
Modelling Co-occurring Changes in a BPEL Process with Petri Nets

Parimala N.
Department of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India

Keywords: SOA, Service, Petri Net, Co-occurring Changes.

Abstract: Changes to a BPEL process can occur due to changes in its requirements. In this paper, we are considered
with more than one change which must be made simultaneously. Such changes are referred to as co-occurring
changes. Petri nets are used to express the changes because of their applicability to reflect changes to the
system as an evolution of the Petri net model. Each change is expressed as a rewrite rule. The rewrite rules
are analysed to determine the order in which they have to be applied. The rules may have to be executed in
parallel or in a particular order. A change model, L-Change is defined which enforces that either both changes
take place or none.

1 INTRODUCTION

The creation of services and the manner in which
services are used or interact with each other is
specified by Service Oriented Architecture (SOA)
(Erl, 2005). The specification or the interface of a
service is separated from its implementation (Zhang,
2006) (Laskey and Laskey, 2009). When an
application is large and complex, a single service is
not very useful. Instead, many services are assembled
together into a composite service in order to realize
the complex computation (Erl, 2005) (Newcomer and
Lomow, 2005). Composition is traditionally
accomplished either as an orchestration or a
choreography. In orchestration, there is a single
process which realizes the application. However, the
business process uses the functionalities of other
services in order to achieve the complex
functionality. Web Service Business Process
Execution Language (WS-BPEL) is the de facto
language to express business processes which are
based on web services (Barreto et al., 2007). A
composite service expressed using WS-BPEL is also
known as a WS-BPEL process. On the other hand, in
choreography, web services interact with each other
to realize a complex application. There is no central
process which implements the invocation of web
services. Instead, all the web services are in a peer-to-
peer relationship. They interact with each other to
achieve a common business goal. Choreography can
be specified using Web service Choreography

Description Language (WS-CDL) (Ross-Talbot and
Fletcher, 2006).

Services undergo changes. Normally, this is either
due to changes in the business process itself or
because partner services have undergone a change. In
this paper, we are concerned with changes in the
business process itself. These changes come about
due to changes in the business policies. The
modification to the process itself may be a single
change or it could be a couple of changes. Consider
an example of a business process which captures
granting leave to an employee. There could be a
change in the business policy wherein the policy
‘leave can be granted anytime’ has now changed to
‘leave can be granted if the employee has not availed
of leave in the last week’. Such a change is termed as
a ‘single change’. There can be more than one change
to a business process. These changes can be
independent changes. For example, the policy ‘an
employee can take 5 days of leave at a time’ is
changed to ‘an employee can take 10 days of leave at
a time’ is independent of the previous policy. We are
concerned with policies which are not independent.
In particular, the changes to the business process
dictated by the policies must co-occur. Consider an
example of a hospital where patients seek an
appointment to see a doctor. Let the original policies
be that ‘a doctor sees a patient normally for 20
minutes’ and ‘the appointment slot for a patient is 20
minutes’. Let us say that there is a change in the
hospital policies. ‘A doctor sees a patient for 15
minutes’ and ‘the appointment slot for a patient is 15

410
N., P.
Modelling Co-occurring Changes in a BPEL Process with Petri Nets.
DOI: 10.5220/0007741804100416
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 410-416
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

minutes’. Both the changes must co-occur for a
consistent system. In this paper, we are concerned
with these co-occurring changes.

Petri nets (Petri, 1962) have been applied in many
different contexts (Murata, 1989). Many concurrent
and discrete event distributed systems have been
modelled using Petri nets (Gracanin et al., 1993)
(Dam and Ghose, 2015) (Kristensen et al., 1998)
(Iordache and Moldoveanu, 2014). Petri nets have
also been used to express work flow of a process (Van
der Aalst, 1998) (Adam et al., 1998) (Gou et al., 2000)
(Hamadi and Benatallah, 2003). Using Petri nets it is
possible to verify and check the composition of
processes, the soundness and other properties (Aalst,
1997) (Hinz et al., 2005). More specifically, in this
paper, we model the changes using reconfigurable
Petri nets. We adopt the model for reconfigurable nets
as a system of rewriting rules as given in (Llorens and
Oliver, 2004). Here, the system configuration is
defined as a Petri net and a change in configuration is
described as a graph rewriting rule.

