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The combination of Edge Computing devices and Cloud Computing resources brings the best of both worlds:

Data aggregation closer to the source and scalable resources to grow the network on demand. However, the
ability to leverage each time more powerful edge nodes to decentralize data processing and aggregation is
still a significant challenge for both industry and academia. In this work, we extend the Garua platform to
analyze the impact of a model for data aggregation in a global scale smart grid application dataset. The
platform is extended to support global data aggregators that are placed nearly to the Edge nodes where data
is being collected. This way, it is possible to aggregate data not only at the edge of the network but also pre-
process data at nearby geographic areas, before sending data to be aggregated globally by global centralization
nodes. The results of this work show that the implemented testbed application, through the usage of edge node
aggregation, data aggregators geographically distributed and messaging windows, can achieve collection rates

above 400 million measurements per second.

1 INTRODUCTION

The ubiquity of the Internet of Things (IoT) unleashes
the potential of using innovations based on sensor
data to improve society’s overall quality of life. These
data profiles can be used to enable technologies such
as large-scale smart cities deployments, smart home
monitoring, smart industries and smart energy grids.

Devices that provide these kinds of capabilities are
now widespread through our cities and homes on de-
vices such as smartphones, medical devices, home ap-
pliances and street signals.

By 2025, researchers estimate that the IoT will
have a potential economic impact of $11 trillion per
year — which would be equivalent to about 11% of the
world economy. They also expect that one trillion IoT
devices will be deployed by 2025 (Buyya and Dast-
jerdi, 2016).

Novel technologies for mobile computing and
the Internet of Things (IoT) are shifting the focus of
its research and development to computing toward
dispersion. In this context, Edge Computing is one of
the most prominent areas, and it is a new paradigm
in which a high volume of computing and storage
resources — generally referred to as cloudlets, micro
datacenters or fog nodes — are placed at the Inter-
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net’s edge close to mobile devices or sensors (Satya-
narayanan, 2017).

However, there is a large set of applications that
cannot tolerate the latency penalties of sending data
to be aggregated on the cloud and then waiting for
the response on edge nodes. Also, the act of send-
ing a potentially large number of small packets to the
cloud for data processing can saturate the network and
decrease the scalability of applications (Dastjerdi and
Buyya, 2016).

Smart grids will allow consumers to receive near
real-time feedback about household energy consump-
tion and price, allowing consumers to make informed
decisions about their spending. For energy produc-
ers, it will be possible to leverage home consumption
data to produce energy forecasts, enabling near real-
time actions and better scheduling of energy gener-
ation and distribution (Brown, 2008). In this way,
smart grids will save billions of dollars in the long
run, for consumers and the generators, as well as to
reduce the impact on the environment, according to
recent forecasts (Reuters, 2011).

This paper uses a realistic application use case and
dataset in order to further understand what is achiev-
able when certain computational tasks are moved
from cloud nodes to edge nodes, and the potential
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benefits of data aggregation and batching at the
edge of the network.

In order to improve over our previous work a new
communication layer was introduced, which is called
the aggregator layer. This layer has the primary goal
of pre-processing data in the same geographic loca-
tion of edge nodes. This way, it is possible to avoid
high-cost communication delays by pre-processing
data from multiple edge nodes in the same geographic
region, postponing the latency overhead of communi-
cating with potentially distant cloud nodes. Finally,
the scalability of the architecture is evaluated by de-
ploying the platform in a large scale deployment in a
public cloud environment.

Our results show, after including the aggregator
layer, the platform can achieve data collection rates
above 400 million measurements per seconds, using
15 geographic distributed datacenters on Microsoft
Azure platform, for a total of 1366 machines across
the globe. It also presents an eight times speedup im-
provement in throughput in comparison to the previ-
ous architecture, in a scenario using eight aggregators
in the same geographic region.

The rest of this paper is organized as follows. The
Section 2 presents and compares the related work with
our work. In Section 3 our mechanism is presented
and explained. Section 4 presents the results of our
experimental evaluation. Finally, the Section 5 con-
cludes this work and presents the next research direc-
tions.

