Towards Understanding Industry’s Perspectives on the Software Quality

Keywords:

Abstract:

Characteristics: A Survey

Mert Ozkaya and Nurdan Canbaz
Department of Computer Engineering, Yeditepe University, Istanbul, Turkey

Software Quality, Survey, ISO SQuaRE Quality Standard, Software Modeling Languages, Analysis Tools.

The ISO SQuaRE software quality standard categorises software quality into eight different characteristics:
functional suitability, performance efficiency, compatibility, usability, reliability, security, maintainability and
portability. Each quality characteristic is further considered in terms of a cohesive set of sub-characteristics.
In this paper, a survey has been conducted with the goal of understanding which software quality character-
istics are popular in industries and any modeling languages and tools used for analysing the software quality.
The survey has been performed with 16 experienced practitioners, who work for a Turkish software com-
pany and have been requested to answer a pre-determined set of questions. The survey results lead to many
interesting outcomes, some of which are as follows: (i) maintainability and performance efficiency are the
top-popular characteristics, while portability is the least, (ii) time behaviour is the top-considered performance
sub-characteristic, (iii) interoperability is the top-considered compatibility sub-characteristic, (iv) learnability
and appropriateness recognisability are the top-considered usability sub-characteristics, (v) availability is the
top-considered reliability sub-characteristic, (vi) confidentiality and integrity are the top-considered security
sub-characteristics, (vii) modularity and reusability are the top-considered maintainability sub-characteristics,
(viii) none of the participants use any modeling languages for analysing the software quality early on, and (ix)

the participants use COTS tools for analysing the software implementation.

1 INTRODUCTION

Today, software systems have penetrated in almost all
areas of human life and been actively used in various
industries such as automative (Haghighatkhah et al.,
2017), avionics (Marques and Cunha, 2013), military
and defense (Ciflikli et al., 2012), telecommunica-
tions (Nitze and Schmietendorf, 2015), finance (Saji¢
et al., 2017), healthcare (Richardson et al., 2016), etc.
Given also the ever-increasing advancements of tech-
nology and the customer demands, the expectations
from software systems have been increasing rapidly.
This essentially raised the issue of software quality,
which is concerned with how well the software sys-
tem meets its requirements. While many attempts
have been made on explaining how the software qual-
ity should be understood (Kan, 2014; Kitchenham
and Pfleeger, 1996; Tian, 2005; Cavano and McCall,
1978), one can basically consider it as the software
system’s compliance with the user requirements that
can either be functional or non-functional. In the
mid eighties, Garvin (Garvin, 1984) proposed a semi-
nal approach that categorises the software quality into
different views, which are transcendental, user, manu-

Ozkaya, M. and Canbaz, N.

Towards Understanding Industry’s Perspectives on the Software Quality Characteristics: A Survey.

DOI: 10.5220/0007742004170426

facturing, product, and value-based. The transcenden-
tal view considers the software quality in terms of its
elegance and promotes the idea that one cannot mea-
sure the software quality but simply try their best to
maximise the level of elegance. The user view is con-
cerned with the user expectations and ensuring that
the software system meets all the user requirements.
The manufacturing view is concerned with the pro-
cess followed in developing and deploying the soft-
ware system and ensuring that the software system
is developed right that conforms to the requirements
and specifications of the system and thus any poten-
tial software faults are minimised. The product view
is concerned with the internal and external qualities
of a software system and how internal quality impacts
on the external quality. The value-based view is con-
cerned with the considerations of the software quality
from multiple views discussed above and their consis-
tencies with each other.

As indicated in (Ozkaya, 2018), many software
modeling languages have been proposed for the mod-
eling of software systems and their analysis for some
quality properties. So, the quality issues may be de-
tected early in the design phase before implement-

417

In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 417-426

ISBN: 978-989-758-375-9

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

ing the systems. While some languages support the
exhaustive model checking or theorem proving tech-
niques for proving the correctness software systems,
some languages are supported with the analysis tools
that analyse the software models for an quality prop-
erties of interest. AADL (Feiler et al., 2006) is, for
instance, one of the most well-known software mod-
eling languages for the embedded systems domain.
AADL is supported by various analysis tools that al-
low for the analysis of the embedded software models
for many properties, including latency, schedulability,
timing, and resource utilisation. AADL’s tools also
generate C code from the embedded software mod-
els. Java Modeling Language (Chalin et al., 2005) is
another highly popular software modeling language,
which is tailored to Java and allows for combining
the software modeling with implementation. Indeed,
Java methods can be annotated with contract specifi-
cations and, using the exhaustive verifier tools avail-
able, the Java programs can be proved for the con-
tractual specifications. Another well-known tool is
UPPAAL (Larsen et al., 1997), which supports the
modeling, simulation and analysis of the real-time
systems. Using UPPAAL, one can specify their real-
time systems model visually using timed automata,
simulate its behaviour, and perform exhaustive model
checking for any safety and liveness properties.

