
Hammock-based Identification of Changes in Advice Applications

between Aspect-oriented Programs

Marija Katic
Independent Researcher, London, U.K

Keywords: Aspect-oriented Programming, Program Differencing, CFG Comparison, Hammock, Hammock Graphs.

Abstract: In an aspect-oriented program, the cross-cutting functionalities are defined in pieces of advice such that they

apply to program-execution points for the core functionalities. Program changes can affect the application of

pieces of advice. To that end, a source-code differencing tool, for two versions of an aspect-oriented

program, needs to support the identification of changes in pieces of advice at locations of their applications.

To alleviate this task, we introduce an extension of the existing differencing technique for object-oriented

programs. We implemented a tool AjDiff and used it to evaluate our technique on the two examples of

aspect-oriented programs: Tracing and Telecom. We manually verified that our tool can successfully

identify changes in pieces of advice at locations of their application.

1 INTRODUCTION

Aspect-oriented programming (AOP) (Kiczales,

Lamping, et al., 1997) has been introduced as a way

for separating the cross-cutting functionalities from

the core program functionalities. With AOP, the

program code is divided into the two parts: the base

code (BC) for core functionality concerns and the

aspect code (AC) for cross-cutting concerns. The

interactions between the two parts are established

following the concepts of a joinpoint, advice, and a

pointcut.

Join-points are program-execution points where

the cross-cutting code, which is contained in pieces

of advice, is injected (applied) according to the rules

specified in pointcuts. For example, method calls

represent join-points. Advice is contained within the

main unit of the AC, aspect. There can be before,

after, and around advice executed preceding,

succeeding, and surrounding a join-point,

respectively. The final executable aspect-oriented

(AO) program is created by merging the BC and the

AC, which is called weaving. Although the advice

can be woven into the another advice, we only

consider the weaving of pieces of advice into

methods.

AOP works such that it extends the features of

another programming paradigm (Kiczales, Lamping,

et al., 1997; Kiczales et al., 2001; Coady et al.,

2001). The well-established AOP language AspectJ

(Kiczales et al., 2001) complements the object-

oriented programming paradigm (OOP). In this

paper, we base our approach on AspectJ.

Like with traditional programs such as object-

oriented (OO) programs, there is a need for

automated techniques that support the maintenance

and evolution of AO programs as well (Mens and

Demeyer, 2008; Przybyłek, 2018). At the heart of

many of such techniques, there is the identification

of changes between two versions of a program: an

original version and a modified version, which

means the identification of differences and

correspondences between the two versions

(Apiwattanapong et al., 2007). Following the

identification of changes, program entities are

classified as deleted, added, and matched (modified

or unchanged). When discussing the identification of

changes, we assume such a classification of program

entities. The examples of the techniques that use the

result of the identification of changes between two

versions of a program include change impact

analysis (Arnold, 1996; S. Zhang et al., 2008), code

review (Barnett et al., 2015), finding patterns of

changes (Qian et al., 2008), and dynamic update

generation (Katić, 2013).

The identification of changes between two

versions of a program can be done with differencing

algorithms (Apiwattanapong et al., 2007) such as

algorithms proposed by (Fluri et al., 2007; Falleri et

al., 2014; Apiwattanapong et al., 2007). For two AO

442
Katic, M.
Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs.
DOI: 10.5220/0007747504420451
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 442-451
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

programs, in addition to identification of changes

between program entities, a differencing algorithm

also needs to identify changes in applications of

pieces of advice at join-points. This is needed

because a change introduced in AO program can be

manifested in the advice applications at join-point

locations. Consider an example of moving advice

from one aspect to another; this can introduce an

unwanted change in the order of advice applications

at places where multiple pieces of advice apply to

the same join-point. Or, consider the example when

renamed method changes the semantics of pointcuts

thus causing them to incorrectly capture or miss

capturing join-points that are related to the renamed

method (Koppen and Störzer, 2004). This issue is

known as the fragile pointcut problem.

The manual identification of changes in advice

applications might be tedious and time-consuming

even if the total number of pieces of advice per join-

point is small. This is because software systems

often contain millions of source code lines and

applying advice can be found at many of them. For

example, advice such as logging can be applicable to

many, if not all the method calls in a program.

Changing such a program can affect the application

of logging advice at many join-point locations. To

this end, the automated support is needed for the

identification of changes in pieces of advice per

join-points.

The application of the existing differencing

approaches for OO programs such as

(Apiwattanapong et al., 2007; Fluri et al., 2007;

Falleri et al., 2014) to AO programs does not yield

the expected results because such proposals do not

account for interactions between the BC and the AC.