2 RELATED WORK

The main works on the state-of-the-art of edge com-
puting focus on platforms and frameworks aiming to
provide scalable processing as close as possible to
the network border. These approaches are primarily
focused on providing the lowest possible latency re-
sults and better utilize the resources available on the
network. Multi-access Edge Computing (MECs) and
Cloudlets, which can be described as cloud-like de-
ployments at the network edge, are currently the pre-
dominant approaches to address these challenges.

The most prominent approaches and how they re-
late to this work are briefly described below. At the
end of Section 2 there are detailed explanations of
how these works relate to the proposed solution on
the Section 3.

The state-of-the-art works include Femto-
Clouds (Habak et al., 2015), REPLISOM (Abdelwa-
hab et al., 2016), Cumulus (Gedawy et al., 2016),
CloudAware (Orsini et al., 2016), ParaDrop (Liu
et al., 2016), HomeCloud (Pan et al., 2016),
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ENORM (Wang et al., 2017), RT-SANE (Singh
et al., 2017), EdgeloT (Sun and Ansari, 2016) and
cloud provider based implementations (Tdrneberg
et al., 2016), which are examples of applications that
explore computational offloading to nearby devices.

One important thing to perceive is that the ma-
jority of the related works either rely on offloading
computation to edges that are underutilized or offload
processing to nearby network centralizers (modified
wireless network access points or specialized mobile
network base station hardware). EdgeloT (Sun and
Ansari, 2016) stands apart on this aspect by explor-
ing computation to considerably more performance
nodes, by relying on virtual machines in a nearby mo-
bile base station.

Several works on the state-of-the-art either rely on
hardware specific tools or significant modifications
on their underlining communication protocols. This
work, on the other hand, relies on standard tools and
protocols that add flexibility and turn easier to port it
to other platforms.

Examples of applications which require signifi-
cant changes in the underlining communication pro-
tocols or specific hardware are ParaDrop, a specific
edge computing framework implemented on WiFi
Access Points (APs) or other wireless gateways (such
as set-top boxes). It uses a lightweight virtualization
framework through which third-party developers can
create, deploy, and revoke their services in different
APs.

HomeCloud (Pan et al., 2016) focus on being an
open and efficient new application delivery in edge
cloud, by integrating two complementary technolo-
gies: Network Function Virtualization (NFV) and
Software-Defined Networking (SDN).

EdgeloT, in its turn, is an architecture to handle
data stream at the mobile edge. The central idea con-
sists of fog nodes communicating with a Virtual Ma-
chine (VM) positioned at a nearby base station. On
the top of the fog nodes, the Software Defined Net-
working (SDN) based cellular core is designed to fa-
cilitate the package forwarding among fog nodes.

Cumulus (Gedawy et al, 2016), Femto-
Clouds (Habak et al., 2015), CloudAware (Orsini
et al., 2016) and RT-SANE (Singh et al., 2017)
have a greater focus on task placement, providing
dynamic scheduling capabilities for operators and
tasks (such as tasks migration functionalities) which
are beyond the scope of this work. Cumulus (Gedawy
et al,, 2016) provides a complete framework that
controls task distribution under a heterogeneous set
of devices on its cloudlet. FemtoClouds (Habak et al.,
2015) and CloudAware (Orsini et al., 2016) monitor
device usage on its cloudlets in order to improve
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Table 1: Research scope comparison of the state-of-the-art with the proposed work.

Name Cloud Edge Mobility LargeScale Hardware Agnostic
GaruaGeo (this work) . . . .
ENORM . . .
RT-SANE . . .
Tarneberg et al. . . .
HomeCloud . . .
CloudAware . .

FemtoClouds .

REPLISOM .

Cumulus . .
ParaDrop . .
EdgeloT .

device usage as part of its scheduling algorithms.
CloudAware (Orsini et al., 2016) also provides a
specific Application Programming Interface (API) to
improve the user experience of software developers.
RT-SANE (Singh et al., 2017) evaluates several
scheduling heuristics in comparison to a cloud-only
scenario.