While software quality is one of the most crucial
topics in software engineering and many languages
(or tools) have been existing for promoting the qual-
ity software systems, it is not yet clearly known how
practitioners in industries approach towards the soft-
ware quality in their software development projects.
Indeed, it is ambiguous as to which quality charac-
teristics are more crucial for practitioners and how
practitioners deal with those quality characteristics in
their software development. So, in this study, a survey
has been conducted on a group of practitioners who
are involved in the software development for various
industries. The goal of this survey is to understand
which software quality characteristics are popular in
industries and any modeling languages and tools used
for dealing with the software quality.

2 RESEARCH METHODOLOGY

In our survey, we focus on the software quality char-
acteristics determined by the ISO/IEC 25010:2011
SQuaRE software quality standard (ISO Central Sec-
retary, 2011). As shown in Figure 1, ISO SQuaRE
categorises the software quality into 8 different char-
acteristics, which are functional suitability, perfor-
mance efficiency, compatibility, usability, reliability,

418

security, maintainability, and portability. Each soft-
ware quality characteristic is also considered in terms
of a cohesive set of quality sub-characteristics.

Our survey consists of 38 different questions,
which are divided into four sections (i.e., one for each
research question). Table 1 shows the list of ques-
tions. The questions 7-10 repeat for each software
quality characteristic given in Figure 1. Also, some
questions offer multiple-choice answers that allow the
participants for choosing one or more answers. The
multiple-choice questions with the free-text option es-
sentially allow the participants to write their own an-
swers that are not in the answer list. We evaluate
the free-text answers and eliminate any of them that
does not make sense for the question. Some ques-
tions require yes/no answers that are represented with
five alternative options to maximise precision: always
(100%), much of the time (>=75%), often (>=50%),
sometimes (<50%), and never (0%).

The survey has been targeted for 16 different prac-
titioners who have considerable experiences on soft-
ware development and work for the Logo company’,
which is one of the largest software development
companies in Turkey and has been offering various
software solutions and services to different industries
in Turkey for more than 30 years. To enhance the pre-
cision of the data gathered from the participants, each
participant has been invited to a 30-60 minutes long
session, in which one of us has been ready to interact
with the participant. So, the participant has been re-
quested to fill in the survey during the session and ask
us any question that he/she may have about the survey
questions. Also, the participants have been supplied
with the ISO SQuaRE specification document so as to
find out the precise definitions of the quality charac-
teristics and their sub-characteristics if they need so.

Before executing the survey, we performed a plot
study to get some initial feedback about the survey
structure and questions. To this end, four different
practitioners who have got 10+ years of experiences
on the software development in IT industry shared
their thoughts. So, this let us determine the missing
or ambiguous answers, ambiguous questions, the du-
ration of the survey sessions, and any supplementary
materials for the participants taking the sessions.

3 RESEARCH QUESTIONS

To meet the goal stated in Section 1, a set of research
questions has been determined. To understand how
each research question is targeted, the survey ques-

"Logo web-site: https://www.logo.com.tr/en/

Towards Understanding Industry’s Perspectives on the Software Quality Characteristics: A Survey

System/Software
Product Quality

l

Functional Performance - - —_— . Maintain- .
i . Compatibility Usability Reliability Security . Portability
Suitability efficiency ability
Functional Time-behaviour Co-existence Appropriateness Maturity Confidentiality Modularity Adaptability
completeness Resource utilisation | | Interoperability recognisability Availability Integrity Reusabillity Installability
Functional Capacity Learnability Fault tolerance Non-repudiation Analysability Replaceability
comeciness Operabilly Recoverability Acoountability Modifiability
Functional User error Authenticity Testability
appropriateness protection
User interface
acsthetics
Accessibility

Figure 1: The software quality categorisation of the ISO SQuaRE software quality standard (ISO Central Secretary, 2011).

Table 1: The survey questions.

Res. Survey Multiple Yes/No

Ques. Questions Answers Free Text Question Integer Answer

RQI 1- What is (are) your current job position(s)? Yes Yes No No
2- What is(are) the type(s) of the software project(s)? Yes Yes No No
3- How many years of experience do you have in software development? No No No Yes
4- Which industries do your customers work in ? Yes Yes No No
5- Which of the following software quality characteristics do you .

RQ2 consider in software development projects ? Yes No No No
6- If you do not consider any of those quality characteristics, please tell No Yes No No
us the reason(s).

The questions 7-10 repeat for each software quality characteristic considered.

RQ3 7- Can you ra.le for each software gualuy property how frequently you consider No No Yes No
that property in your software projects?

8- If you use model-driven approaches for modeling, analysing, and implementing the software No Yes No No

RQ4 systems for the quality properties of the current quality characteristics, please tell us about them.

