of CDC vs. DoD. 

In Figure 4, we show the general trend of the 

relationship between the residual capacity CBATT and 

the maximum number of CDC for a fixed value of 

DoD, which is given by the manufacturer (Julien, 

2016). Typically, a nonlinear function describes this 

relationship for lithium batteries. We observe a rapid 

decrease of the battery residual capacity in the first part 

of the characteristic, then, in the middle one, the trend 

is almost linear and it decreases very quickly at the end 

of the curve. The knee of the curve on the right of 

Figure 4 identifies the battery EoL for energy 

applications EoLen (typical value 60 - 70% of CBATT 

rated value) whereas the EoL for traction purposes is 

defined when the residual capacity is in the range of 80 

- 85% of CBATT rated value. For our purpose, it is not 

relevant to identify battery discharge profiles (such as 

DoD, CDC, etc.) before the point EoLtrac - CDCtrac (i.e. 

the number of CDC at the EoLtrac). 

 

Figure 4: Lithium batteries typical trend - residual capacity 

vs. CDC. 

 

Figure 5: Linear approximation:residual capacity vs. CDC. 

 

Figure 6: Linear approximation - residual capacity vs. CDC 

for different DOD values. 

SMARTGREENS 2019 - 8th International Conference on Smart Cities and Green ICT Systems

82



If the battery manufacturer does not give this 

curve, it is possible to take some assumptions to 

estimate the parameters of interest for our study. We 

use the following procedure to approximate the curve 

in Figure 4 by a line for different DoD values, as 

shown in Figure 5:  

• select a DoD value from Figure 3 (DoD1) to 

obtain a maximum number of CDC (CDC1) that 

represents the number of cycles when the battery 

module reaches its energy EoLen; 

• draw the point B1 in the plane CBATT/CDC 

(Figure 5); 

• repeat the same procedure for each value of DoD 

in Figure 3 in order to obtain a set of  

n-1 maximum values (CDC2, CDC3,…, CDCn) 

and for each maximum value of CDC, in the 

plane CBATT/CDC draw the points (B2, B3,…,Bn) 

as show in Figure 6; 

• in the plane CBATT/CDC, identify the point A in 

correspondence of 0 cycles and CBATT rated 

capacity; 

• draw a line from the point A to each point  

Bi , i=(1, 2, … , n); each line represents a specific 

DoD value (Figure 6); 

• calculate the coefficients of the straight lines. 

It is worth noting that the constellation of points 

(B1, B2 … Bn) defines different number of cycles at 

the energy EoL of the battery. 

In particular, the yellow area in Figure 5 shows 

the error obtained by using the proposed linear 

approximation. It is greater in the I-Life of the battery, 

but it is not important for our methodology. 

 

Figure 7: Maximum number of CDC vs. DoD trend for 

SAFT lithium-ion batteries. 

 

Figure 8: Residual capacity vs. CDC trend for SAFT 

lithium-ion batteries. 

According to real data provided by batteries 

manufacturers (SAFT, 2014), and showed in 

Figure 7-8, the proposed linear approximation 

reasonably describes the relationship between 

residual capacity and the maximum number of CDC. 

2.3 Aging of Internal Resistance 
Approximation  

The internal resistance of Li-ion batteries also 

increases with use and aging. The increase in Rint 

leads to a reduction of the maximum power that the 

battery can deliver and therefore it is necessary to 

estimate this increase so that the ESS is able to supply 

the required power for a given grid service until its 

EoL. Unfortunately, manufacturers of EV batteries 

very often do not provide such information in 

datasheets. 

In our analysis, we assume that the increase of the 

internal resistance during the battery life is a 

synchronous process with the reduction of its residual 

capacity.  

 

Figure 9: Internal resistance vs. Residual capacity: typical 

trend and linear approximation. 
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Figure 9 shows the typical trend of the internal 

resistance reducing the battery residual capacity (i.e. 

increasing the aging). In particular, the X, Y and Z 

points are defined by the pair of values Rint, CBATT at 

the beginning of life (these values are provided by 

battery manufacturer), at the EoL for traction, and at 

the EoL for energy applications, respectively. The Y 

and Z points are very difficult to estimate because we 

usually do not have any data from the battery 

manufacturers.  