Although the related works present multiple initia-
tives on Edge Computing towards computational of-
floading, only the work of Tédrneberg et al. (Tdarneberg
et al., 2016), ENORM (Wang et al., 2017) and RT-
SANE (Singh et al., 2017) explore the potential of
combining low latency edge nodes processing with
scalable and more powerful sets of commodity ma-
chines on public clouds. However, ENORM (Wang
et al., 2017) evaluation only considers a small set of
edge nodes communicating with a nearby Amazon
AWS cloud node in Dublin. RT-SANE (Singh et al.,
2017), in its turn, relies on a specific fog simulator to
obtain its results, which limits the scope in compar-
ison to a real-world evaluation. Finally, the work of
Tiarneberg et al. (Tdrneberg et al., 2016) directly of-
fload from the edges devices to the cloud infrastruc-
ture, which limits the scope of the work in relation to
data aggregation.

Apart from that, most works presented in this sec-
tion either rely on generated datasets or small datasets
(tenths of mobile devices) for its evaluations. On the
other hand, the present work uses a realistic dataset,
based on a real-world dataset from household energy
consumption in Germany (Ziekow and Jerzak, 2014).

In Table 1, we present a comprehensive descrip-
tion of the coverage of the state-of-the-art in compar-
ison with this work.

According to characterization, it is possible to per-
ceive that the proposed model (GaruaGeo) is the only

work that focuses on large scale hybrid (cloud and
edge) data processing.

This work also does not focuses on mobility issues
or hardware specific implementations such as several
works on the state-of-the-art.

The taxonomy used to group the state-of-the-art
works is based on recent surveys on fourth-generation
distributed stream processing systems, fog computing
and edge computing (de Assuncao et al., 2017) (At-
zori et al., 2010) (Mao et al., 2017) (Mahmud et al.,
2018).

3 ARCHITECTURE AND
IMPLEMENTATION

The architectural infrastructure of the testbed appli-
cation deployment can be described as a composi-
tion of four layers, as it is represented on Figure 1:
(1) Cloud layer, which executes long-running scal-
able jobs that can provide more powerful machines
for processing with the trade-off of greater latencies;
(2) Aggregator layer, which aggregates from multiple
edge nodes, usually placed on the same geographic
region as edge nodes, in order to aggregate all data
for a given geographic region before sending data to
the cloud layer, which is potentially placed in a distant
geographic region; (3) Edge layer, which is composed
of edge nodes that are used to pre-process and aggre-
gating sensor data before sending to the Aggregator
nodes; and the (4) Sensor layer, which is composed
of the sensors that communicate directly with Edge
layer nodes to receive actuation requests and provide
measurements to the network.
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3.1 Cloud Layer

This layer is composed of virtual machines that exe-
cute the application in order to aggregate data to be
received from Edge layer nodes. The Cloud layer
should be composed of elements that can be able to
process data as it arrives. It can be instantiated by im-
plementing the same application logic from the layer
below, but instead, it should be configured to receive
data from multiple edge nodes.

This layer receives data from queues and ex-
changes through a message hub, so that the inputs
can be parallelized through multiple consumers. It
can also be configured to support clusters of machines
to execute transformations as distributed stream pro-
cessing jobs over these queues and exchanges.

In the evaluation work, the model is implemented
as an application running in a single node inside a
Linux VM at Microsoft Azure, which was chosen
due to its perceived benefits over other cloud plat-
forms (Roloff et al., 2012) (Roloff et al., 2017). This
application was written in the Go programming lan-
guage and receives the processing request from the
layer below through GRPC communication frame-
work. The VM instance utilized was configured as
it is described in Table 2.

3.2 Aggregator Layer

The aggregator layer represents one or multiple in-
termediate layers of aggregation that could be poten-
tially used to mitigate the impact of latency between
data collection and the collection of global metrics
into the Cloud layer.

In previous works, it was possible to observe that
is possible to obtain significant throughput gains by
aggregating data from sensors on edge nodes.

However, it was perceived that there was room for
improvement if it was possible to have an operator
in the architecture responsible for aggregate data for
specific regions before communicating with the cloud
layer. An example of this scenario is when multi-
ple edge nodes in Japan are transferring data to the
USA, each one of them paying the latency penalty of

Table 2: Cloud layer configuration: Virtual machine type
and toolset description.