9- If you use any software tools for analysing the software systems for the quality
. X L No Yes No No
properties of the current quality characteristic, please tell us more about them.
10- If you manually analyse the quality properties of the current quality characteristic,
. No Yes No No
please tell us more about how you perform the manual analysis

tions that are used for answering the research ques-
tions are shown in Table 1.

RQ1 - What Are the Profiles of the Participants?
This research question aims to understand the partici-
pants’ profiles including their job positions, the types
of software projects involved, years of experiences,
and work industries.

RQ2 - Which Software Quality Characteristics Do
Practitioners Consider in Their Software Develop-
ment? This research question aims to understand
which of the software quality characteristics proposed
by ISO SQuaRE are considered by practitioners in
their software development projects.

RQ3 - Which Sub-characteristics of the Software
Quality Characteristics Do Practitioners Consider
in Their Software Development? The aim herein is
to understand for each software quality characteristic
of ISO SQuaRE which of its sub-characteristics are
considered by practitioners for the quality analysis of
their software systems.

RQ4 - Which Languages and Tools Do Practition-
ers Use for Analysing Their Software Quality? The
aim here is to learn the software modeling languages
that practitioners may be using for modeling their
software systems and checking their software models

for the quality properties of interest via the language
toolset. Also, any commercial-off-the-shelf (COTS)
tools that practitioners may be using for any quality
characteristics are aimed to be learned.

4 THE SURVEY RESULTS

4.1 Profile Questions

Figure 2 shows the job positions of the the partici-
pants. So apparently, the design team lead and analyst

20%
18%
16%
14%

12%

6%
4%
2%
0%

Design Software High-level Support Software Product QA Lead
Team Lead Tester

Agile Consultant Analyst
Manager Manager Developer Manager Coach

Figure 2: The participants’ job positions.

419

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

positions have been the top selected ones, which are
followed by the software developer and product man-
ager positions. The rest of the job positions shown in
Figure 2 are not that popular among the participants.

W Business Applications Software
m Mobile Applications

Web Applications

Figure 3: The types of the software projects that the partic-
ipants are involved in.

Figure 3 shows the different types of software
projects that the participants are involved in. So, most
participants develop business applications software,
which is followed by those developing web applica-
tions. A few participants stated that they develop
mobile applications. The other types of software
projects, such as safety-critical and mission-critical
software systems and systems software are not in the
scope of the participants.

H None
M Less than 2 years
m 2-5years
6-10 years
m 10+ years

Figure 4: The participants’ years of software development
experiences.

Figure 4 shows the participants’ years of experi-
ences on the software development. So apparently,
almost half of the participants have got 10+ years of
experiences, 31% of them have 6-10 years of experi-
ences, and the rest have 2-5 years of experiences.

Nearly all the participants develop software sys-
tems for various industries, which include automa-
tive and transportation, consumer electronics, de-
fense/military & aviation, finance and accounting,
government, healthcare and biomedical, IT and
telecommunications, and software outsourcing. One
of the participants stated that they work for the
government only and another one work for the de-
fense/military & aviation only.

420

60%

50%

40%

30%

20%

10% I
0%

Functional ~Performance Compatibility ~ Usability ~ Reliability ~ Security ~ Maintainability ~Portability
Suitability Efficiency

Figure 5: Participants’ frequency of consideration for each
software quality characteristic.

4.2 Software Quality Characteristics

Figure 5 shows the participants’ consideration for the
ISO SQuaRE quality characteristics in their software
projects. So, maintainability is the top-selected char-
acteristic, followed by the performance efficiency,
reliability, and functional suitability characteristics.
The compatibility and security characteristics are not
so popular among the participants, and portability has
not been considered by any of the participants at all.

100%
90%
80%
70%
60%
50%

30%

- [|

Functional Correctness Functional Completeness
| Always (100%)

Sometimes (<50%)

B Much of the time (>=75%) m Often (>=50%)
m Never (0%)

Figure 6: Participants’ considerations for the functional
suitability sub-characteristics.

4.2.1 Functional Suitability

The functional suitability quality characteristic is con-
cerned with how well the provided functionalities
of a software system meet the user expectations.
The functional suitability is considered in terms of
the functional correctness and functional complete-
ness sub-characteristics. The functional correctness
is to do with executing the system functionalities and
checking that the obtained results are correct with re-
gard to the system specifications. The functional com-
pleteness is to do with checking that the system func-
tionalities cover all the required tasks.

Towards Understanding Industry’s Perspectives on the Software Quality Characteristics: A Survey

Figure 6 shows the participants’ frequency of con-
sideration for the functional correctness and com-
pleteness. So, most of the participants always (100%)
consider the functional correctness and completeness
in their software projects.

