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Abstract: In Model-Driven Software Development (MDSD), an application can be built using classes and their state 
machines as source models. The final application can be tested as any source code. In this paper, we discuss 
a specific approach to mutation testing in which modifications relate to different variants of behavioural 
features modelled by UML state machines, while testing deals with standard executions of the final 
application against its test cases. We have proposed several mutation operators aimed at mutating behaviour 
of UML state machines. The operators take into account event processing, time management, behaviour of 
complex states with orthogonal regions, and usage of history pseudostates. Different possible semantic 
interpretations are associated with each operator. The operators have been implemented in the Framework for 
eXecutable UML (FXU). The framework, that supports code generation from UML classes and state machines 
and building target C# applications, has been extended to realize mutation testing with use of multiple libraries. 
The semantic mutation operators have been verified in some MDSD experiments. 

1 INTRODUCTION 

Model-Driven Software Development (MDSD) can 
be aimed at production of high quality software in a 
reasonable time or at a rapid prototyping (Liddle, 
2011). In both cases the target software should reflect 
behavioral features introduced in source models. It 
has been assumed that building an application based 
on an automatically generated code gains benefits of 
high-level modelling and analysis. Model to code 
transformation uses mainly structural models, as 
UML classes (Batouta et al., 2017).  

However, behavioral models, e.g., state machines, 
are also utilized (Dominguez et al., 2012). State 
machines are widely used in the embedded system 
domain, and other application areas (Liebel et al., 
2018); though code generation is still not very 
common in the industrial practice. Moreover, 
building of such applications impose requirements on 
their consistency to the source models and 
verification of the final code.  

The latter can be supported by mutation testing. 
Mutation testing is an approach primarily used for 
assessment of test set quality and generation of tests 
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satisfying selected criteria (Jia and Harman, 2011). In 
a standard mutation testing process, syntactic 
changes, so-called mutations, are injected into a 
source code and supposed to be detected by test cases. 
Modified programs, mutants, are run against tests. An 
evidence of an abnormal program behaviour, i.e. 
killing of a mutant, admits ability of tests to detect 
program faults. It could confirm quality of a test suite 
in regard to the type of faults introduced by mutation 
operators during generation of the mutant. The notion 
of mutations used in this paper follow concepts from 
mutation testing, and not from genetic algorithms. 

Different variations of the standard mutation 
testing process have been considered, including 
various software artefacts to be mutated and tested. 
Not only a program code, but also different kinds of 
models and specifications have been used as a source 
in a mutation testing process, (Belli et al., 2016). 
Among models, mutating of state machines has also 
been discussed (Trakhtenbrot, 2007). 

Moreover, mutation testing operators can refer not 
only to syntactical changes of an input artefact, i.e. 
code, model, or specification, but also to its semantic 
variations or other implementation features (Clark et 
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al., 2013), (Trakhtenbrot, 2010), (Trakhtenbrot, 
2017).  

Mutation testing could be combined with MDSD 
approach in various ways. We propose mutation of 
semantic features of state machines that are source 
models in the program development. However, 
mutation testing results are interpreted not on a model 
level but on the level of a final application; as in the 
typical mutation testing of a program. Tests should be 
capable to detect different kinds of software flaws. 
Among others they should verify correctness of usage 
of the state machine formalism to design the project 
corresponding to given requirements. 

Presentation of semantic operators to behavioural 
features of UML state machines and their possible 
interpretation variants consistent to the UML 
specification, is the main contribution of the paper. 
The proposed operators have been implemented in a 
tool and verified in a case study. To the best of our 
knowledge it is the first implementation of mutation 
operators of such kind. 

In this paper we assume an MDSD process in 
which an executable application is created based on 
UML classes and hierarchical state machine models 
(Pilitowski and Derezinska, 2007). The final code 
project is built with all necessary library notions, so 
the target application can be run as any other general–
purpose application in a standard environment. The 
variety of semantics is realised by a “multiple library” 
approach, which has been selected after comparison 
of four different architectural approaches (Derezinska 
and Zaremba, 2018). 

This mutation testing approach has been 
implemented in FXU – a tool that supports code 
generation from UML classes and their behavioral 
state machines with the target to C# applications 
(FXU, 2019).  