Parameter Description

Basic_A3 (4 cores, 7 GB RAM)
Ubuntu 16.04 LTS

Golang version 1.8

GRPC version 1.3.0-dev

Protocol Buffers version 3.2.0

Instance Type
Operating System
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Figure 1: The architecture is composed by 4 layers: Cloud,
Aggregator, Edge and Sensor.

communicating with another continent. Instead, ag-
gregators could be placed in this location and aggre-
gate data from multiple edge nodes in Japan, before
transferring it to the USA.

In our evaluation, this layer was represented as a
single core machine, in order to potentially represent
less powerful machines, such as Raspberry Pi’s and
similar ARM processors which are well-suited for the
given scenario (and that were used for the edge layer
on previous works).

3.3 Edge Layer

The Edge layer is composed of a set of nodes with
transformation operators to apply over sensor mea-
surements one-at-time. Operators can be either trans-
formations over results, combinations with sets of
measurements received or mappings to machines on
the Cloud layer above.

On this layer, the application code will be ex-
pressed to define which computation will be done in-
side of edge nodes and which computation will be
managed by VMs on the Cloud Computing environ-
ment. The degree of control provided by this level
makes it possible to decrease the number of messages
sent to the Cloud. In this way, it is possible to de-
crease the amount of data that is sent to the Cloud.

Table 3: Aggregator layer configuration: Virtual machine
type and toolset description.

Parameter Description

Instance Type Standard_DS2_v2 (2 cores, 7 GB RAM)
Ubuntu 16.04 LTS

Golang version 1.8

GRPC version 1.3.0-dev

Protocol Buffers version 3.2.0

Operating System
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Also, by processing certain amounts of data directly
on the edge nodes, the latency experienced by actu-
ator sensors is in the order of tenths of milliseconds
instead of a couple of seconds of cloud processing la-
tencies.

Actuator sensor logic can also be implemented on
this layer, in such a way that when a given condition
is matched by an edge node, it can trigger actuators
on the Sensor layer in order to act on external appli-
cations. For example, a consumer can configure its
smart grid energy meter to maintain the energy con-
sumption below a certain level during peak cost en-
ergy hours. In this way, the smart grid meter can turn
off certain machines when the average consumption
reaches a certain threshold.

In our previous works, edge layers were composed
by a set of Raspberry Pi Zero W machines. In this pa-
per, in order to stress the simulation in a globally dis-
tributed environment, these machines are simulated as
VMs on Microsoft Azure. These machines commu-
nicate with the sensor layer, which in our evaluation
will also be a simulated layer. The configuration of
the edge nodes is the same as we have used for the
aggregator nodes, which is described in detail on Ta-
ble 4.

3.4 Sensor Layer

The Sensor layer is represented by a given set of sen-
sors that communicate with the Edge nodes. Ide-
ally, sensors should communicate with Edge Nodes
through their available input/output hardware inter-
connections or lightweight wireless connection such
as Bluetooth or LTE networks. However, in order to
limit the analysis scope of this work, the sensor net-
work dataset is previously loaded into edge nodes be-
fore the execution of tests.

Smart grid environments rely on specific meters
and plugs on households to collect data, which are
provided by the energy grid provider or standardized
to support only a set of accepted and verified plugs
and meters types. The data types generated by these
environments also need to respect a certain schema
to be shared, aggregated and analyzed by the energy
provider companies.

Table 4: Edge layer configuration: Virtual machine type and
toolset description.

Parameter Description

Instance Type Standard_DS1_v2 (1 cores, 3.5 GB RAM)
Ubuntu 16.04 LTS

Golang version 1.8

GRPC version 1.3.0-dev

Protocol Buffers version 3.2.0

Operating System

The dataset used for the evaluation of this work
is based on the dataset provided by the 8th ACM
International Conference on Distributed Event-Based
Systems (DEBS). This conference provides competi-
tions with problems which are relevant to the indus-
try. In the year 2014, the conference challenge fo-
cus was on the ability of Complex Event Processing
(CEP) systems to apply on real-time predictions over
a significant amount of sensor data. For this purpose,
household energy consumption measurements where
generated, based on simulations driven by real-world
energy consumption profiles, originating from smart
plugs deployed in households (Ziekow and Jerzak,
2014). For this challenge, a large number of smart
plugs has been deployed in households with data be-
ing collected roughly every second for each sensor in
each smart plug.

