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Abstract: Man vs. machine competitions have always been attracting much public attention and the famous defeats of
human champions in chess, Jeopardy!, Go or poker undoubtedly mark important milestones in the history of
artificial intelligence. In this article we reflect on our experiences with a game-centric approach to teaching
artificial intelligence that follows the historical development of algorithms by popping the hood of these cham-
pion bots. Moreover, we made available a server infrastructure for playing card games in perfect information
and imperfect information playing mode, where students can evaluate their implementations of increasingly
sophisticated game-playing algorithms in weekly online competitions, i.e. from rule-based systems to exhaus-
tive and heuristic search in game trees to deep learning enhanced Monte Carlo methods and reinforcement
learning completely freed of human domain knowledge. The evaluation of this particular course setting re-
vealed enthusiastic feedback not only from students but also from the university authority. What started as an
experiment became part of the standard computer science curriculum after just one implementation.

1 INTRODUCTION

The online news platform New Atlas coined 2017 as

The year AI beat us at all our own games

referring to the memorable victory of DeepMind’s Al-
phaGo Master against Ke Jie, the world No. 1 ranked
Go player in May 2017 and the seminal announce-
ment of AlphaGo Zero in October 2017, stronger than
any previous human champion defeating version of
AlphaGo. But the same year has also seen DeepStack
and Libratus independently conquering several hu-
man poker champions in No Limit Texas Hold’em as
well as the participation of OpenAI in a giant eSports
tournament in August 2017 beating world top players
in the online battle game Dota 2 (Haridy, 2017).

Such public exhibitions of human against artifi-
cial intelligence in various strategic board, card and
video games have always been attracting much in-
terest from one of the earliest public clashes of man
and machine at the industrial fair in Berlin in 1951,
where an archaic computer called Nimrod beat the
former secretary of commerce of West Germany in
the game of Nim (Redheffer, 1948; Baker, 2010), over
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the legendary victories of IBM Deep Blue against the
chess grandmaster Garry Kasparov in 1997 (Camp-
bell et al., 2002) and IBM Watson against two human
Jeopardy! champions in a series of public TV shows
in 2011 (Kelly and Hamm, 2013), to the most recent
breakthroughs in Go, poker and various eSports dis-
ciplines. Irrespective of the certainly welcome news
headlines for artificial intelligence research, set off
each time the human race had to surrender in another
popular game, the development of intelligent game-
playing agents has always had a much more signif-
icant role. After all, chess was famously referred to
as the drosophila of artificial intelligence (McCarthy,
1990), and after 1997, this role was attached to the
Chinese board game Go as experts had thought it
could take another hundred years before an AI sys-
tem beats a human Go champion (Johnson, 1997).
Throughout the course of history, AI has mastered
increasing levels of game complexities including the
vast search spaces of Go, imperfect information and
randomness in card games and even socio-behavioral
aspects (e.g. bluffing in poker games) that are typi-
cally attributed to humans. These big headlines there-
fore witness the algorithmic progress of artificial in-
telligence research, i.e. from rule-based systems to
exhaustive and heuristic search in game trees to deep
learning enhanced Monte Carlo methods and rein-
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forcement learning freed of any human domain ex-
pertise. At the same time, they were made possible
only by important technological advances: the Nim-
rod was basically an public demonstration of early
computer technology; Deep Blue a massively parallel
architecture of dedicated chess chips (Campbell et al.,
2002) whereas with Watson IBM ultimately proved
their expertise in building supercomputers culminat-
ing in Google’s demonstration of GPU technology for
deep learning with AlphaGo and AlphaGo Zero.

This historical evolution of ideas, methods and
technology complemented with all the intriguing as-
pects and stories around a man-machine competition
and broad coverage in research literature and popu-
lar media made us raise the idea of experimentally
designing an introductory class to artificial intelli-
gence on Bachelor’s level along these developments,
leaving the trodden paths of just following the well-
established syllabus of one of the major textbooks
on the topic. Moreover, by making available a self-
developed software framework together with a server
application for in-class tournaments, we gave our stu-
dents the opportunity not only to design and imple-
ment their own game-playing agents with increas-
ingly complex and stronger methods, but also to fre-
quently run tournaments and obtain direct feedback
on their approaches. AI courses with in-class tourna-
ments or even participation in open challenges, e.g.
on Kaggle1, became fairly common in recent times.
However, we aimed to push this idea to an extreme by
running weekly student competitions for each game-
playing method presented in class. The subsequent
chapters survey our first attempts and experiences in
setting up this program, initially limited to a single
semester course but with a clear ambition to spread
over several courses with different emphasis. We will
further justify our selection of a card game for these
competitions and sketch the software framework and
server infrastructure that we make available our code
as open-source projects to the community in the hope
of spreading and challenging our guiding principles
and the proposed didactical method.