We assume that the increase in the Rint is given by 

the ratio between the nominal capacity and the 

residual capacity of the battery. Therefore, to estimate 

the point Y (or Z) it is necessary to multiply the Rint 

nominal value (X point) for the ratio between battery 

nominal and residual capacity. Finally, established 

the Y and Z points, we can linearly estimate the trend 

of Rint with the aging. The yellow area in Figure 8 

shows the error obtained by using the proposed linear 

approximation. 

2.4 Equivalent Sizing of II-Life ESS 

In order to size the II-life ESS (i.e. define the number 

of II-Life battery modules), we have to identify the 

service that the ESS must perform. Let us assume that 

this application has a fixed DoD (e.g. DoD1).  

The proposed procedure is based on a preliminary 

sizing obtained by using a conventional methodology 

computing the number of I-Life battery modules M, 

fixed the application (i.e. the necessary power and 

energy for the service, the DoD value and thus the 

maximum number of CDC). M is equal to the 

maximum value between the ratio of the energy 

requirement and the energy of one I-Life battery 

module, and the ratio of the power requirement and 

the power of one I-Life battery module. In order to 

consider the II-Life of the modules, we assume, for 

each one of them, a reduced capacity (battery capacity 

equal to the EoLtrac value multiplied CBATT) and an 

increased Rint value: in this way, the number of II-Life 

modules is greater than the one obtained by using  

I-Life battery modules.  

Afterwards, we bring into the problem the 

uncertainties due to an incorrect estimation of the 

residual capacity and maximum power. We assume 

M as the number of II-Life battery modules needed 

for the application in case of uncertainty is not 

considered. According to the available data, it is 

possible to consider the points B1, C and Z as random 

variables with a given probability distribution (e.g., 

uniform, Gaussian, etc.) to in order to bring into 

account their uncertainties. We use a MC approach to 

calculate: i) a distribution of residual cycles of II-Life 

battery for the application; ii) a distribution of battery 

maximum power at the EoL for the application. 

We assume for our studies two Gaussian 

distributions (μ1=CDCtrac, σ1=1, μ2=CDCen and 

σ2=1), to tackle the uncertainty due to a wrong 

estimation of points B1 and C. In a similar way, a 

Gaussian distribution (μZ=1.66*Rint, σZ=1) is 

assumed at the point Z.  

For these reasons, we consider m II-Life battery 

modules in addition to M, able to guarantee a number 

of CDC equal to CDC* ≥ CDCtrac - CDCen, and 

maximum battery power at EoLen, PBATT ≥ P*. In such 

a way, the remaining life of the II-Life ESS and its 

maximum power at the EoLen can be designed. In 

particular, we introduce m1 and m2 that represent the 

additional capacity necessary to the II-Life ESS for 

satisfying the required CDC and the additional power 

necessary for satisfying the maximum required 

power, respectively. We calculate the parameter m1 

and m2 by implementing an iterative procedure based 

on a MC approach. Our procedure starts with 

m1=m2=0 and ends when it finds the smaller value of 

m1 that ensures 

 Pr (CDC of M modules ≥ CDCm1 modules) > 90% (4)

and the smaller value of m2 that ensures 

 Pr (PBATT of M modules ≥ Pm2 modules) > 90% (5)

where 90% is the percentile of the resulting 

distribution.  

The number m of battery modules satisfying the 

CDC* and the P* requirements is the maximum value 

between m1 and m2. Then, we are able to define the 

final number of II-Life battery modules (M+mi with 

i=1 or 2 depending on the mi maximum value) 

necessary to achieve an equivalent I-Life ESS and to 

perform an economic assessment. 