The next Section is devoted to the background of 
the work. Semantic mutation operators of state 
machines are discussed in Section III. Section IV 
describes implementation of the approach in FXU. 
Section V informs about conducted experiments. 
Section VI summarises related work and Section VII 
concludes the paper. 

2 SEMANTIC MUTATION IN 
MDSD 

Considering mutation testing in an MDSD process, 
the following general mutation categories can be 
recognised, which refer to elements that are mutated: 

A) design or construction mutation, 

B) semantic mutation, 
C) semantic consequence-oriented mutation.  

The first category has been mostly used in mutation 
of source code and UML models, but is not a subject 
of this paper. 

2.1 Semantic Mutation 

Introduction of semantic mutation is associated with 
modification of realization of specific 
transformations rather than modification of 
transformation effects. In comparison to the A) 
category, semantic mutation does not modify a source 
form of a model or code. Semantic mutations rely on 
other interpretations of an intermediate form. 
Usually, transformation rules from a source to an 
intermediate form have to be modified. 

Semantic mutation can be applied to models, 
therefore transformation of a model to a source code 
or to another model notation results in another code-
model or another meaning-behavior in dependence on 
an applied mutation. Semantic mutations referring to 
UML state machines are important as there are many 
semantic variants consistent with the UML 
specification (UML, 2017). 

Semantic mutation can also be used for a program 
code. In the contrast to traditional mutation, in this 
case a source code is not modified but its 
interpretation is changed. For example, in different 
programming languages, a scope and precision of 
embedded types can be different (Clark, Dan and 
Hierons, 2013).  

2.2 Semantic Consequence-oriented 
Mutation 

This mutation category relates to realization of a 
specific meaning of a programming concept that was 
modelled. For example, a final system behavior could 
be determined by one of system realizations, which is 
consistent with a given semantics. However, behavior 
of this system can be nondeterministic. Different 
correct scenarios can follow realization of execution 
of models from orthogonal regions of a state machine. 
Execution order of operations in orthogonal regions 
is undefined by the specification. Consequently, 
many combinations of such operation execution can 
encounter. Therefore, semantic consequence-oriented 
mutation could imitate different behavioral 
combinations in a situation of this kind.  

This mutation category principally differs from 
the previous ones. In this case, a generated mutant 
corresponds to a correct system behavior, and should 
not be killed by a test suite. Application of tests with 
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such mutants is based on the integration of the 
mutated system with other parts. 

This kind of mutation was treated as an 
implementation-oriented mutation (Trakhtenbrot, 
2010) specified in the context of the Harel statecharts 
(Harel, 1987). However, the approach to realization 
of such mutations proposed in this paper is different 
to those from Trachtenbrot. 

3 SEMANTIC MUTATION 
OPERATORS FOR STATE 
MACHINE BEHAVIORS 

Different aspects of state machine behaviour have 
been considered. Therefore, we have distinguished 
several groups of semantic mutation operators: 
I. Event processing. 
II. Time management. 
III. State behavior in regions belonging to the same 

orthogonal complex state. 
IV. Processing of history pseudostate. 

It is assumed that all variants of the possible state 
machine behavior are consistent with the UML 
specification (UML, 2017). We discuss exemplary 
selected operators belonging to all above groups, and 
possible interpretation variants that might be 
associated with the operators. The selection of 
operators originates from the previous research 
(Derezinska and Pilitowski, 2009), (Derezinska and 
Szczykulski, 2012) and covers a wide range of 
possible topics and their interpretations, but of course 
is not exhaustive.  

3.1 Operators of Event Processing 

The semantics of UML requires processing of one 
event per time according to the rule of run-to-
completion step. Encountering of events is stored in a 
queue, so-called an event pool. A policy of the queue 
is undefined, hence various queue policies could be 
considered as interpretation variants. 

Moreover, there exists a possibility to defer an 
event. An event could be deferred, if no transition 
exists that could be traversed due to this event 
consumption and in the same time this event is 
denoted as deferred by at least one of states that 
belong to the current active configuration. The 
deferred event is kept in the event pool until it can 
trigger a transition, or a configuration is reached in 
which it is not deferred any more. Processing of 
deferred events requires deciding of some 

interpretation issues and resolving of conflicts about 
an order of deferred event evaluation.  