As the survey results reveal, the participants use
the Behaviour-Driven Development (BDD) method-
ology (Solis and Wang, 2011) for developing and
testing software systems for the functional suitability.
With BDD, different stakeholders (e.g., customers,
users, and developers) interact to have the same un-
derstanding of the system functionalities and how
each functionality is expected to behave. Then, the
test scenarios are defined together with the users and
customers in a natural language. The informal test
scenarios can be translated into the executable test
cases and the systems can be run for those test cases.
To apply BDD in their software projects, the partici-
pants use the Cucumber framework?.

The survey results also indicate that the partic-
ipants have never used any software modeling lan-
guages for the modeling and analysis of the functional
suitability properties.

4.2.2 Performance Efficiency

The performance efficiency quality characteristic is
concerned with how much resources are consumed
by a software system. The performance efficiency is
considered in terms of the time behaviour, resource
utilisation, and capacity sub-characteristics. The time
behaviour is to do with ensuring that the time spent by
the software system (e.g., sending a response or per-
forming a particular operation) or the system through-
put time meet the system requirements. The resource
utilisation is to do with ensuring that the resources
which the software system consumes meet the system
requirements. The capacity is to do with ensuring that
the upper limits that system functionalities can reach
meet the system requirements.

70%

Time Behaviour Resource Consumption Capacity
m Always (100%)

Sometimes (<50%)

i Much of the time (>=75%) m Often (>=50%)
W Never (0%)

Figure 7: Participants’ considerations for the performance
efficiency sub-characteristics.

Zhttps://cucumber.io/

Figure 7 shows the participants’ considerations of
the performance sub-characteristics in their software
projects. While all the time behaviour, resource con-
sumption, and capacity are frequently (i.e., always or
much of the time) considered by most of the partici-
pants, the time behaviour attracted the greatest inter-
est. Capacity is relatively less popular than the other
two sub-characteristics — just 25% of the participants
always (100%) consider the capacity analysis in their
software project.

The participants do not use any software modeling
languages for modeling and analysing the software
systems against the performance properties. While
some participants use their own software solutions
for analysing performance, some use the COTS tools.
These tools include dotMemory® for analysing the
memory usage, dotTrace* for analysing the time be-
haviour, and Apache JMeter for analysing capacity.

4.2.3 Compatibility

The compatibility quality characteristic is concerned
with to what extent a software system can share re-
source(s) with another software system or work to-
gether with different systems without the need for
any interventions. The compatibility is considered
in terms of the co-existence and interoperability sub-
characteristics. The co-existence property is to do
with the ability of multiple software systems to share
the same resources or execution platforms success-
fully. The interoperability property is to do with the
ability of multiple software systems to interact with
each other and exchange data successfully.

100%
80%
60%

40% “

20%

0%
Co-existence Interoperability
B Always (100%)

Sometimes (<50%)

W Much of the time (>=75%) m Often (>=50%)
m Never (0%)

Figure 8: Participants’ considerations for the compatibility
sub-characteristics.

Figure 8 shows the participants’ considerations
of the co-existence and interoperability sub-
characteristics in their software projects. So, while
interoperability is always (100%) considered by the

3https://www.jetbrains.com/dotmemory/

“https://www.jetbrains.com/profiler/
Shttps://jmeter.apache.org/

421

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

participants, co-existence is not that popular es-
sentially.

The participants do not use any software mod-
eling languages for the modeling and analysis of
their software systems and the compatibility sub-
characteristics. However, the participants use their
in-house software solutions for the analysis of the ex-
ecutable software systems for compatibility.

4.2.4 Usability

The usability quality characteristic is concerned with
to what extent the potential users of a software system
are capable of using the system in a way that meets
the system requirements. Thu usability is considered
in terms of the appropriateness recognisability, learn-
ability, operability, user error protection, user inter-
face aesthetics, and accessibility sub-characteristics.
The appropriateness recognisability is to do with the
users’ acceptance of the software system for their
needs. The learnability is to do with how easy it is
to learn and use the software system. The operability
is to do with how easy it is to operate the software
system while the system is in use. The user error pro-
tection is to do with to what extent the software sys-
tem prevents the users from making errors while using
the system. The user interface aesthetics is to do with
how attractive the user interfaces of the software sys-
tem are to the users. The accessibility is to do with
to what extent the software system can be used by the
users with different types of disabilities.

100%

0% I

appropriateness learnability operability user error userinterface accessibility
recognisability protection aesthetics
m Always (100%) ® Much of the time (>=75%) m Often (>=50%) ® Sometimes (<50%) m Never (0%)

Figure 9: Participants’ considerations for the usability sub-
characteristics.

Figure 9 shows the participants’ considerations
of the different usability sub-characteristics in their
software projects. So, all the participants frequently
(i.e., much of the time or always) consider analysing
the appropriateness recognisability and learnability.
While operability and user error protection are also
frequently considered by many participants, a few
of the participants show less interest to them. Con-
cerning the user interface aesthetics and accessibil-
ity, some participants do not frequently consider those

422

two usability sub-characteristics in their software de-
velopment. Indeed, the number of the participants
who chose often or sometimes are the highest for the
user interface aesthetics and accessibility.