3 ECONOMIC METRIC 

We use the net present value (NPV) as economic 

metric to examine costs and revenues while 

accounting for the time value of money (Masters, 

2013). If the NPV of a system is positive, then the 

investment should may be profitable. A negative 

NPV indicates that the returns are worth less than the 

cash outflows and the investment does not show a 

financial benefit, although unquantified benefits may 

be present. Annual cost of energy (ACOE) in [$/year] 

represents the present value of total cost Ctot 

multiplying by the capital recovery factor CRF. The 

CRF converts a present value into a stream of equal 
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annual payments over a specified lifetime N [year], at 

a specified interest rate r. It is defined as follows: 

(1 )

(1 ) 1

N

N

r r
CRF

r




 
 (6) 

and the Ctot is given by:  

 &tot I M O REPC C C C    (7) 

where CI is the storage capital cost, CM&O is the net 

present value of the total operations and maintenance 

costs and CREP is the present value of the replacement 

costs.  

The capital cost CI is the one-time investment, 

which brings the ESS into an operable status. It 

contains two subsystems: the first one is the power 

sub-system whereas the second one is the energy 

storage sub-system. The cost of the two sub-systems 

should be added together to get the overall capital 

cost. CI can be formulated as  

I P R E R FCC C P C E C    (8)

where PR [kW] and ER [kWh] are the ESS rated 

power and capability; CP [$/kW] and CE [$/kWh] are 

the specific costs mainly related to the electronic 

interface to the network and to the size of the ESS, 

respectively. CFC [$] is the fixed cost (building cost, 

landing cost, construction cost, etc.). 

There are at least four elements in the CM&O cost: 

1) labour associated with plant operation, 2) plant 

maintenance, 3) equipment wear leading to its loss-

of-life, and 4) disposal and decommissioning cost. 

The CM&O cost is defined as follows: 

&

1 (1 )

N
n

M O n
n

C
C

r




  (9)

where Cn [$] is the annual operation cost on n years 

and it is defined as a function of two main parts: a 

fixed one related to the ESS rated power, and a 

variable part depending on its annual discharged 

energy Eyear [kWh]. 

n f R v year r

year

r CH

CH

C C P C E C

E
C C


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
 (10)

The annual operation cost is split in variable cost 

(Cv) and charging cost (Cr): where ηCH is the battery 

charging efficiency and CCH [$/kWh] is the electricity 

cost coefficient for charging the ESS.  

Battery modules have to be replaced one or more 

times during the project lifetime. The NPV of 

replacement cost is:  

2[(1 ) (1 ) ...]L L

REP RPC C r r       (11)

where CRP [$] is the future value of replacement cost 

and L is the replacement period that can be estimated 

by using the battery modules datasheet such as 

(Julien, 2016). 

4 SIMULATION FRAMEWORK 

We apply the introduced methodology for the sizing 

of II-Life ESSs to a real distribution system. We 

consider the implementation of a peak shaving 

service for the microgrid that supplies the Campus of 

the University of Salerno (UniSA).  

4.1 Case Study 

The UniSA microgrid is a 12 bus 20 kV distribution 

system with two feeders configured in closed loop 

(Figure 10). Connected to the grid, there are several 

distributed generators (DG). Two combined heat and 

power (CHP) units, with a rated power of 580 kW 

each one at bus 11, and eight PV power plants for a 

total PV rated power of 1076 kW installed on the roof 

of the campus buildings (bus 2, 3, 4, 5, 6, 8, 9 and 12). 

CHP units produce both electricity used to supply the 

loads and thermal energy used to heat water of the 

campus sport facilities. 

 

Figure 10: Power grid of the UniSa Campus. 

In Figure 11, we show the typical daily profiles of 

the net active power drown from the main external 

PCC by the UniSA network (bus 1). Blue and green 

lines depict the active power absorption with and 

without internal PVs and CHPs, respectively. Finally, 

yellow and pink lines show the average (calculated 

every 15 minutes) active power generated by the PV 

and CHP units. 
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Figure 11: Active power drown from the UniSA microgrid. 