2 A GAME-CENTRIC SYLLABUS

Our course started off by an introduction to sequen-
tial games with perfect information laying out ba-
sic concepts such as game trees, backward induc-
tion, sub-game perfect Nash equilibria and the no-
tion of strongly and weakly solved games. This al-
ready provides sufficient information to pop the hood

1https://www.kaggle.com/competitions

of the Nimrod, maybe the first artificial intelligence to
beat a human in a public exhibition in 1951, respec-
tively to implement perfect play for a selection of sim-
ple games including Nim and tic-tac-toe. From there
we intensified the discussion on state space complex-
ity and game tree modelling, introduced the notion
of zero-sum games, the famous minimax algorithm
with its extension to multiple players and alpha-beta
pruning. Such a brute-force analysis of the connect
four game yielding a perfect player based on sim-
ple database lookup became possible in 1995. Note
however that the game was weakly solved already in
1988 (Allen, 2010). We next introduced the idea of
combining minimax with domain-specific heuristics
and elaborated on formal requirements, manual and
semi-automated design approaches to heuristics fol-
lowing (Russell and Norvig, 2010). This proved suffi-
cient for a closer analysis of DeepBlue - a massively
parallelized minimax implementation with alpha-beta
pruning and a heuristics based on 8000 chess fea-
tures manually tailored by a team of expert chess
players that finally beat a chess grandmaster in 1997
(Campbell et al., 2002). This marked an unprece-
dented success in AI history but at the same time
stands for the extreme edge of what can be achieved
by a rule-based vaccination of algorithms with hu-
man domain knowledge. Also, these approaches do
not carry over to games with imperfect information.
Our course advanced by introducing Monte Carlo tree
search (MCTS) with random play-outs and the up-
per confidence bound for balancing exploration and
exploitation. First proposed in 2006 (Coulom, 2006),
MCTS since then has completely dominated the com-
puter Go scene (Couëtoux et al., 2013). The picture
was rounded out by its variants for imperfect informa-
tion games called determinization and information set
MCTS (Cowling et al., 2012). We paused the histori-
cal survey at this point for an introduction to the basic
principles of supervised machine learning including
data preparation techniques and a small selection of
classifiers adding in logistic regression, decision trees
and random forests. Hereby, is is important to say that
we put the main emphasis not on the algorithmic as-
pects of machine learning but rather on how to cor-
rectly evaluate a machine learning classifier with hy-
perparameter optimization. Next, an introduction to
deep learning and the open source neural network li-
brary Keras2 was given, which allowed us to resume
our survey of approaches to game-playing agents by
combining MCTS with value and policy functions ob-
tained from supervised deep learning analogously to
the original version of AlphaGo (Silver et al., 2016).
The final part of this course comprised an introduction

2https://keras.io/
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to deep reinforcement learning aligned with the ap-
proaches implemented in AlphaGo Zero (Silver et al.,
2017; Silver et al., 2018). Other popular games such
as backgammon, checkers, bridge or poker also de-
served special mention of course.