None of the participants use any software model-
ing languages for the modeling and analysis of soft-
ware systems and their usability characteristics. The
participants’ companies have user-experience (UX)
teams who are responsible for testing the usability
of software systems. Moreover, one of the partici-
pants stated that they use the A/B testing (Dixon et al.,
2011) to analyse their systems’ usability.

4.2.5 Reliability

The reliability quality characteristic is concerned with
how well a software system performs its functionali-
ties in its environment within the expected amount of
time. The reliability is considered in terms of the ma-
turity, availability, fault tolerance, recoverability sub-
characteristics. The maturity is to do with how long
the software system could be used in a way that satis-
fies the reliability requirements. The availability is to
do with to what extent the software system is available
for use when requested by the users. The fault toler-
ance is to do with to what extent the software system
carries on operating in the case of any faults occur-
ing. The recoverability is to do with to what extent
the software system maintains its state without losing
data in the case of any crashes due to some failures.

10% I I
0%
Maturity Availability

Fault Tolerance Recoverability

m Always (100%) 8 Much of the time (>=75%) m Often (>=50%) m Sometimes (<50%) M Never (0%)

Figure 10: Participants’ considerations for the reliability
sub-characteristics.

Figure 10 shows how frequently the participants
consider the reliability sub-characteristics in their
software projects. So, all the participants frequently
(i.e., either always or much of the time) analyse the
availability of their software systems. While the ma-
turity and fault tolerance are also frequently analysed
by many participants, some of the participants often
(>=50%) consider them. The recoverability property
is shown quite less interest by the participants.

Concerning the languages and tools used, the par-
ticipants do not use any languages or tools for the
modeling and analysis of software systems and their
reliability sub-characteristics.

Towards Understanding Industry’s Perspectives on the Software Quality Characteristics: A Survey

4.2.6 Security

The security quality characteristic is concerned with
to what extent a software system protects its data from
malicious attacks so that the system data can only be
accessed by the specified systems and people at the
specified levels. The security quality characteristic is
considered in terms of the confidentiality, integrity,
non-repudiation, accountability, and authenticity sub-
characteristics. The confidentiality is to do with en-
suring that the system data is accessible by the autho-
rised users only. The integrity is to do with to what
extent the software system protects its data against the
modifications performed by unauthorised users. The
non-repudiation is to do with proving for the commu-
nication of any two parties that they cannot deny any
event/action occuring between each other such as the
message/data exchange. The accountability is to do
with to what extent the actions taken by the software
component or a person using the software system can
be monitored to avoid any unwanted access to the sys-
tem data or service. The authenticity is to do with
whether it is possible to prove the identity of the users
and any other entities or not.

80%

70%
60%

30% }

20% B ‘ t V }]
10% | ‘ ‘ |
0%

Authenticity

-

Confidentiality Integrity Non-repudiation Accountability

m Always (100%) m Much of the time (>=75%) W Often (>=50%)

Sometimes (<50%) m Never (0%)

Figure 11: Participants’ considerations for the security sub-
characteristics.

Figure 11 shows the participants’ considerations
of the security sub-characteristics in analysing the
software security. So, integrity is the most frequently
considered sub-characteristic, which is followed by
confidentiality. While non-repudiation, accountabil-
ity, and authenticity properties are also frequently
considered, some participants consider them infre-
quently (i.e., often or sometimes). Authenticity is es-
sentially the least popular security sub-characteristic,
as some participants stated to sometimes (<50%)
analyse the authenticity of their software systems.

The participants do not use any software model-
ing languages for modeling and analysing the security
sub-characteristics. However, the participants use the
CheckMarx tool® for analysing their software system
implementation against some security issues.

Shttps://www.checkmarx.com/

100%
80%
60%
40%
20%

0% | |

Modularity Reusability Analysability Modifiability Testability

m Always (100%) Much of the time (>=75%) m Often (>=50%)

Sometimes (<50%) m Never (0%)

Figure 12: Participants’ considerations for the maintainabil-
ity sub-characteristics.

4.2.7 Maintainability

The maintainability quality characteristic is con-
cerned with to what extent a software system can be
modified, repaired, and improved effectively. The
maintainability is considered in terms of the modular-
ity, reusability, analysability, modifiability, and testa-
bility sub-characteristics. The modularity is to do
with how well the software system is decomposed
into modules that are independent from each other
and each represent the cohesive set of functionalities
of the system. The reusability is to do with to what ex-
tent the modules composing the software system can
be re-used within the same system or across differ-
ent systems. The analysability is to do with whether
the software system can be analysed at any levels of
abstractions for detecting any issues about the sys-
tem. The modifiability is to do with to what extent
the software system can be modified effectively with-
out causing new errors in the system that require an-
other modification(s). The testability is to do with at
what level of coverage the test scenarios for the soft-
ware system can be determined and the effective use
of the test scenarios for testing the software system.