Furthermore, the study in (Graber, 2017), based 

on the CO.S.MO. (Cooperative Systems for 

Sustainable Mobility and Energy Efficiency) 

European research project, allows us to consider the 

additional demand due to the connection of EVs to 

charging stations (CSs) into the Campus.  

 

Figure 12: Active power drown from the UniSA microgrid 

by adding the EVs charging load. 

The study assumes that the users behaviour and 

their mobility needs highlighted by the COSMO data 

analysis, do not change moving from ICE-based 

(internal combustion engine) vehicles to battery EVs. 

Moreover, different types of CSs (AC level 2, 

CHAdeMO, SAE Combo, Tesla Supercharger, etc.), 

each of them characterized by different values of 

charging power, are considered in the analysis. EV 

charging demand profile is depicted in Figure 12. 

4.2 Economic Assessment 

We consider one II-Life battery ESS supporting CSs 

in the UniSA parking area and implementing a peak 

shaving based control. More in detail, during the day, 

the ESS acts when the power demand of the UniSA 

Campus is greater than a given threshold working in 

load following mode. At night, the ESS charge itself 

in constant charging power mode.  

In our analysis, we consider two different size of 

the ESS according to the imposed maximum power 

drown from the main external grid, PG
max. More in 

detail, by imposing PG
max=3.00 MW we need an ESS 

of 0.55 MW, 1.6 MWh (ESS1), while by imposing 

PG
max=2.75 MW we need an ESS of 0.80 MW, 

2.0 MWh (ESS2), (Graber, 2017). 

Figure 13 shows the flattening effect of the II-Life 

battery ESSs on the UniSA power demand when the 

electric load is greater than PG
max. The results for the 

PG
max=3.00 MW and PG

max=2.75 MW case studies are 

presented. In particular, the ESS reduces the peak 

load acting in load following mode from 9:00 a.m. to 

12:00 p.m. and from 16:00 p.m. to 19:00 p.m., while 

the ESS charges itself from the external grid in 

constant power mode, from 21:00 p.m. to 7:00 a.m. 

 

Figure 13: Daily trends of active power drawn by UniSA 

Campus from the external grid with EVs charging load and 

second life ESS. 

Table 1: Parameter for the Economic Assessment. 

Parameter Value Unit 

N 20 Years 

r 4 % 

CP 125 $/kW 

CE 470 $/kWh 

Cf 9.2 $/kW 

Cv 0.0011 $/kWh 

Eyear for ESS1 440 MWh 

Eyear for ESS2 550 MWh 

CCH 0.114 $/kWh 
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Figure 14: Comparison of ACOE for I-Life and II-Life 

battery ESS. 

We calculate the ACOE for I-Life and II-Life 

battery solutions based on the parameters in Table 1. 

We, also, assume that CFC is zero and the CREP is equal 

to 80% of CI. 

In Figure 14, we compare the ACOE of the I-Life 

ESS and that of the II-Life ESS, assuming the 

PG
max=3.00 MW case study. The aim is to give a 

competitive price to the II-Life ESS compared to the I-

Life solution. In our case study, the sensitivity analysis 

has pointed out that the price of II-Life battery modules 

should be reduced at least of 55% compared to the I-

Life battery modules, in order to obtain an ACOE value 

for the II-Life ESS comparable to that of the I-Life 

ESS. It is worth to note that 100% cost reduction of II-

Life battery modules leads to an ACOE of the II-Life 

ESS not equal to zero due to O&M costs. 

Table 2: II-Life ESS Sizing by using Different Battery 

Packs (0.55 MW, 1.6 MWh). 

Model 
Module 

energy 

Module 

power 
M m1 m2 

Nissan leaf 24 kWh 90 kW 67 15 3 

Tesla  

Model S 
75 kWh 285 kW 22 5 1 

BMW i3 33 kWh 125 kW 49 11 2 

Renault Zoe 22 kWh 65 kW 73 16 4 

Citröen C0 14 kWh 49 kW 114 25 6 

Table 3: II-Life ESS Sizing by using Different Battery 

Packs (0.8 MW, 2.0 MWh). 