3.5 Communication Protocol

Although multiple protocols for communication in
IoT systems have been proposed in the recent years,
the protocols in use today are still being evaluated
and are subject of discussion and standardization ini-
tiatives, mainly due to advancements of internet pro-
tocols to support mobile and IoT applications. The
most widely adopted protocols in use today are, re-
spectively, MQTT (Banks and Gupta, 2014) and
CoAP (Bormann et al., 2012).

One of the most prominent proposals on this
area is the HTTP/2 protocol. The standard was fin-
ished in 2005 and provides several improvements
over previous protocols, mainly due to the capability
of multiplexing data, avoiding handshake overhead
and their data compression capabilities (Belshe et al.,
2015) (Ruellan and Peon, 2015).

As an alternative to broker-centric communi-
cation protocols and synchronization costly proto-
cols such as REST (Richardson and Ruby, 2008),
Google Inc. has adopted a RPC protocol and ser-
vice discovery framework Stubby/Chubby (Burrows,
2006). The open source version of its tool is called
GRPC (Google, 2015), which relies on HTTP/2 in
order to avoid handshake overhead, and Protocol
Buffers (Gligori¢ et al., 2011) to communicate us-
ing a binary method, which provides better data com-
paction by reducing the message size.

Due to the performance benefits reported from the
usage of HTTP/2 protocols over standard HTTP, and
their ease of use for flexible prototyping of distributed
applications, GRPC was used to build a reliable and
fast communication channel for all of the communi-
cation layers implemented on this work.
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GRPC as a communication platform presents sev-
eral advantages over TCP only connections and com-
munication protocols such as REST. It has a simple
interface which hides configuration complexity but is
still able to provide high-level features, such as long-
lived connections (to avoid unnecessary communica-
tion handshakes) and communication multiplexing in-
side a small number of channels (reducing the num-
ber of required connections open at a given point in
time). However, their usage is still subject of eval-
uation, mainly on networks with high package loss
percentages, which are a limiting factor not only for
HTTP/2 but also for AMQP based applications (Goel
et al., 2016) (Lee et al., 2013) (Chowdhury et al.,
2015) (Thangavel et al., 2014).

3.6 Measurement Algorithm

In order to proper extract insights from sensor data,
it was selected a broadly used approach to aggregate
and generate Short-Term Load Forecasting (STLF)
for smart grids. This algorithm is not only well-
known by the research community, but also provides
the potential to be applied at multiple aggregation lay-
ers.

Smart grids bring a rich set of tools to better con-
trol and balance energy supply and demand in near
real-time, as well as continuous visibility of consump-
tion patterns about energy generation and consump-
tion. This way, methods to extract knowledge from
near real-time observations are critical to the extrac-
tion of value from infrastructure investment.

In this scenario, Short-Term Load Forecasting
(STLF) describes the prediction of power consump-
tion levels in several time frames, from minutes and
hours up to a week ahead. It considers variables such
as date, temperature (including weather forecasts),
humidity, temperature-humidity index, wind-chill in-
dex and most importantly, historical load. Residential
versus commercial or industrial uses are rarely speci-
fied.

Multiple approaches for time series modeling
for STLF have been developed over the last thirty
years. There methods (Kyriakides and Polycarpou,
2007) could be briefly summarized into the following
groups:

e Regression models that represent electricity load
as a linear combination of multiple parameters
e.g. weather factors, day type and customer class.

e Methods based on linear time series includ-
ing those derived from Autoregressive Integrated
Moving Average (ARIMA) model and State-
Space Models (SSMs).
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e Methods derived from SSMs that rely on a
filtering-based (e.g., Kalman filters) techniques
and a characterization of dynamical systems.

e Nonlinear time series modeling through machine
learning methods such as non-linear regression.

According to the research of Shawkat Ali et
al. (Ali, 2013), the three most accurate models for
load prediction are respectively, Multiplayer Percep-
tron (MLP), Support Vector Machines and Least
Mean Squares. In this work, it is implemented an
approach which mixes MLP and ARIMA, bringing
together characteristics from both linear time series
methods and SSMs (Bylander and Rosen, 1997).
This approach was chosen not only due to the model
suitability to distributed architectures, but also due to
its similarity to the model proposed at the DEBS 2014
conference (Ziekow and Jerzak, 2014). This approach
is schematically described in Equation (1).