In result we have considered the five following 
mutation operators of event processing and their 
several interpretation variants: 

I.1. Selection of Queue Policy of Events: 
I.1.1) FIFO, 
I.1.2) FIFO, except completion and time events, 
I.1.3) priority queue – priorities are associated 
with the different types of events, 
I.1.4) priority queue – priorities are associated 
with different events, 
I.1.5) LIFO. 

I.2. Detection Policy for a Change Event: 
I.2.1) periodical checking of the expression value, 
I.2.2) checking of the expression value once 
during a completion step, 
I.2.3) immediate reaction to detection of change 
of the expression value (i.e. from False to True). 

I.3. Removal of a Change Event from an Event Pool: 
I.3.1) changing of the expression value to False 
causes removal of an event associated with this 
expression from the event pool, 
I.3.2) the expression is assessed during evaluation 
of the associated event. The event is removed if 
the expression is False. 
I.3.3) further changes in a value of the associated 
expression have no impact on the event 
processing.  

I.4. Interpretation of an Event Deferment: 
I.4.1) an event deferment is realized as a 
placement of the event again in the event pool (as 
if it has encountered again), 
I.4.2) an event deferment causes adding the event 
to a special pool of deferred events, which is 
global for the whole state machine, 
I.4.3) due to an event deferment the event is 
placed in a special pool of deferred events, which 
is defined locally for each state of the state 
machine. 

I.5. Processing of Events deferred by the Same State:  
options I.5.1) - I.5.4) are the same as in I.1. 

3.2 Operators of Time Management 

The UML specification does not assume any specific 
time delays between consecutive time events, or any 
predefined event processing time (neither a minimal 
time, nor a maximal one). Due to such universal 
foundation, different semantic variants could be 
applied to time processing in dependence to a selected 
application domain. We have identified the following 
operator and its three interpretation variants: 

II.1 Selection of Time Processing Policy in a State 
Machine: 
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II.1.1) processing of consecutive events one after 
another, 
II.1.2) processing based on a logical clock for time 
measurement, 

II.1.3) processing based on a chronometric clock 
for time measurement. 

3.3 Operators of Orthogonal States 

A complex orthogonal state consists of many regions. 
An event processing in such a state may cause 
execution of many transitions during a run-to-
completion step. Only one transition can be executed 
in a region. Transitions in the orthogonal regions are 
executed simultaneously, which could be differently 
interpreted. In realization of a transition we consider 
three actions: exiting a source state, transition 
execution, and entering a target state. These actions 
have been referred in the following three operators 
dealing with transitions in orthogonal regions: 

III.1. Execution Policy of Actions to exit from Source 
States which are executed Simultaneously: 

III.1.1) concurrent execution (physically true 
concurrent – e.g. using different cores, or different 
processors), 
III.1.2) parallel execution (e.g. might be realized 
by many threads on the same core), 
III.1.3) sequential execution (might be given an 
execution order). 

III.2. Execution Policy of Transitions to be Executed 
Simultaneously: 

options III.2.1- 2.3) are the same as in III.1. 

III.3. Execution Policy of Actions to enter Target 
States which are Executed Simultaneously: 

options III.3.1- 3.3) are the same as in III.1. 

The next operator deals with orthogonal states were 
not all initial states are directly defined, but no history 
pseudostate is used.  

III.4 Default Entering a Complex State including at 
least One Region without an Initial Pseudostate: 

III.4.1) the model is treated as ill-defined, 
III.4.2) the ambiguous regions are omitted, 
III.4.3) the ambiguous regions are counted as 
successfully executed, 
III.4.4) initial states are selected in the ambiguous 
regions. 

3.4 Operators of History Pseudostates 

In this operator group we consider application of 
history pseudostates, referring to both cases of a 
shallow and deep history. There are various situations 
that might be interpreted in different ways. One is 
calling of a nonexistent default history pseudostate. 

Another is entering a complex orthogonal state via 
history. Hence, there are two operators: 

IV.1. Selection of a History Pseudostate 
Interpretation: 

IV.1.1) a history pseudostate refers to all regions 
of the complex orthogonal state in which it is 
included,  
IV.1.2) a history pseudostate only refers to the 
region in which it is included, 
IV.1.3) a history pseudostate refers to the region 
in which it is included, and also to other regions 
of its orthogonal state to which no concurrent 
direct entry exists, 
IV.1.4) a history pseudostate is accepted to be 
valid only if there are concurrent direct entries to 
all other regions of the orthogonal state, in which 
it is included. Otherwise, the model is counted to 
be ill-modelled.  