Figure 12 shows the participants’ considerations
of the maintainability sub-characteristics in their soft-
ware projects. Modularity and reusability are the top-
considered maintainability sub-characteristics by the
participants, which are followed by the analysability.
The modifiability and testability sub-characteristics
are relatively less popular among the participants.

The participants do not use any software model-
ing languages for the maintainable software develop-
ment. The participants use the SonarQube analysis
tool’ for analysing the software implementation for
several maintainability issues.

4.2.8 Portability

The portability quality characteristic is concerned
with to what extent a software system can be used on

7https://www.sonarqube.org/

423

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

another operating system or hardware. The portabil-
ity is considered in terms of the adaptability, instal-
lability, and replaceability sub-characteristics. The
adaptability is to do with to what extent the soft-
ware system can be adapted to work in a different
hardware or software environment. The installabil-
ity is do with to what extent the software system can
be installed/uninstalled successfully in/from any de-
sired environments. The replaceability is to do with
to what extent the software system or its components
can be replaced with another system that can exhibit
the same functionality.

Portability is just considered by one of the partic-
ipants who stated to use the Jerkins tool for dealing
with the portability issues.

S SUMMARY OF THE RESULTS

In this section, the key outcomes obtained from the
analysis of the survey results are summarised.

The Design Team Lead and Analyst Positions Are
Highly Popular. While the participants represent
many different job positions (e.g., software developer,
consultant, manager positions, and tester), the design
team lead and analyst are the top-selected job posi-
tions by the participants.

Business Applications Software Is the Top Popular
Software Project Type. Most of the participants are
involved in the business applications software devel-
opment (75%). Concerning the rest, 19% are involved
in the web applications development and 6% involved
in the mobile applications.

Most Practitioners Have at Least 6 Years of Expe-
riences on Software Development. While 44% of
the participants have 10+ years of experiences, 31%
have 6-10 years of experiences, and the rest have 2-5
years of experiences.

Maintainability and Performance Efficiency Are
the Top Popular Quality Characteristics. Among
the software quality characteristics proposed by ISO
SQuaRE, most of the participants (>70%) consider
the maintainability and performance efficiency char-
acteristics for the analysis of their software systems.
None of the participants (except one) are interested in
analysing the software portability.

The Functional Suitability Sub-characteristics Are
Equally Important. Almost all the participants
who are interested in functional suitability always
(100%) analyse the functional correctness and func-
tional completeness of their software systems.

The Time Behaviour Is the Top Considered Perfor-
mance Sub-characteristic. While most of the par-
ticipants always (100%) analyse their software sys-

424

tems for the time behaviours, the resource consump-
tion and capacity performance sub-characteristics did
not attract that level of interest.

The Interoperability Is the Top Considered Com-
patibility Sub-characteristic. While the participants
who are interested in compatibility always (100%)
analyse their software systems for interoperability,
those participants do not consider the co-existence
sub-characteristic of compatibility so frequently.

The Learnability and Appropriateness Recognis-
ability Are the Top Considered Usability Sub-
characteristics. The participants frequently (i.e., al-
ways (100%) or much of the time(>=75%)) anal-
yse the learnability and appropriateness recognisabil-
ity of their software systems. While operability and
user error protection are also quite frequently con-
sidered, the user interface aesthetics and accessibility
sub-characteristics of usability are not so popular.
The Availability Is the Top Considered Reliabil-
ity Sub-characteristic. The participants who are in-
terested in reliability frequently analyse their soft-
ware systems for availability, and that is followed by
the analysis of the maturity and fault tolerance sub-
characteristics. Recoverability is shown relatively
less interest by the participants.

Confidentiality and Integrity Are the Top Con-
sidered Security Sub-characteristics. The partici-
pants who are interested in security frequently anal-
yse their software systems for confidentiality and in-
tegrity. While non-repudiation and accountability are
also quite popular, authenticity is shown relatively
less interest by the participants.

Modularity and Reusability Are the Top Consid-
ered Maintainability Sub-characteristics. The par-
ticipants who are interested in maintainability always
consider the modularity and reusability of their soft-
ware systems. The analysability of software systems
is also quite popular. However, modifiability and
testability are shown less interest by the participants.
None of the Participants Use Any Modeling Lan-
guages for Analysing The Software Quality Early
On. While many software modeling languages have
been existing today for the modeling and analysis of
software systems for different quality characteristics,
the participants are not familiar with any of them.
The Participants Use Cots Tools for the Software
Analysis. The participants have been observed to use
several COTS tools available for analysing the soft-
ware system implementations for the quality charac-
teristics of interest. While some of these tools are free
and open-source, some are commercial tools.