More specifically, the set of queries provide a
forecast of the load for: (1) each house, i.e., house-
based and (2) for each individual plug, i.e., plug-
based. The forecast for each house and plug is made
based on the current load of the connected plugs and
a plug specific prediction model.

avgL(s;) + median(avgL(s;))
> (1)

In the Equation (1), avgL(s;) represents the cur-
rent average load for the slice s;. The value of
avgL(s;), in case of plug-based prediction, is calcu-
lated as the average of all load values reported by
the given plug with timestamps € s;. In case of a
house-based prediction the avgL(s;) is calculated as a
sum of average values for each plug within the house.
avgL(s;) is a set of average load value for all slices s;.

L(siy2) =

Sj = Sit2—nxk ()

In the Equation (2), k is the number of slices in

a 24 hour period and n is a natural number with val-
ues between 1 and floor(=2). The value of avgL(s))
is calculated analogously to avgL(s;) in case of plug-

based and house-based (sum of averages) variants.

4 EVALUATION

The main idea of adding aggregators to the platform
was that, by including a layer near to the edge nodes,
the latency experienced by the edge nodes would de-
crease and it would be possible to decide, on aggre-
gator nodes, when it was necessary to suffer the la-
tency penalties to communicate with potentially dis-
tant cloud nodes.
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After adding the new layer, some scenarios would
be required to be validated in order to verify that our
platform was able to provide its expected benefits in
comparison to the previous version without aggrega-
tors.

Aggregators have the ability to receive, buffer,
pre-process and group messages before sending data
to the cloud layer nodes. This additional layer gives
the platform the ability to answer edge layer node
requests faster than the cloud layer nodes, which
could potentially be placed at other countries and
continents, providing slower responses due to the
greater latencies implied in communication between
machines in distant geographical regions.

4.1 Infrastructure Setup and Operators
Placement

Before the execution of the tests, it was essential to
setup a minimal set of tools to help on the automation
of the deployment process in multiple regions around
the globe.

Since we are using Microsoft Azure, it was possi-
ble to rely on ARM (Azure Resource Manager) tem-
plates to describe the infrastructure to setup. By using
ARM templates, it was possible to define generic tem-
plates to describe the number of nodes, size of virtual
machines, operating system version and default tools
that were important to have pre-installed on all ma-
chines.

The decision of which regions to use in our analy-
sis scenarios came from a previous latency measure-
ment evaluation done on previous works.

In this evaluation, it was analyzed the communi-
cation between machines placed in multiple regions
and one node placed on US West, which in this pa-
per was the region where the master node of the cloud
layer was placed. After this analysis was made, these
regions were classified regions into three categories:

El1 10 [EF100 [N 1000

Throughput (QPS)
LBRRARL o 11 B e
T VT 71 S W1

baseline

aggregator
Execution type
Figure 2: Aggregator stress comparison analysis: 90 nodes

maximum throughput with and without an aggregation layer
(1 to 1000 message batch sizes).

Table 5: Region profiles: Description of the latency profiles
between Azure regions selected for evaluation

Region Low latency =~ Medium latency  High latency

westus2 .

brazilsouth 0

ukwest .

southeastasia .

eastasia .

japaneast .

westeurope .

australiasoutheast .

northeurope .

centralus .

southindia .

canadacentral .

centralindia .

koreasouth .

francecentral .

Low latency, medium latency, and high latency. The
results with regions selected and their latency profiles
are displayed on Table 5.

4.2 Exploring the Impact of Adding
Aggregators into the Infrastructure

In this testbed evaluation, aggregators nodes are
placed in the same regions (datacenters) as the sim-
ulated edge nodes. Using this approach messages are
buffered into a nearby aggregator, where they can be
aggregated or pre-processed and sent to a centralized
node which is potentially in a distant region.

The first experiment we have made was to evalu-
ate the impact of adding another moving piece to our
infrastructure. The rational behind it was to evalu-
ate how much it would impact the performance in a
stress scenario. In Figure 2 we evaluate a stress sce-
nario with a single master, before and after adding an
aggregator.