IV.2. Default Entry to an Orthogonal State Via a 
History Pseudostate: 

IV.2.1) lack of a default history pseudostate 
results in a default entering a region(s), 
IV.2.2) regions that do not include default history 
pseudostates are considered to be executed. 

3.5 Operators for Semantic 
Consequence-Oriented Mutation of 
State Machines 

Some operators from the third category have also 
been considered. A mutant of the second category can 
be regarded as a pair: a final code and its semantics. 
In the case of the third category, a mutant could be 
specified by a 3-tuple: a code, a semantics, and a 
constraint of the semantics.  

Introduction of a mutation operator results here 
not in changing of a semantics, as in the second 
category, but in applying some limits to a selected 
semantics. Therefore, an operator is specified in 
relation to a chosen semantic variant. 

We have proposed the following mutation 
operators of this kind: 

V.1 Deterministic Order of Execution of Concurrent 
Entries into Orthogonal Regions (it refers to the 
III.1.1 semantic variant). 

V.2 Deterministic Order of Execution of Concurrent 
Transitions in Orthogonal Regions (it refers to the 
III.2.1 semantic variant). 

V.3 Deterministic Order of Execution of Concurrent 
Exits from Orthogonal Regions (it refers to the III.3.1 
semantic variant). 
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4 IMPLEMENTATION OF 
SEMANTIC MUTATION 
OPERATORS IN FXU 

The discussed approach has been incorporated into an 
MDSD process supported by the Framework for 
eXecutable UML (FXU, 2019). The FXU tool has 
been designed to transform UML models into 
executable code of a general purpose language 
(Pilitowski and Derezinska, 2007). It was focused on 
code generation for all notions of behavioral state 
machines, including complex states with orthogonal 
regions, different pseudostates, also with history 
pseudostate, etc. It was the first tool that supported 
the C# language as a transformation target, and it has 
still been treating state machines in the most 
comprehensive way within this technology domain. 
The framework was extended with different versions, 
e.g. considering time concepts from the OMG 
MARTE profile (Derezinska and Szczykulski, 2017). 

The framework includes two main parts: FXU 
Generator and FXU Run-Time Library. The 
Generator transforms UML classes and their 
behavioral state machines into the corresponding C# 
code. The Library contains implementation of all 
state machine concepts. After code transformation, a 
final application is built as a project including the 
generated code and the library. Consequently, it can 
be run independently in the .NET environment as any 
other general-purpose application. 

UML models are statically verified during model 
to code transformation (Pilitowski and Derezinska, 
2007). Furthermore, FXU runtime library supports 
dynamic verification completed during a program 
execution. Apart from this, the mutation operators are 
another means of model verification that have been 
incorporated into the framework. 

Four different architectural approaches to 
realization of semantic mutation have been examined 
(Derezinska and Zaremba, 2018). The basic 
complexity metrics were analyzed and compared. 
After this evaluation, a solution based on a 
“configurable library” was selected and implemented 
in FXU. In this case, semantics is expressed in a set 
of configurable rules that is combined with a target 
application. Each mutant refers to configurable 
semantic rules and the target application can be 
executed in accordance to its semantics. Moreover, 
two strategies, i.e. all-state machines and one selected 
state machine, that could be chosen by a user, were 
implemented.  

Realizations of all state machine details and 
semantic variants are encapsulated in the run-time 

library. Source code is generated from the class and 
state machine models. The model-to-code 
transformation is responsible only for correct 
construction of state machines from the components 
provided by the library. Compilation of the code is 
performed only once, regardless of the applied 
semantic mutation operators. 

Different semantic variants are driven by selected 
mutation operators providing, in result, appropriate 
semantic configurations. Based on these 
configurations, the desired library versions are used 
during the application run-time. The application can 
be executed for any semantic configuration and any 
test suit, if necessary. 