We adopt Petri nets to model changes because of
their applicability to reflect changes to the system as
an evolution of the Petri net model. Reconfigurable
Petri nets modify the structure of the net by replacing
one subnet with another. The replacement is defined
by a rewriting rule which replaces places, transitions
and tokens of a subnet with those of the other
replacing subnet. The co-occurring changes are
expressed as two rewriting rules and both the rules are
enforced. That is, the new configuration is arrived at
by applying graph modification for both the rules.
While doing so, we examine whether the rules can be
applied in any order, or have to be sequential or have
to be executed in parallel. A change model, L-
Change, is defined wherein the co-occurring changes
are expressed.

The rest of the paper is organized as follows.
Section 2 puts the work in context by comparing it
with related work. Section 3 explains the example
which is used in this paper. Section 4 explains the
manner in which co-occurring changes can be
expressed as rewriting rules of a reconfigurable Petri
net. The change model is given in Section 5. An
examples is considered in section 6. Section 7 is the
concluding section.

2 RELATED WORK

In service oriented computing, a composite service
invokes other web services in order to fulfill a task.
There exists dependencies between the provider
services and the receiver service wherein the provider

services are a part of the composition. Whenever the
business process changes, invoked services may have
to change. Similarly, when the service provider
makes a change, it may impact the business process
(Wang et al., 2012). In (Novotny et al., 2013), the
dependency between a service which invokes another
service to avail of its functionality is termed as Inter-
dependency between services. The interdependency
give rise to co-changes, wherein more than one
service undergoes changes simultaneously. Mining
Software Repositories log the different versions of the
services. These versions are studied to identify the
services which changed at the same time and infer, if
there is dependency between them. Mining
techniques have been used to study co-change
dependency between services (Zimmermann et al.,
2005) (Dam and Ghose, 2015) (Li et al., 2013).

When changes takes place across different
services, then consistency has to be maintained.
When changes take place and the system of services
is inconsistent, then, additional changes have to be
made to bring the system of services to a consistent
state. Change propagation deals with identifying the
additional changes that are needed after the primary
or main changes are made (Dam and Ghose, 2015).
The emphasis is on studying the impact of changes.
One of its main objectives is consistency preservation
across services. In (Zhang et al., 2014), dependencies
between activities are defined at the requirements
level. When the changes are propagated for
consistency, the propagation is analyzed by
classifying the propagated changes further as direct
and indirect propagation.

The work proposed in this paper differs from
earlier work in two ways:

a) Co-occurring changes defined here is
concerned with more than one change in a
single process whereas co-change deals with
the interdependency between services.

b) The proposed change model permits none or
both the changes to be effected so that
consistency is maintained whereas change
propagation deals with additional changes
that have to be made to maintain a consistent
system.

3 A HOSPITAL EXAMPLE

To illustrate this work, an application from a Hospital
out-patient department is considered. The application
deals with appointments with a doctor. Let us assume
that a patient has to take an appointment before
consulting a doctor. The goal of the Doctor

Modelling Co-occurring Changes in a BPEL Process with Petri Nets

411

Appointment System (DAS) is to provide the desired
appointment with a doctor. While doing so, DAS has
to ensure that rules of the hospital regarding
appointments are enforced. The patient has to take an
appointment, pay the consultation fees and then see
the doctor. The following steps are performed for an
appointment:

1. Receive request from user

2. Check the Doctor availability.

3. Allot a slot

4. Take payment

5. Generate appointment slip.

The process of seeking an appointment is
expressed as a composite process using orchestration.
The process is shown in Figure 1.

Figure 1: Doctor Appointment System (DAS).

A BPEL process models the workflow of a
process but at an abstract level. We represent a BPEL
process as a Petri net (Verbeek and van der Aalst,
2005). We model each service of DAS as a place and
the invocation of member services is represented by a
Petri net transition. The Petri net corresponding to
Figure 1 is given in Figure 2. In this work flow, when
a new user arrives, a marking is placed in state S1. The
system loads the user information at transition T1. The
token moves to S2. Transition T2 is now fired which
finds the availability of the doctor. If the doctor is
available, a slot is allotted. The token moves to S5.
The transition T4 is fired and the payment is accepted.
The appointment slip is generated by T5.

4 REWRITING RULES

In this paper, we are concerned with co-occurring
changes. Co-occurring changes are defined first
followed by the manner in which they are modelled.

Co-occurring Changes: Two changes are said to be
co-occurring if the changes are to occur
simultaneously.