Model 
Module 

energy 

Module 

power 
M m1 m2 

Nissan leaf 24 kWh 90 kW 84 19 4 

Tesla  

Model S 
75 kWh 285 kW 27 6 2 

BMW i3 33 kWh 125 kW 61 14 3 

Renault Zoe 22 kWh 65 kW 91 20 5 

Citröen C0 14 kWh 49 kW 143 32 8 

In Table 2, we show the number of I-Life battery 

modules (M) and II-Life battery modules (M plus the 

maximum value between m1 and m2) needed to satisfy 

the load following application (PG
max=3.00 MW case 

study) and whose economic evaluation is shown in 

Figure 13.  The number M, m1, and m2 are calculated 

by using different EV battery packs of the best-selling 

EV models for tackling the uncertainty due to residual 

capacity estimation and increase of the internal 

resistance. A similar analysis is carried out for the 

PG
max=2.75 MW case study and it is proposed in 

Table 3. It is worth to note that the additional II-Life 

battery modules needed to satisfy the power 

requirement of the peak shaving service is always less 

binding than that concerning the maximum number of 

CDC requirement. 

5 CONCLUSIONS 

We present a sizing method for the economic 

assessment of II-Life ESSs in providing energy 

services. A linear approximation is assumed to deal 

with the degradation and aging of lithium-ion 

batteries. We propose a methodology to calculate the 

number of battery modules able to guarantee the 

power service requirements at the EoL for energy 

applications and to tackle the uncertainty due to the 

estimation of the residual capacity in II-Life batteries.  

We calculate the ACOE of two different II-Life 

battery solutions able to provide a peak shaving 

service on the UniSa Campus MV network by 

reducing the imposed maximum power drown from 

the main external grid. We compare them with the  

I-Life ESS in order to identify a competitive price of 

II-Life battery modules.  

ACKNOWLEDGEMENTS 

The authors gratefully thank UE and all technological 

partners who have contributed to the success of the 

CO.S.MO. research project. 

REFERENCES 

Tejada-Arango, D. A., Domeshek, M., Wogrin, S., 

Centeno, E., 2018. Enhanced Representative Days and 

System States Modeling for Energy Storage Investment 

Analysis. In IEEE Transactions on Power Systems, vol. 

33, pp. 6534-6544. 

Ju, C., Wang, P., Goel, L., Xu, Y., 2018. A Two-Layer 

Energy Management System for Microgrids with 

Sizing of II-Life Batteries for Grid Support Applications and Economic Evaluations

87



Hybrid Energy Storage Considering Degradation Costs. 

In IEEE Transactions on Smart Grid, vol. 9, pp. 6047-

6057. 

Calderaro, V., Galdi, V., Graber, G., Graditi, G., Lamberti, 

F., 2014. Impact assessment of energy storage and 

electric vehicles on smart grids. In Proc. Electric Power 

Quality and Supply Reliability Conf., pp 15-18. 

Graber, G., Lamberti, F., Calderaro, V., Galdi, V., Piccolo, 

A., 2017. Stochastic characterization of V2G parking 

areas for the provision of ancillary services. In Proc. 

Innovative Smart Grid Technologies Conf. Europe, 

pp.1-6. 

Viswanathan, V. V., Kintner-Meyer, M., 2011. Second Use 

of Transportation Batteries: Maximizing the Val ue of 

Batteries for Transportation and Grid Services. In IEEE 

Trans. Vehicular Technology, vol. 60, pp. 2963-2970. 

Saez-de-Ibarra, A., Martinez-Laserna, E., Stroe, D., 

Swierczynski, M., Rodriguez, P., 2016. Sizing Study of 

Second Life Li-ion Batteries for Enhancing Renewable 

Energy Grid Integration. In IEEE Trans. on Industry 

Applications, vol. 52, pp. 4999-5008. 