A reconfigured architecture of the FXU Library 
supports different approaches to state machine 
behavior, including semantic mutation operators and 
semantic consequence-oriented mutations. The 
refactored Run-Time Library consists of the 
following main components: 

StateMachineLogic – implements concepts 
from the state machine domain, 

Interfaces - includes interfaces for classes of 
the state machine elements used by generated code, 
and interfaces for internal communication, 

Infrastructure – implements an 
intermediate layer used by generated code, 

Marte - implements selected time concepts from 
the OMG MARTE profile. 

5 EXPERIMENTS 

The MDSD experiments have been conducted 
combined with mutation testing using semantic 
mutation. The subject of experiments was a case 
study that had been used in some previous research 
on model-driven development (Derezinska and 
Szczykulski, 2013). The case study concerned 
modelling of a presence server in a social network. It 
covered processing user statuses; in particular, user’s 
presence, location, communication possibilities, 
activities, etc.  

The presence server model consisted of three 
main layers dealing with communication with a 
client, controlling of presence statuses, and 
communication with other systems. Each layer was 
modelled by packages comprising its classes and 
additional subpackages. Behaviour of the classes was 
specified by their state machines. The whole model 
included about twenty classes and interfaces as well 
as about seventeen state machines.  

The model of presence server was processed by 
the FXU generator, i.e. class and state machine 
models were transformed into C# source code, and a 
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code project and appropriate semantic configuration 
files were created. The selected server functionality 
was implemented or simulated by refinement of 
appropriate methods. 

The aim of current experiments was not only 
evaluation of an MDSD process, but also verification 
of the final application. Different variants of the 
application and their behaviour could have been 
compared. The variants corresponded to different 
semantic variants of UML state machines. In result, 
behavioural correspondence of an application variant 
to an interpretation of a related model could have 
been examined. 

A set of unit tests for the application was 
developed and placed into a test project that belonged 
to the same VS solution. The test project included 
also a configuration file of a state machine semantics. 
Each test class was extended with a method 
initializing the FXU run-time environment.  

There were tests developed to check correctness 
of only one class and its behavior specified by its state 
machine. Other kinds of tests were devoted to 
verification of a whole subsystem, for example 
servicing of a data publishing request. A test started 
with an initialization of an object of the presence 
server. Next, a request for status publishing was 
created and delivered to the server via TCP. Then, it 
was verified whether an expected status was set in 
places of concern. 

In order to perform semantic mutation testing, 
configurations of semantic mutants were used. 
Configurations mutated semantics for the whole 
execution of a single test, if a test checked only one 
class and its state machine. If a test referred to a whole 
subsystem, two types of mutants were configured, 
namely: 
1) All state machines of the involved classes 

behaved according to the same semantic variant 
within the same test run. 

2) Different state machines of the involved classes 
used various semantic variants within the same 
test run. 

The mutated applications were run against all test 
cases. The mutation testing process was supported by 
an add-in to VS that managed execution of mutants 
with tests. 

The created tests have finished with correct results 
in the created environment. We have not observed 
any discrepancies between requirements expressed in 
the input models and behaviour of the final 
applications, assuming given semantic variants. 
However, it should be noted, that this model was 
formerly evaluated with its basic semantics and 
thoughtfully verified (Derezinska and Szczykulski, 

2013). The main goal of the experiment was to verify 
the semantic mutation testing process combined with 
MDSD and the tool support, and not to find model 
errors or semantic flaws in the case study. 

6 RELATED WORK 

There are different areas of research that have 
contributed to the presented work: model-to-code 
transformation (in particular from state machines), 
variation points in behaviour of state machines, and 
processes of mutation testing. 

6.1 Code Generation from State 
Machines 

A straightforward transformation from UML models 
to code is based on class models. However, while 
dealing with behavioral specification, a 
transformation can be extended with state machine 
models. There are many approaches to reproduce 
these models in a code, such as replicating states by 
attributes, using state design patterns, and others 
(Dominguez et al., 2012), (Sunitha and Samuel, 
2016), (Samek, 2002), (Badreddin et al., 2014), 
(Pilitowski and Derezinska, 2007). A special 
attention has been devoted to transformation of 
advanced modelling features of state machines, 
including composite states (Sunitha and Samuel, 
2016), (Badreddin et al., 2014), or states with history 
pseudostates (Derezinska and Pilitowski, 2009). 