3 SELECTION OF A CARD GAME

With every new approach to game-playing agents pre-
sented in class, i.e. from a rule-based implementa-
tion of strategies to exhaustive and heuristic search
to Monte Carlo tree search and its enhancements with
supervised deep learning to reinforcement learning,
we tasked students to implement these techniques and
evaluate within the scope of a series of in-class tour-
naments. This imposes very concrete constraints on
the sort of game to be selected, as we also wanted to
always use the same game in order to compare differ-
ent approaches and also generate hybrid techniques
throughout the course. For the following reasons we
thought that a card game would constitute a good
choice: Many card games can be instantiated as either
two-player games or with more than two players con-
sidered as teams or individual players. We made avail-
able a dedicated (partial) cheating mode that allows
each player to see the hands of its team mates. Card
games ultimately are games of imperfect information.
However, in a (full) cheating mode, where each player
can see every other player’s hand, methods limited
to perfect information such as minimax with alpha-
beta pruning can be applied. As an interesting side
effect, this allows comparison of players with perfect
and imperfect information, e.g. pure Monte Carlo tree
search (cheater) vs. information set Monte Carlo tree
search (honest player) in order to quantitatively assess
the advantage of perfect information. Card games of-
ten have a fixed number of tricks played, while the
number of moves in chess matches may differ sig-
nificantly. This simplifies many aspects from runtime
scheduling of in-class tournaments to generation of
training data, etc. Also, when tournaments are to be
run on a weekly basis, they must be efficient and man-
ageable, i.e. given the number of teams and a limit
for the duration of each move, then the total runtime
of a tournament must be predictable. Finally, there is
a seemingly uncountable number of local variants of
card games played all over the world, and we hope
that our game platform proves generic enough for in-
tegrating many such variants.

Our library comes along with an implementation
of the well-known single-player game Hearts (with-
out initial passing round) and a variant of the popu-
lar Swiss card game Jass. We chose the latter for our

in-class tournaments because of its increased com-
plexity: Jass requires one player to initially declare
a trump mode. This affects the priority and value
of cards in the follow-up game. Second, we inten-
tionally chose a game of only regional spread. Stu-
dents may find various implementations of algorithms
for widespread games on the internet, and therefore
rightly have enough sources for inspiration, but to
our best knowledge no code repository for the card
game variant we chose is publicly available. Finally,
we appreciated support from an online provider of the
Jass card game in Switzerland, who made available
anonymized data from human plays for supervised
machine learning (trump prediction and policy / value
networks for MCTS). More specifically, we were
given nearly 500k rounds of human play. Finally, an-
other main reason for the selection of Jass is its on-
going popularity in Switzerland. Jass is arguably the
most popular card game in our country with massive
numbers of regular players, weekly shows on national
TV and nation-wide tournaments. As stated in many
sources, e.g. (Weinstein et al., 2018; Tapola et al.,
2013; Guzdial, 2010; Arnold et al., 2007), teaching
can be particularly efficient whenever students can
use concrete examples and establish a connection be-
tween the subject to learn, and their own experiences
in everyday life, i.e. if education is contextualized.
Retrospectively, we feel confirmed in this choice and
strongly encourage other educators to bring in such
regional flair whenever possible.

4 FRAMEWORK AND SERVER

We wanted students to focus on the programming of
their solutions immediately at the start of the first ex-
ercise and thus provided a framework with the core
functionality to program a player. This jass-kit in-
cludes:

• Data classes which contain the complete informa-
tion of the state of a game from a player’s point
of view including all cards that have been played,
the trump mode selected and the player’s hand.
A separate class containing the complete infor-
mation of the game including the hands of team
mates or even all players can be used to imple-
ment cheating version (perfect information game)
for comparison of algorithms. Of course, this fea-
ture is not available in tournament mode.

• Implementation of the rules for the games Hearts
and Jass (Schieber variant). This includes an im-
plementation of the logic of the game, for example
when a card is played as the last card of a trick, the
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winner is determined, the score is updated and the
player for the next card is determined. Also, the
valid cards to play can be determined in a config-
uration facilitating the implementation of player
algorithms.

• Functionality to parse and convert the available
log files for supervised learning.

• A player interface that can be augmented with a
specific implementation of a player’s algorithm.
The player can be tested using an implementation
of a so-called Arena class for playing against other
local players or can be integrated into a provided
web server implementation to play remotely or in
a tournament.

Python 3.53 was used for the implementation of
the framework augmented with numpy4 for arrays,
matrices and mathematical methods. The students had
access to the complete jass-kit framework repository,
and a demo-kit repository with a sample implementa-
tion of a basic player. The tournament server business
logic was implemented in Python using flask5 for its
REST interface and MongoDB6 for preserving state.
The server also tracks connection errors and timeouts
when contacting the players to facilitate debugging.

Web GUI

Player X 

Jass Server

Internet

1

3

2

4

5

Figure 1: A high-level system overview showing the three
main components player implementations, Jass server and
web GUI, as well as a typical usage sequence from a user’s
perspective.