Lacey, G., Putrus, G., Salim, A., 2013. The use of second 

life electric vehicle batteries for grid support. In Proc. 

IEEE EUROCON Conf., pp. 1255-1261. 

Gladwin, D. T., Gould, C. R., Stone, D. A., Foster, M. P., 

2013. Viability of “second-life” use of electric and 

hybridelectric vehicle battery packs. In Proc. IECON 

Industrial Electronics Society Conf., pp. 1922-1927. 

Koch-Ciobotaru, C., Saez-de-Ibarra, A., Martinez-Laserna, 

E., Stroe, D. I., Swierczynski M., Rodriguez, P., 2015. 

Second life battery energy storage system for enhancing 

renewable energy grid integration. In Proc. Energy 

Conversion Congress and Exposition Conf., pp. 78-84.  

Mukherjee N., Strickland, D., 2015. Control of Second-Life 

Hybrid Battery Energy Storage System Based on 

Modular Boost-Multilevel Buck Converter. In IEEE 

Trans. on Industrial Electronics, vol. 62, pp. 1034-

1046. 

Gohla-Neudecker, B., Bowler M., Mohr, S., 2015. Battery 

2nd life: Leveraging the sustainability potential of EVs 

and renewable energy grid integration. In Proc. Clean 

Electrical Power Conf., pp. 311-318. 

Strickland, D., Chittock, L., Stone D. A., Foster, M. P., 

Price, B., 2014. Estimation of Transportation Battery 

Second Life for Use in Electricity Grid Systems. In 

IEEE Trans. on Sustainable Energy, vol. 5, pp. 795-

803. 

Tong, S., Fung T., Park, J. W., 2015. Reusing electric 

vehicle battery for demand side management 

integrating dynamic pricing. In Proc. IEEE Smart Grid 

Communications Conf., pp. 325-330. 

Hamidi, A., Weber L., Nasiri, A., 2013. EV charging station 

integrating renewable energy and second-life battery. In 

Proc. Renewable Energy Research and Applications 

Conf. pp. 1217-1221. 

Julien, C., Mauger, A., Vijh, A., Zaghib, K., 2016. Lithium 

Batteries - Science and Technology. Springer, 1st 

edition. 

SAFT, May 2014. Lithium-ion battery life. Document 

N°21893-2-0514 [Online]. Available: http://www.saft 

batteries.com/force_download/li_ion_battery_life__Te

chnicalSheet_en_0514_Protected.pdf&prev=search 

Masters, G., 2013. Renewable and Efficient Electric Power 

Systems. Wiley, 2nd edition. 

Calderaro, V., Galdi, V., Graber, G., Massa, G., Piccolo, A., 

2014. Plug-in EV charging impact on grid based on 

vehicles usage data. In Proc. International Electric 

Vehicle Conf., pp. 1-7. 

Calderaro, V., Galdi, V., Graber, G., Lamberti, F., Piccolo, 

A., 2017. A sizing method for economic assessment of 

II-life batteries for power system applications. In Proc. 

Power & Energy Society General Meeting, pp.1-5. 

Graber, G., V., Galdi, Calderaro, V., Mancarella, P., 2017. 

A stochastic approach to size EV charging stations with 

support of second life battery storage systems. In Proc. 

IEEE Manchester PowerTech, pp.1-6.  

Reid, G., Julve, J., 2016. Second Life-Batteries as Flexible 

Storage for Renewables Energies. Report. [Online]. 

Available: https://www.bee-ev.de/fileadmin/Publikatio 

nen/Studien/201604_Second_Life-Batterien_als_flexi 

ble_Speicher.pdf 

Thirugnanam K., Kerk S. K., Yuen C., Liu N., Zhang M., 

2018. Energy Management for Renewable Micro-Grid 

in Reducing Diesel Generators Usage with Multiple 

Types of Battery. In IEEE Transactions on Industrial 

Electronics, vol. 65, pp. 6772-6786. 

SMARTGREENS 2019 - 8th International Conference on Smart Cities and Green ICT Systems

88