From this experiment, it was possible to perceive
that the performance improves for smaller groups of
messages, but in general, including an aggregator
does not impact the performance negatively in com-
parison to the previous architecture. In comparison
to the previous architecture, it is a worst-case eval-
uation scenario, since with an aggregator there is an
extra layer of communication overhead. Apart from
that, in this scenario the aggregator could not benefit
from batching of multiple messages since batching,
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Figure 4: Aggregator groups evaluation: 40 edge nodes dis-
tributed between distinct groups of aggregators.

in this case, is done at edge node level. The potential
performance benefits of using one or multiple aggre-
gators should be perceived only in the communica-
tion between aggregator and master nodes (where it
is possible to wait or batch multiple edge node mes-
sages before communicating with nodes on the cloud
layer).

4.3 Multiple Aggregators in a Given
Global Region

In our previous version of the architecture, which was
composed by a master node on the cloud layer and
edge nodes that received sensor data, it was possible
to validate that it the architecture was able to scale lin-
early up to 90 nodes (regarding throughput). In this
experiment, after the addition of our new processing
layer, it was collected data to understand if this be-
havior has not changed.

As it can be seen on Figure 3, regarding batches
of messages, it is still possible to perceive that the
architecture can scale linearly. However, regarding
the number of nodes, it is not possible to perceive
any performance gains when we increase the number
of nodes from 15 to 90. This behavior could be ex-
plained by the fact that our aggregators are now in the
same geographic region as our edge nodes.

In our previous analysis (which considered cloud
nodes and edges nodes only), cloud nodes were
placed in a region and edge nodes were placed in an-
other. In this analysis, from the standpoint of the mas-
ter node a stress scenario was never achieved (the up-
per bound of the system regarding throughput). How-
ever, in the current scenario, the only piece of the
architecture which is not in the same region is the
master node. Hence, the latency experienced by our
edge nodes is much lower, and the upper bound of the
system is experienced by all scenarios from 15 to 90
nodes.

This analysis has shown three crucial facts: 1) The
throughput from the standpoint of the edge nodes has
significantly improved since aggregator nodes now
handle requests in the same geographic region with
lower latencies; 2) By adding aggregator nodes in the
same geographic regions as the edge nodes which col-
lect sensor data, we are now bounded by the com-
munication between the aggregator nodes and cloud
nodes (which will always be slower than the commu-
nication between edge nodes and aggregator nodes);
3) In order to evaluate the overall performance (re-
garding throughput and latency) of the system, it is
not possible anymore to aggregate the number of re-
quests made from edge nodes to their counterparts
(cloud nodes in the previous architecture or aggrega-
tor nodes in the current), but it is required to evaluate
the performance of the communication between ag-
gregator nodes and the cloud node.

4.4 Groups of Aggregators into a Single
Region

In this experiment, it was evaluated the impact of
adding multiple aggregators into the same local re-
gion. The analysis was made using VMs on the
uswest region of Azure with a fixed number of edge
nodes (40 edge nodes) and a variable number of ag-
gregators (1 to 8 aggregators).

15 T30 45 W60 (175 EW90

Throughput (QPS)

1 10
Batches of messages (1 to 1000 messages)

100 1000

Figure 3: Aggregator stress evaluation: Throughtput analysis from 15 to 90 nodes.
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Figure 5: Global scale deployment: One global master (red square) and 15 regions (blue dots, where each region contains 1

aggregator node and 90 edge nodes).

In order to execute this analysis, the number of
existent edge nodes was spread evenly between ag-
gregators. In Figure 4, it was possible to verify that
by adding 8 aggregators it was possible to achieve
exponential increase on throughput up to 8 aggrega-
tors, where the aggregator has achieved a throughput
of around 100k messages per second received from
the edge nodes.

Multiple aggregators perform better probably due
to the number of concurrent requests that one aggre-
gator can answer at the same time. Given a certain
amount of edge nodes, spreading their requests be-
tween multiple aggregator nodes decreases contention
level in each aggregator. This way, they can answer
more requests per second since the number of nodes
for each aggregator is more balanced. However, in-
troducing a more significant amount of aggregators
will require that more elements pay the extra latency
needed to communicate with cloud layer nodes, but
these trade-offs were not explored in this scenario.
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Figure 6: Global performance evaluation: 90 nodes per re-
gions, 1000 messages batches and variable number of re-
gions (5 to 15).