In order to allow students a simple setup and ex-

3A later version of Python was not available, as compat-
ibility with the tensorflow framework required version 3.5.

4http://www.numpy.org
5http://flask.pocoo.org
6https://www.mongodb.com

Figure 2: Sample screenshot of the web GUI showing the
registration of a player.

periments with their own Jass bots, we further provide
a web-based graphical user interface (GUI). On this
public available website the students can easily con-
figure and start new games and tournaments, inspect
progress and download the results. See figure 1 for an
overview of our system and a typical interaction se-
quence in five steps:

1. A student sets up her own player instance(s) on
her machine(s).

2. A student creates a new game or registers her
player(s) for one of the available games and then
starts it.

3. The web GUI sends all the relevant information
to the jass server which then executes the desired
game with the registered players.

4. During the execution of a game, the jass server
sends the necessary game information to the
player instances and requests the desired actions.

5. Once a game is finished, students can see the re-
sults on the GUI and download a file with all de-
tails about the game played. This information is of
course persisted and provided by the jass server.

Figure 2 displays the registration screen for a new
player to an open game. This Angular-based7 appli-
cation was available for the students throughout the
semester and still is on our website8. For this course
we developed the following four projects:

• jass-kit: base components for the games of Jass
and Hearts including e.g. data classes, game rules
logic, a game arena, and so on. The code allows
for easy integration of other card games.

7https://angular.io
8https://jass-server.abiz.ch
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• jass-demo: a sample player for students to allow
for a quick start;

• jass-server: a server for the setup, execution and
persistence of games and tournaments using web-
based players;

• jass-server-web-gui: a GUI for our server.

As we would like to encourage other lecturers
to experiment with this teaching approach, we make
our source code available to the community under an
Apache 2.0 license. The above mentioned projects are
therefore publicly available in our code repositories9.

5 FINAL TOURNAMENT

At the end of the semester, a tournament was car-
ried out between the different student teams. Each
team was allowed to compete with one or more player
implementations. The rules of the tournament were
taken from the rules commonly used in the Swiss
Jass championships where multiple sets of 12 games
are played and the total number of points won are
counted. Each set is played against a different op-
ponent. The implemented pairing algorithm uses a
greedy algorithm to sequentially assign random oppo-
nents not yet paired and not previously encountered,
if possible. A total of 13 player implementations were
registered from the students and augmented with one
of our implementations to add up to an even number
of players.

Additionally a voluntary challenge tournament
was set up, where the students could challenge im-
plementations from the lecturer team.

Throughout the semester we presented the vari-
ous game playing approaches to the students as de-
picted above, but no constraints were imposed on the
technique to be implemented for the final competi-
tion. The majority of the teams used a deep learning
approach for both trump and card selection. Many fil-
tered the input data by calculating statistics of human
players from the provided log files and only chose fre-
quent players for training or even only players that
performed better than average. A minimal implemen-
tation of input features was already given during the
lecture and about half the teams expanded these to
include more data. Players that filtered training data
and trained for several hours instead of only minutes
generally got better results. While many teams addi-
tionally implemented MCTS, only two used it for the
tournament with one implementation notably reach-
ing place 5 in the tournament. The winning team was

9https://gitlab.enterpriselab.ch/jass/info/

the only one to employ a deep convolutional neural
network. None of the teams was able to realize a com-
bined MCTS and deep learning approach that played
well enough even though several tried, but ended up
competing in the tournament with another approach.
Figure 3 shows a screenshot of the final tournaments’
ranking.

Our own bot that was included in the tournament
as a filler was an implementation of a deep neural
network using more features including information
which card was played by which player and trained on
a non-filtered data set. About half of the teams were
able to beat this implementation both with other deep
neural networks and MCTS implementations.

Figure 3: Screenshot showing the top ranked players of the
final tournament.