Towards Understanding Industry’s Perspectives on the Software Quality Characteristics: A Survey

6 RELATED WORK

While the literature includes many survey studies on
the software quality, it is really hard to find any sur-
veys that focus on various types of quality character-
istics in general and give any results regarding the per-
spectives of the practitioners who are involved in the
software development.

In (Pérez et al., 2013), the authors targeted the
Belgian companies and surveyed 44 different partic-
ipants working in different companies to understand
the processes, tools, and techniques that they employ
for improving the software quality in general. How-
ever, Pérez et al. do not focus on any software qual-
ity characteristics and practitioners’ perspectives on
them, as is the case in our survey. In (Garousi and Zhi,
2013), the authors surveyed 245 practitioners who
work in Canada and aimed at understanding the tech-
niques, tools, and metrics used for testing software
systems. In (Bygstad et al., 2008), the authors sur-
veyed 78 different IT companies in Norway to under-
stand their perspectives towards the software usabil-
ity. In (Gulliksen et al., 2004), the authors surveyed
194 different practitioners who work in Sweden to
understand the techniques and tools that they use for
promoting the usable software systems and their per-
spectives towards maximising the software usability.
In (Geer, 2010), the author surveyed among 46 differ-
ent practitioners who hold either the consultant, man-
ager, or developer positions, and intended to under-
stand their perspectives towards the secure software
development life-cycles. In (Moores and Edwards,
1992), the author surveyed 54 different large IT com-
panies that are located in United Kingdom and aimed
to understand to what extent the practitioners in those
companies use the cost estimation tools for the pur-
pose of estimating the size and cost of their software
development projects. In (Sousa and Moreira, 1998),
the authors conducted a survey among the 37 different
organisations located in Portugal. Sousa et al. aimed
at understanding how the software maintenance pro-
cess is carried out and the difficulties encountered. In
(Xie et al., 2011), the authors interviewed 15 differ-
ent software developers to basically understand the
software security issues that they encountered in their
software projects, the methods, techniques, and tools
that they use for handling the software security issues,
and their opinions about how the software security re-
lates to the software development life-cycle.

7 CONCLUSION

In this paper, a survey has been conducted on under-
standing the practitioners’ perspectives on different
software quality characteristics and the modeling lan-
guages/tools used for analysing the software quality.
To this end, the survey focuses on the ISO SQuaRE
software quality standard, which categorises the soft-
ware quality as the functional suitability, performance
efficiency, compatibility, usability, reliability, secu-
rity, maintainability and portability characteristics.
Each software quality characteristic is defined by ISO
in terms of a relevant set of sub-characteristics. The
survey consists of 38 questions that have been an-
swered by 16 participants who work for a Turkish
software company called Logo. Each participant has
been allocated a 30-60 minutes session during which
the participant has been requested to fill in the sur-
vey and allowed to ask any questions that he/she has
about the survey questions. The analysis of the sur-
vey results lead to many interesting lessons. Practi-
tioners give the highest importance to (i) the main-
tainable development of software systems that can be
easy to change and improve after deployment and (ii)
the efficient use of the resources. The portable soft-
ware development for facilitating the use of the soft-
ware system in different environments is not shown
the least interest by the practitioners. Practitioners
also showed varying levels of interests to the differ-
ent sub-characteristics of the software quality char-
acteristics proposed by ISO SQuaRE, and that led to
determine practitioners’ priorities regarding the anal-
ysis of software systems for each quality character-
istic. Moreover, practitioners do not use any soft-
ware modeling languages for the high-level model-
ing and analysis of software systems. Note that many
modeling languages have been actually existing (e.g.,
AADL, UPPAAL, and JML), which enable the ex-
haustive model checking of the software models and
prove the models for different quality properties of
interest before proceeding with the software imple-
mentation. Practitioners prefer to use the COTS tools
available on the market that allow for checking the
software implementation for some quality character-
istics. However, any quality issues detected may not
easily be fixed at this stage, as the software systems
analysed have already been design and implemented.

Concerning the threats to the validity of the sur-
vey results, the participants have been selected from
a single company in Turkey. While this may cause
biases regarding the selection of the participants, the
Logo company essentially develops software systems
for various customers of different industries in Turkey
and that helps addressing the software quality require-

425

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

ments of customers with different needs. Also, some
software quality characteristics addressed in the sur-
vey may not be understood precisely by all the par-
ticipants, and therefore, the survey has been decided
to be conducted via sessions in which the participants
are requested to fill in the survey and allowed to ask
for any clarifications. Lastly, the survey has been con-
ducted with 16 different participants only. While this
essentially helped us to get an initial idea about the re-
search questions targeted, we plan to conduct a larger
survey with similar research questions in the future.