When both the changes are made, the system is
consistent. If only one of the changes is made, then
the system is inconsistent.

Figure 2: Petri net of DAS.

To put the work in context, an example of co-
occurring changes is considered first. In DAS, the
services, though independent, do implement certain
policies of the Hospital. Let us say that the current
policy of the Hospital is that doctors are available for
1 hour daily and the appointment slots are of 20
minutes duration.

The policy is available in state S3 and
implemented in transition T2. Let us assume that the
policy of the hospital undergoes a change. The
doctors are now available for 45 minutes and the
appointment slots are for 15 minutes. This change has
to take place with immediate effect. There are two
implications of this change:

a) the schedule of the doctors will change.

b) the patients will get slots of 15 minutes.

Patient Info
Service (PIS)

Payment
Service

receive app_request

Load Patient Info

Process Doctor Availability

Take Payment

Generate Slip

Doctor
Service (DS)

request

Payment slip

request

reply

request

reply

request

reply

Allot a slot

S1
S2

S3

S5

S6

S7

T1

Load Info

T2

Process doc.
availability

T4

Take
Payment

T5

Generate
slip

New User

Info loaded Doc schedule
info

Ready for
payment

Payment
received

Exit

S4

T3

Allot a slot

Doctor info

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

412

Let us first highlight the problems if the change is
made in only one place. Consider first the situation
where the change is made only in T2. The patients will
continue to get appointment for 20 minutes whereas
the doctor is available for 15 minutes. Similar
situation arises if the change is made only in T3. The
changes are co-occurring changes to the DAS
process. The changes have to be made
simultaneously.

4.1 Re-configurable Petri Nets

Reconfigurable Petri nets are an extension of Petri
nets. The structure modifying rules replace one
subnet by another subnet (Llorens, 2004). The net
rewriting rules specify the places and the transitions
that are to be rewritten. This, in turn, modifies the
flow of tokens in the net. The net is reconfigured
according to the rule and is not dependent on the
context in which the rewriting takes place.

A net rewriting system was proposed in (Badouel
et al., 2003). It is defined as follows.

“A net rewriting system is a structure N = (R, Γ0,
M0) where R = {r1, . . . , rh} is a finite set of rewriting
rules, Γ0 = (P0, T0, F0) is a Petri net and M0 : P0 →
N is a marking associated with Γ0.

A rewriting rule r ∈ R is a structure r = (L, R, τ,
•τ, τ•) where:

1) L = (PL, TL, FL) and R = (PR, TR, FR) are Petri
nets called the left-hand side and the right-hand side
of r, respectively;

2) τ ⊆ (PL ×PR)∪(TL ×TR), called the “transfer
relation” of r, is a binary relation relating places of L
to places of R and transitions of L to transitions of R
(PLτ ⊆ PR, τPR ⊆ PL, TLτ ⊆ TR, τTR ⊆ TL) and

3) •τ ⊆τ , and τ• ⊆τ are sub-relations of the transfer
relation called the input interface relation and the
output interface relation, respectively.”

4.2 Types of Changes

The rewriting rule, as stated above, may introduce
places, transitions or both in the right-hand Petri net
and then show the relationship between left-hand
Petri net and right-hand Petri net. It is also possible
that existing states/places of the left-hand Petri net are
dropped in the right-hand Petri net. The
additions/deletions of places/transitions can occur in
both the rules which represent co-occurring changes.

It is relevant to ask the question whether the
rewriting rules can be executed in any order. Consider
the two rewriting rules

 Alter Availability

 Alter Appointment

These may have to be executed in parallel. In
some other case they may have to be executed
sequentially. We examine the rewrite rules more
closely below. Towards this, we define the following
properties of the rewriting rules for r1 and r2.

4.2.1 Disjoint Rules

Let the original Petri net be Γ0 = (P0, T0, F0).
Consider two rewriting rules r1 and r2. Let r1 = (L1,
R1, τ1, •τ1, τ1•) and r2= (L2, R2, τ2, •τ2, τ2•). Two
rewriting rules r1 and r2 are disjoint if the transfer
relations τ1 and τ2 have nothing in common. That is,
τ1 ⊆ (PL1×PR1)∪(TL1×TR1) and τ2 ⊆ (PL2
×PR2)∪(TL2 ×TR2) do not have common places or
transitions. In other words,
PL1 ⋂	 PL2 = Φ , TL1 ⋂	 TL2 = Φ, PR1 ⋂	 PR2 = Φ
, TR1 ⋂	 TR2 = Φ

In this case, r1 and r2 are rewriting different parts
of the Petri net Γ0. In this case, the rules can be
executed in any order.