While AlphaGo Zero (Silver et al., 2018) notably
only uses several hundert iterations for their MCTS-
based reinforcement learning algorithm, pure MCTS
methods tend to need several thousands or ten thou-
sands iterations at least to perform well. This is diffi-
cult to achieve in a Python implementation for a rea-
sonable computing time. We therefore implemented
a C++ version of our framework with the intension to
use it in future lectures and tested it using two MCTS-
based players in the voluntary challenge tournament.
The C++ framework was also made available to stu-
dents towards the end of the semester, but only one
team tried to employ it. 12 student teams participated
in the challenge tournament, but none was able to win
against our implementation, which used a DNN net-
work to select trump and a MCTS implementation
with 250′000 iterations to select the played card. The
third place, with only losing one game, was occupied
by the same team that won the other tournament.
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6 EVALUATION

There was no thorough evaluation of this module and
we doubt that a statistically expressive evaluation of
this teaching method will ever be possible for us.
At least at our university, the student count for such
a non-mandatory module will always be rather low
with high bias as we naturally attract only students
interested in AI and machine learning. Finally, only
a few students tend to participate in course evalua-
tions. However, the computer science department au-
thority charged an external provider with an evalu-
ation, from which we received 15 qualitative feed-
backs out of the 29 students registered to this course.
The figures rank this module among the top-5 percent
of modules taught in the computer science depart-
ment. However, as mentioned above, please take these
figures with a grain of salt. From the textual feed-
backs we could extract great support for this teach-
ing method, the tremendous effort from the lecturer
team was highly appreciated, and many students sub-
mitted ideas and feature requests for our game plat-
form. On the negative side, some students associated
an over-average workload with this module and an
increased entry barrier due to the extensive software
frameworks made available. We are confident that we
can address the latter issue by an additional tutorial
session in the first semester week. Also, we plan to
elaborate more direct feedback mechanisms for stu-
dents: Through participation in tournaments students
learn about the performance of their player implemen-
tations relative to other student teams. By additionally
including a player implementation of normed strength
(e.g. a random card player in the simplest case) we
could impose a lower bound on the average perfor-
mance each student team should be able to achieve.

As a consequence of the enthusiastic feedback
mentioned above, the authority of our department de-
cided to instantly integrate this course into the stan-
dard computer science curriculum.

On a personal note, despite of our long-term expe-
rience as researchers and lecturers of artificial intelli-
gence classes, we have never encountered such an ac-
tive discussion among students on what intelligence
exactly means. Indeed, throughout this course stu-
dents have encountered and implemented very differ-
ent conceptions of artificial intelligence, from man-
ually programmed rules to brute-force search to in-
jected human domain knowledge over extracted pat-
terns from human data to finally an intelligent com-
puter player that, apart from the elementary game
rules, does not contain any piece of human knowl-
edge anymore. In that respect we can affirm the use of
games as a motivation tool in computer science cur-

ricula as for example presented in (Bezakova et al.,
2013) along with many references to other game-
based approaches to teaching computer science.

7 CONCLUSION AND OUTLOOK

This article exposes our ideas and first experiences
of designing an introductory class to artificial intel-
ligence along the historical development of game-
playing agents. As the centerpiece of this innovation
we made available a self-developed software frame-
work, server infrastructure and web-based graphical
user interface for students to implement increasingly
sophisticated game-playing algorithms and to evalu-
ate their code in weekly online competitions, which
is a substantially different approach to just carrying
out a single tournament at the end of an implementa-
tion project that usually spans over several semester
weeks. We intentionally chose a card game for these
regular competitions in order to bring in the additional
challenges of cooperation and imperfect information.
Furthermore, there is a huge variety of regional card
games all over the world, for which students rightly
find inspiration in online resources but no ready-made
solutions. This course setting naturally encouraged
students to let game-playing algorithms of different
degrees of sophistication compete against each other
(e.g. how does a simple rule-based agent perform
against deep learning augmented Monte Carlo tree
search), to try out hybrid solutions or to quantitatively
assess the advantage of perfect information (cheat-
ing) by letting e.g. Monte Carlo tree search compete
against its extension to information sets. We received
enthusiastic feedback from students and university
authority, which motivated us to share these ideas and
make our infrastructure available as an open-source
project to other lecturers.

We are looking forward to gaining more experi-
ence and insights employing our approach to teaching
artificial intelligence and to improve our course. And
we hope this game-based approach will inspire fellow
lecturers. In the Los Angeles Times, Murray Camp-
bell (Lien and Borowiec, 2016) called AlphaGo’s vic-
tory [...] the end of an era [...] board games are more
or less done and it’s time to move on. – Agreed, it is
time to move on to teaching and making these meth-
ods accessible to the next generation of computer sci-
entists.
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