REFERENCES

Bygstad, B., Ghinea, G., and Brevik, E. (2008). Soft-
ware development methods and usability: Perspec-
tives from a survey in the software industry in norway.
Interacting with Computers, 20(3):375-385.

Cavano, J. P. and McCall, J. A. (1978). A framework for
the measurement of software quality. SIGSOFT Softw.
Eng. Notes, 3(5):133-139.

Chalin, P., Kiniry, J. R., Leavens, G. T., and Poll, E. (2005).
Beyond assertions: Advanced specification and veri-
fication with JML and ESC/Java2. In de Boer, F. S.,
Bonsangue, M. M., Graf, S., and de Roever, W. P, ed-
itors, FMCO, volume 4111 of Lecture Notes in Com-
puter Science, pages 342-363. Springer.

Ciflikli, B., Ozcan, O., and Uysal, A. B. (2012). Model
driven software development for military command
and control systems. In 2012 IEEE 36th Annual Com-
puter Software and Applications Conference, pages
494-497.

Dixon, E., Enos, E., and Brodmerkle, S. (2011). A/b testing
of a webpage. US Patent 7,975,000.

Feiler, P. H., Lewis, B. A., and Vestal, S. (2006). The
SAE architecture analysis & design language. In
IEEE Intl Symp. on Intell. Control, pages 1206-1211.
www.aadl.info.

Garousi, V. and Zhi, J. (2013). A survey of software testing
practices in canada. Journal of Systems and Software,
86(5):1354-1376.

Garvin, D. (1984). What does product quality really mean?
Sloan Management Review, 26:25-45.

Geer, D. (2010). Are companies actually using secure de-
velopment life cycles? Computer, 43(6):12-16.
Gulliksen, J., Boivie, 1., Persson, J., Hektor, A., and Herulf,
L. (2004). Making a difference: a survey of the usabil-
ity profession in sweden. In Raisamo, R., editor, Pro-
ceedings of the Third Nordic Conference on Human-
Computer Interaction 2004, Tampere, Finland, Octo-
ber 23-27, 2004, pages 207-215. ACM.

Haghighatkhah, A., Oivo, M., Banijamali, A., and Kuvaja,
P. (2017). Improving the state of automotive software
engineering. IEEE Software, 34(5):82-86.

ISO Central Secretary (2011). Systems and software engi-
neering — systems and software quality requirements
and evaluation (square) — system and software quality

426

models. Standard ISO-IEC 25010:2011, International
Organization for Standardization, Geneva, CH.

Kan, S. H. (2014). Metrics and Models in Software Qual-
ity Engineering - Paperback. Addison-Wesley Profes-
sional, 2nd edition.

Kitchenham, B. A. and Pfleeger, S. L. (1996). Software
quality: The elusive target. [EEE Software, 13(1):12—
21.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). UPPAAL
in a nutshell. STTT, 1(1-2):134-152.

Marques, J. and Cunha, A. (2013). A reference method for
airborne software requirements. In 2013 IEEE/AIAA
32nd Digital Avionics Systems Conference (DASC),
pages 1-29.

Moores, T. T. and Edwards, J. S. (1992). Could large uk
corporations and computing companies use software
cost estimating tools? — a survey. European Journal
of Information Systems, 1(5):311-320.

Nitze, A. and Schmietendorf, A. (2015). A survey on mo-
bile users’ software quality perceptions and expecta-
tions. In 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 1-2.

Ozkaya, M. (2018). The analysis of architectural languages
for the needs of practitioners. Softw., Pract. Exper.,
48(5):985-1018.

Pérez, J., Mens, T., and Kamseu, F. (2013). A pilot study on
software quality practices in belgian industry. In 2013
17th European Conference on Software Maintenance
and Reengineering, pages 395-398.

Richardson, 1., Reid, L., and O‘Leary, P. (2016). Health-
care systems quality: Development and use. In 2016
1IEEE/ACM International Workshop on Software Engi-
neering in Healthcare Systems (SEHS), pages 50-53.

Saji¢, M., Bundalo, D., Bundalo, Z., and Pasali¢, D. (2017).
Digital technologies in transformation of classical re-
tail bank into digital bank. In 2017 25th Telecommu-
nication Forum (TELFOR), pages 1-4.

Solis, C. and Wang, X. (2011). A study of the characteristics
of behaviour driven development. In 2011 37th EU-
ROMICRO Conference on Software Engineering and
Advanced Applications, pages 383-387.

Sousa, M. J. C. and Moreira, H. M. (1998). A survey on the
software maintenance process. In Proceedings. Inter-
national Conference on Software Maintenance (Cat.
No. 98CB36272), pages 265-274.

Tian, J. (2005). Software Quality Engineering: Testing,
Quality Assurance, and Quantifiable Improvement.
Wiley-Interscience, New York, NY, USA.

Xie, J., Lipford, H. R., and Chu, B. (2011). Why do
programmers make security errors? In 2011 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 161-164.