4.2.2 Non-Disjoint Rules

Two rewriting rules r1 and r2 are non-disjoint if the
transfer relations τ1 and τ2 have something in
common. The common part can be a place or a
transition. Consider, first, the places. If places are
added, then it stands to reason that transitions are
always added. Similarly, if places are deleted then
transitions emanating from these places will also be
deleted.

The non-disjoint rules are analyzed in terms of
whether the common place appears in the left-hand
side or the right-hand side in each of the transfer
relations. Consider the transfer relations τ1 and τ2 of
two rules r1 and r2.

 { ({p1, p4}), ({p2}) }⊆ τ1 and { ({p1}), (
{p3}) }⊆ τ2

Here, the place p1 appears in the transfer relations
of both the rules. If r1 is executed first, then, in the
resulting Petri net Γ1 = (P1, T1, F1) the place p1 will
not exist and therefore, rewrite rule r2 cannot be
executed. Similar is the case if r2 is executed before
r1. Thus, the rules r1 and r2 have to be executed in
parallel.

Modelling Co-occurring Changes in a BPEL Process with Petri Nets

413

The different cases are analysed. The details are
not included for the sake of brevity. The non-disjoint
rules for changes in places fall into four categories.

a) Rules r1 and r2 are to be executed in parallel

b) Rules r1 and r2 are to be executed in the order
r1 r2

c) Rules r1 and r2 are to be executed in the order
r2 r1

d) Rules r1 and r2 can be executed in any order

These are referred to Type 1, Type 2, Type3 and
Type 4 changes respectively.

Consider, now, the case when only transitions are
added/deleted from the existing Petri net. The transfer
relations are analysed in terms of whether the
common transition appears in the left-hand side or the
right-hand side in each of the transfer relations.
Consider the transfer relations τ1 and τ2 of two rules
r1 and r2.

 { ({t1}), ({t2}) } ⊆ τ1 and { ({t3}), ({t1})
} ⊆ τ2

Here, the transition, t1 is replaced in τ1 and re-
introduced in τ2. These rules have to be executed
sequentially. Specifically, r1 has to be executed first
followed by r2. If the order is reversed, then the
common transition ({t1} in the example above) will
not exist in the resultant Petri net.

The different cases are analysed. The details are
not included for the sake of brevity. As in the case of
places, the non-disjoint rules for changes in
transitions also fall into four categories.

a) Rules r1 and r2 are to be executed in parallel

b) Rules r1 and r2 are to be executed in the order
r1 r2

c) Rules r1 and r2 are to be executed in the order
r2 r1

d) Rules r1 and r2 can be executed in any order

These are referred to as Type 5, Type 6, Type 7
and Type 8 changes respectively.

5 MODELLING CO-OCCURRING
CHANGES

The changes that can occur in a system as explained
in section 4 is given in Table 1.

We define the change model by introducing L-
Change which is defined as follows:

Definition: L-Change is a Petri net {W,R, S, i, o }
where

- W is a finite set of places representing the
states of a composite service

- R is a fine set of transitions representing co-
occurring changes for a composite service

- S ⊆ (W × R) U (R × W) is a set of directed
arcs representing pre-condition and a post-
condition for a change

- i is the input place or the starting place

- o is the output place or the ending place

Table 1: Co-occurring changes.

change Order

D r1 r2 or r2 r1

Type 1 r1 || r2

Type 2 r1 r2
Type 3 r2 r1

Type 4 r1 r2 or r2 r1

Type 5 r1 || r2

Type 6 r1 r2

Type 7 r2 r1

Type 8 r1 r2 or r2 r1

Figure 3 models co-occurring changes of a
composite service. It consists of ten places and nine
transitions. The initial place is CS. This is the initial
state of the composite service before any change takes
place. It consists of nine tokens. The tokens correspond
to the nine different types of changes that can take
place. When a change occurs, the corresponding
transition is fired. For example, when disjoint changes
occur then the corresponding transition is fired and the
token moves from CS to CSD.

Figure 3: L-Change.