For that reason, researchers extend or complement

the existing proposals by focusing on these

interactions. Thus, (Koppen and Störzer, 2004;

Stoerzer and Graf, 2005), in their approach, which

tackles the fragile pointcut problem, focus on the

identification of changes in advice applications at

join-points. However, they do not deal with

matching of program statements, and only match

join-points based on the program elements (e.g.

methods) that contain or reference join-points. The

approach for differentiating AO programs at the

statement level, proposed by (Görg and Zhao, 2009),

misses to relate changes in advice applications to

their corresponding join-points. Furthermore, the

work proposed by (Khatchadourian et al., 2017),

which deals with the fragile pointcut problem, does

not provide a differencing result as it is, but suggests

pointcuts that possibly become incorrect after the

change of the BC. It works in real-time, thus

notifying a developer about possibly incorrect

pointcuts (causing incorrect advice applications) as

soon as the change has been introduced. Approaches

that work in the context of another task such as

change impact analysis (S. Zhang et al., 2008) and

regression testing (Xu and Rountev, 2007) do not

focus on the classification of changes in advice

applications.

In summary, existing pure differencing

approaches provide separate approaches to the ideas

of the identification of changes between program

statements and the identification of changes between

advice applications at join-points. In this paper, we

unify these two existing ideas and propose a novel

technique that deals with both of them at the same

time, thus providing a single differencing approach

for AO programs.

We propose the technique as an extension of the

technique from (Apiwattanapong et al., 2007)

because their algorithm CalcDiff works on

control-flow graphs1 (CFGs) and because CFGs have

already proved convenient, as noted by (Xu and

Rountev, 2007), for modelling of the complicated

semantics of AO programs. In addition, compared to

other proposals such as (Fluri et al., 2007; Falleri et

al., 2014), CalcDiff improves the detection of

changes that are specific to OOP. Some of these

changes can even be responsible for the changed

pointcut semantics. For instance, changing the

position of a class in the inheritance tree can cause

that pointcuts unexpectedly capture or miss

capturing join-points within that class.

It is worth mentioning that (Görg and Zhao,

2009) applied CalcDiff to their CFG

representation of AO programs. Although the details

of the representation are not available in the English

language, we concluded that it accounts for the

interactions between the BC and the AC.

The focus of our technique is on the

identification of changes between advice

applications at those join-points that are matched

between the two versions. Our work includes the

clarification and the alterations of existing

extensions of the CFG that account for the

interactions between the AC and the BC, and it

includes the extending of CalcDiff algorithm.

The contributions of this paper are as follows:

1 The CFG of a method m CFGm=(N, E, ns, ne) is a directed graph

that represents all possible paths traversed through the method

(Aho et al., 2006). Nodes (set N) represent statements, and edges

(set E) represent flow of control between statements. There are a

single entry node ns and a single exit node ne.

Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs

443

 The definition of the alterations of the CFG

representation for the interactions between the

BC and the AC, which is inspired by the work

provided by (Görg and Zhao, 2009).

 The novel definitions of single-entry-single-

exit CFG sub-graphs, referred to as artificial

hammocks, that are used to relate pieces of

advice to join-points.

 The extension of CalcDiff algorithm to AO

programs, called CalcDiffAO, which uses

the artificial hammocks to identify changes in

advice applications for matched join-points.

 The evaluation of the usefulness of our

approach for two simple examples of AO

programs, which is based on our tool that

implements the proposed representation and

CalcDiffAO for AspectJ programs.

The rest of the paper is structured as follows. The

motivating example is given in Section 2. Section 3

brings out the CFG representation, definitions of

artificial hammocks and the differencing algorithm.

Section 4 presents the AjDiff tool and the evaluation

studies. Section 5 gives conclusions and outlines the

directions for future work.

2 MOTIVATING EXAMPLE

In this section, we present an example demonstrating

how a program change can affect the application of

pieces of advice in an undesirable way.

In AspectJ, the order of execution of multiple

pieces of advice that apply to the same join-point is

inferred not only from the type of the advice

(before, after, around) as mentioned in the

introduction, but also from the precedence rules

(Laddad, 2009). Around advice that has precedence

over another advice, surrounds that advice and

determines (via the call to proceed) whether that

advice will be executed or not (Laddad, 2009). It

also controls the execution of a join-point that it

surrounds via the call to proceed.

We extended Telecom example from the AspectJ

example suite. For the original version we modified

and extended the example. The modified version is

created from the original version by changing only

the corresponding AC. In Listings 1 and 2, we

present only an excerpt of the code that is sufficient

for the illustrative purposes.