4.5 Multiple Region Edge Analysis

In this evaluation scenario, it was explored the maxi-
mum achievable performance from the standpoint of
data collection on edge nodes. In order to evaluate it,
we have deployed a large number of machines, into
multiple geographic regions, and collected data about
the aggregated data collection throughput of its edge
nodes.

Each scenario evaluated on these tests relies on
regions (datacenters) on Microsoft Azure across the
globe. In each region, there were placed 90 Edge
nodes and a single aggregator node. The analysis was
made based on data collected from at least 20 exe-
cutions for 5, 10 and 15 regions. In each execution
scenario, each edge node sends at least 100k energy
measurements to its respective aggregator nodes.

In Figure 5 it is possible to visualize the extension
of the largest execution. For this analysis it was used:
15 regions on Azure; one Global aggregator node on
the cloud layer; 15 aggregator nodes on the aggrega-
tor layer; 1350 Edge nodes, for a grand total of 1366
machines aggregating data across the globe. In this
experiment, it was possible to achieve data collection
rates above 400 million measurements per seconds on
the scenario with 15 aggregator nodes.

Another important aspect captured by this analy-
sis is the discrepancy in performance between distinct
regions. From the standpoint of the Edge nodes, it
was not possible to perceive significant performance
discrepancies between regions for each one of the an-
alyzed regions, as it is displayed in Figure 7.

Linear scalability is also obtained as we increase
the batch factor on the number of messages which are
aggregated before being sent to the aggregator nodes.
Hence, it was possible to validate in this scenario that
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Figure 7: Global performance evaluation: 90 nodes per region, 5 regions and variable batch sizes (1 to 1000 messages).

the pattern analyzed in the scenario with a single re-
gion in Figure 3 holds significant for multiple regions.

Finally, it is shown in Figure 6 a summary of
the highest throughput scenarios observed, which are
those that display the largest amount of messages per
batch evaluated. The results show that the perfor-
mance does not only increases linearly with batch
sizes, but also data collection rates, which increase
linearly as more regions are added globally. From
these tests, up to 15 regions (which use 90 nodes
and one aggregator per region), it was not possible to
achieve an inflection point where data collection rates
start to decrease.

S CONCLUSION AND FUTURE
WORK

In this work, it was analyzed a model for workload
distribution and data aggregation using a large-scale
smart grid application dataset. The main contribution
was the addition of new processing layer, responsi-
ble for aggregating data from the geographic regions
they were placed before communicating with remote
cloud nodes. In summary, the application was able
to achieve higher throughput by leveraging process-
ing on edge nodes, batching techniques and data ag-
gregation to reduce the communication overhead with
distant nodes.

Our results show, after including the aggregator
layer, the platform can achieve data collection rates
above 400 million measurements per seconds. These
results were obtained leveraging 15 geographic dis-
tributed regions on the Microsoft Azure platform, for
a total of 1366 machines around the globe. In com-
parison to the previous architecture, the new archi-
tecture presents an eight times throughput improve-
ment in a scenario using 8 aggregators in the same
geographic region. The platform was able to scale lin-
early according to the number of messages on window
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batches, as well as in relation to the number of nodes
and regions added to the platform, up to 90 nodes per
region.

The experiments show that the impact of window-
ing and aggregation on edge nodes is not negligible
and needs further investigation by the research com-
munity. Although it has similarities to data stream
processing research; the topic is still being initially
explored by researchers on the fields of the Internet
of Things, Fog Computing and Edge Computing.

The future works should focus on the exploration
of other scheduling, windowing and aggregation tech-
niques for edge processing.

Apart from that, a critical line of research would
be to explore how to evolve this testbed application
and its middleware into a generic framework for ap-
plications that need to distribute processing through
edge and cloud nodes. Finally, it would be essential to
explore other communication protocols to understand
their suitability to multiple scenarios based on hybrid
computations on cloud and edge environments.
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