CS

Type 7

Type 5

Type 4

Type 3

Type 6

Type 2

D

Type 1

Type 8

CSt
8

CSt
7

CSt
6

CSt
5

CSs
4

CSs
3

CSs
2

CSs
1

CSD

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

414

5.1 Modelling Re-writing Rules

Once a token moves to one of the nine places other
than CS, then the rewriting rules corresponding to that
place have to be executed. The order in which the
rewriting rules are to be executed can, again, be
expressed as Petri-nets. Consider Type 1 change.
Figure 4 represents the Type 1 rule for change in
states. CSs

1is the starting state of the Type 1 rule. If a
token is placed here, then it implies that a change of
the form described in Type 1 rule is triggered. The
Petri net shows that the rules r1 and r2 have to be
executed in parallel. When both the rules are
executed, the token moves to CS’ which is the new
composite service. For a consistent system, the token
must be either at the starting or at the ending place,
that is, either at CS or CS’.

Similarly, Petri nets for all the nine types of
changes are defined. They are not explicitly included
for the sake of brevity.

Figure 4: Disjoint rule.

6 CASE STUDY

Consider the example given in section 3. Here, the
original policies were that ‘a doctor sees a patient for
20 minutes’ and ‘the appointment slot for a patient is
20 minutes’. Let us say that there is a change in the
hospital policies. ‘A doctor sees a patient for 15
minutes’ and ‘the appointment slot for a patient is 15
minutes’. Both the changes must co-occur for a
consistent system.

The rewriting rules are

τ1 = {({S2, S3}, {S2, S3}), ({T2}, {T2’}), ({S4},
{S4’})}
The input interface relation is {({S2, S3}, {S2, S3})},
and the output interface relation is {({S4},{S4’})}

τ2 = {({S4}, {S4’}), ({T3}, {T3’}), ({S5}, {S5’})}
The input interface relation is {({S4}, {S4’}}, and the
output interface relation is {({S5},{S5’})}

Here, the rules have to be executed in parallel. The
modified Petri net is given in Figure.5.

Figure 5: Changes in Appointment Slots.

7 CONCLUSION

In this paper we have considered the issue of
enforcement of co-occurring changes. Co-occurring
changes are those which must both be effected or
none of them. To enforce this, recourse was taken to
express the changes as rewriting rules of
reconfigurable Petri net. The enforcement of co-
occurring changes was expressed as a change model,
L-change. The model was a Petri net model.

The types of changes were studied to examine
whether the two rewriting rules can be executed in
any order. The changes were classified according to
the order in which the rewriting rules are to be
executed. The order was, again, expressed as Petri
net.

The changes are to be effected in a BPEL process.
In this paper, the changes were expressed as net
rewriting rules. We are working on generating a
BPEL process from the Petri net so that the changes
can be shown to have been made to the BPEL process
itself.

r1

r2

CS’CSs
1

S1
S2 S3

S5

S6

S7

T1

Load Info

T2’
Process
availability

T4

Take
Payment

T5

Generate
slip

New User

Info loaded Doc schedule
info

Ready for
payment

Ready
invoice

Exit

S4’

T3’
Allot
choice

Doctor
available

Modelling Co-occurring Changes in a BPEL Process with Petri Nets

415

ACKNOWLEDGEMENTS

This work was supported by Jawaharlal Nehru
University, New Delhi under University with
Potential for Excellence grant, UPE II, Project Id 114.
I would also like to thank Mr. Sumit Sharma for
suggesting the example.

REFERENCES

Van der Aalst, W. M., 1997, June. Verification of workflow
nets. In International Conference on Application and
Theory of Petri Nets (pp. 407-426). Springer, Berlin,
Heidelberg.

Van der Aalst, W. M., 1998. The application of Petri nets
to workflow management. Journal of circuits, systems,
and computers, 8(01), pp.21-66.

Adam, N. R., Atluri, V. and Huang, W.K., 1998. Modeling
and analysis of workflows using Petri nets. Journal of
Intelligent Information Systems, 10(2), pp.131-158.

Badouel, E., Llorens, M. and Oliver, J., 2003, June.
Modeling Concurrent Systems: Reconfigurable Nets. In
PDPTA (pp. 1568-1574).

Barreto, C., Bullard, V., Erl, T., Evdemon, J., Jordan, D.,
Kand, K., Knig, D., Moser, S., Stout, R., Ten-Hove, R.
and Trickovic, I., 2007. Web services business process
execution language version 2.0. Specification, OASIS.