Contemporarily, several tools support code 
generation from UML state machines (IBM RSA, 
2018). They usually respect only a subset of state 
machine concepts, while more advanced notions, 
such as complex states, in particular orthogonal 
regions in states, deep and shallow history 
pseudostates, deferred events, entry/do/exit actions or 
internal transitions might be omitted (Samek, 2002).  

There are some solutions that apply more 
comprehensive set of state machine concepts, as IBM 
Raphsody (IBM RRD, 2018), Umple (Badreddin et 
al., 2014), FXU (FXU, 2019), although most of them 
do not support the C# language. 

In this paper we discuss an approach based on the 
full UML state machine specification. The target is an 
application built in a general-purpose programming 
language. Concerning implementation issues we used 
C# and Visual Studio environment. 
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6.2 Interpretation Issues of State 
Machines 

Models of UML state machines have been originated 
from the concepts proposed by Harel (1987). The 
official UML specification (UML, 2017) has always 
been imprecise, and included some unspecified 
places, previously called semantic variation points 
(Beeck, 1994). All in all, they should be resolved in 
different ways when a model has to be interpreted or 
a model-based application has to be built and 
executed. 

There are various ways to handle these problems. 
In (Chauvel and Jezequel, 2005) authors stipulate 
different variants to be decided by a user. Selected 
decisions, about event handling and queuing policies, 
can be also taken by a user in the Umple tool 
(Badreddin et al., 2014). Another generic approach to 
creation of a code generator parametrized with 
semantic variants has been discussed in (Prout et al., 
2012). However, in most of implemented solutions, 
there are different resolutions of behavioral 
interpretation problems, but often without precise 
statements about selections taken.  

During development of the FXU tool, different 
problems of state machine interpretation have been 
faced and decided (Derezinska and Pilitowski, 2009), 
(Derezinska and Szczykulski, 2012). Moreover, it 
could be possible to incorporate different variants of 
state machine behaviour into solutions offered to a 
user, and they could be treated as possible 
modifications in mutation testing. 

6.3 Mutation Testing 

Mutation testing approach has been employed to 
applications written in different programming 
languages (Jia and Harman, 2011), also including C# 
(Derezinska and Szustek, 2012), (Derezinska and 
Trzpil, 2015). This methodology was also used to 
mutate UML models (Belli et al., 2016). 

Some research was also devoted to mutation of 
automata-based models. Many of these works were 
dealing with syntactical changes of diagrams 
(Trakhtenbrot, 2007).  

Behavioral models, mainly state machines, have 
been also studied as an object of semantic mutation 
(Clark et al., 2013), in some variants called also an 
implementation mutation (Trakhtenbrot, 2007), 
(Trakhtenbrot, 2010). In this kind of mutation there 
are no changes introduced into a model graph 
structure, but different semantic interpretations are 
considered (Trakhtenbrot, 2017), (Bartolini, 2017). 

7 CONCLUSIONS 

Different operators to semantic mutation of state 
machines have been introduced. The operators and 
their selected possible interpretations have been 
implemented in the FXU, the framework that 
supports building C# applications from class and state 
machine models. The semantic mutations were 
applied in mutation testing experiments. Their 
behaviour was consisted with the expectations.  

There are many possibilities of the future 
enhancement of the approach. Basing on the mutation 
facility developed in the framework, other mutation 
operators corresponding to different behavioral 
variants of state machines can be added. These 
variants could deal with other interpretations of UML 
state machines, or solutions consistent with other 
semantics than derived from the UML specification. 

Moreover, structural mutations of state machine 
models could also be incorporated into the 
framework. Such mutations deal with other flaws of 
models than the ones covered in this paper. 

While using the current FXU add-in for the Visual 
Studio, unit tests can be automatically executed for 
any number of mutants. However, defining of tests 
and their configuration requires a manual work, 
which could be automated.  

Finally, the concerned applications were 
developed in the C# language. The model-driven 
development of a program could be combined with 
the mutation testing performed at the source code 
level with standard and object-oriented operators of 
C# (Derezinska and Szustek, 2012) or with operators 
applied at the intermediate code (CIL - Common 
Intermediate Language of .NET) (Derezinska and 
Trzpil, 2015). 
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