Dam, H. K. and Ghose, A., 2015. Mining version histories
for change impact analysis in business process model
repositories. Computers in Industry, 67, pp.72-85.

Erl, T., 2005. Service-oriented architecture: concepts,
technology, and design. Pearson Education India.

Gou, H., Huang, B., Liu, W., Ren, S. and Li, Y., 2000. Petri-
net-based business process modeling for virtual
enterprises. In Smc 2000 conference proceedings. 2000
IEEE international conference on systems, man and
cybernetics.'cybernetics evolving to systems, humans,
organizations, and their complex interactions'(cat. no.
0 (Vol. 5, pp. 3183-3188). IEEE.

Gracanin, D., Srinivasan, P. and Valavanis, K., 1993, May.
Fundamentals of parameterized petri nets. In [1993]
Proceedings IEEE International Conference on
Robotics and Automation (pp. 584-591). IEEE.

Hamadi, R. and Benatallah, B., 2003, January. A Petri net-
based model for web service composition. In
Proceedings of the 14th Australasian database
conference-Volume 17 (pp. 191-200). Australian
Computer Society, Inc..

Hinz, S., Schmidt, K. and Stahl, C., 2005, September.
Transforming BPEL to Petri nets. In International
conference on business process management (pp. 220-
235). Springer, Berlin, Heidelberg.

Iordache, R. and Moldoveanu, F., 2014. QoS-aware web
service semantic selection based on preferences.
Procedia Engineering, 69, pp.1152-1161.

Kristensen, L. M., Christensen, S. and Jensen, K., 1998.
The practitioner’s guide to coloured Petri nets.

International Journal on Software Tools for
Technology Transfer (STTT), 2(2), pp.98-132.

Laskey, K. B. and Laskey, K., 2009. Service oriented
architecture. Wiley Interdisciplinary Reviews:
Computational Statistics, 1(1), pp.101-105.

Li, B., Sun, X., Leung, H. and Zhang, S., 2013. A survey of
code�based change impact analysis techniques.
Software Testing, Verification and Reliability, 23(8),
pp.613-646.

Llorens, M. and Oliver, J., 2004. Structural and dynamic
changes in concurrent systems: reconfigurable Petri
nets. IEEE Transactions on Computers, 53(9), pp.1147-
1158.

Murata, T., 1989. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4), pp.541-
580.

Newcomer, E. and Lomow, G., 2005. Understanding SOA
with Web services. Addison-Wesley.

Novotny, P., Wolf, A. L. and Ko, B. J., 2013, May.
Discovering service dependencies in mobile ad hoc
networks. In 2013 IFIP/IEEE International Symposium
on Integrated Network Management (IM 2013) (pp.
527-533). IEEE.

Petri, C. A., 1962. Kommunikation mit automaten schriften
des rheinisch. Westfalischen Bonn. Translation by CF
Green, Applied Data Research Inc., Suppl, 1., Bonn:
Inst. fur Intrumentelle Mathematik and der Universitat.

Ross-Talbot, S. and Fletcher, T., 2006. Web services
choreography description language: Primer. World
Wide Web Consortium, Working Draft.

Van der Aalst, W.M., 1998. The application of Petri nets to
workflow management. Journal of circuits, systems,
and computers, 8(01), pp.21-66.

Verbeek, H. M. and van der Aalst, W.M., 2005, June.
Analyzing BPEL processes using Petri nets. In
Proceedings of the Second International Workshop on
Applications of Petri Nets to Coordination, Workflow
and Business Process Management (pp. 59-78).

Wang, Y., Yang, J., Zhao, W. and Su, J., 2012. Change
impact analysis in service-based business processes.
Service Oriented Computing and Applications, 6(2),
pp.131-149.

Zhang, H., Li, J., Zhu, L., Jeffery, R., Liu, Y., Wang, Q. and
Li, M., 2014. Investigating dependencies in software
requirements for change propagation analysis.
Information and Software Technology, 56(1), pp.40-53.

Zhang, L. J., 2006, September. SOA and Web services. In
2006 IEEE International Conference on Services
Computing (SCC'06) (pp. xxxvi-xxxvi). IEEE.

Zimmermann, T., Zeller, A., Weissgerber, P. and Diehl, S.,
2005. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31(6), pp.429-445.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

416