The BC, which is the same in both versions, is

not listed. It includes the code that enables the

communication via the telephone call between a

caller and a receiver. For such a call to be

established, there must be established a connection

between the caller and the receiver (method

complete does this). The connection is modelled

with a class Connection. We extended Telecom

such that the caller can request that the connection is

established only if the receiver accepts to pay for the

call. If the caller makes such a request, then the call

and the connection are considered to be conditional.

Listing 1: The AC in the original version.

1: aspect Aspect {/*...*/

2: pointcut pcConn (Connection c):

target(c) && call(void

Connection.complete());

3: after (Connection c): pcConn(c){

/*...timing advice...*/}

4: void around (Connection c):pcConn(c)

{/*...check conn...*/ proceed(c);}

5: }

Listing 2: The AC in the modified version.

1: aspect Aspect {/*...*/

2: pointcut pcConn (Connection c):

target(c) && call(void

Connection.complete());

3: void around (Connection c):pcConn(c)

{/*... check conn...*/ proceed(c);}

4: after (Connection c): pcConn(c){

/*...timing advice*/ }

5: after (Connection c): pcConn(c)

{/*...recording advice...*/ }

6: }

We investigate the application of pieces of

advice to join-points that refer to invocations of the

method complete. Listing 1 shows after and

around pieces of advice that apply to such join-

points in the original version of Telecom. Listing 2

shows around and two after pieces of advice that

apply to such join-points in the modified version of

Telecom.

The around advice from Listing 1 wraps all

join-points with calls of the method complete in

order to prevent the execution of that method for

conditional connection that must not be established

as a consequence of the (reject) response provided

by the receiver. The after advice starts a timer for

measuring the duration of the call once the

connection is established. It is placed before the

around advice within the aspect Aspect so that its

execution can be controlled by the around advice.

In the modified version of Telecom (Listing 2),

we added new after advice that supports the

recording of calls and that applies according to the

same pointcut as the timing after advice. To

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

444

illustrate the failure, we placed that advice below the

around advice and we moved the timing after

advice also below the around advice. In this way,

the execution of two after pieces of advice is not

controlled by the around advice. This is not correct

because after pieces of advice must not execute

unless the connection is established, which is

controlled by the around advice. This mistake

might appear small but it can have adverse and

potentially widespread consequences on program

behaviour because it affects all the statements with

invocations of the method complete. The same

error might happen if a programmer, during the

refactoring process, creates a separate aspect for

each advice and forgets to define the precedence

order among the aspects.

Our approach can be used to detect changes in

the application of timing and recording pieces of

advice.

3 APPROACH

CalcDiffAO is the differencing algorithm that

extends CalcDiff such that it works for AO

programs (Katić, 2013; Katic and Fertalj, 2013). It

accepts two versions of an AO program, the original

version P and the modified version P', and compares

them at the three levels in the following order: the

class and interface levels (level 1), the method level

(level 2), and the node level (level 3). The three-

level comparison originates from CalcDiff.

CalcDiffAO introduces the comparison of aspects

at the level 1 and the comparison of pieces of advice

at the level 2. The classification of compared

program entities is done such that equal entities are

classified as matched. Otherwise, they are classified

as deleted if they are from P or as added if they are

from P'.

At the Level 1, CalcDiff compares classes

and interfaces based on their fully-qualified names

(package name joined with class or interface name).

This also works for the comparison of aspects, in

which case the fully-qualified name of an aspect

consists of the package name joined with the aspect

name.

At the Level 2, for matched classes, interfaces

and aspects, CalcDiffAO compares fully-qualified

names of methods (fully-qualified class / interface /

aspect name joined with method signature) in a

similar way as CalcDiff. In particular, while

CalcDiffAO matches only methods where their

signature is equal, CalcDiff also matches

methods with same names if it previously misses to

match them based on their signatures. In order for

this comparison to hold for pieces of advice from

matched aspects, we define the advice identifier as a

combination of the aspect name, the advice

declaration and the pointcut specification.

At the Level 3, CalcDiff needs to be changed

significantly so that changes in the application of

pieces of advice can be identified. This is where is

the main contribution of our proposal.

The output of CalcDiff consists of sets of

matched classes, interfaces, and methods, and of the

set N of matched pairs of CFG nodes along with the

status of their comparison (modified or unchanged).

CalcDiffAO extends this output with sets of

matched aspects and pieces of advice, and extends

the set N such that for each matched node pair, there

are relevant advice-nodes classified in sets as added,

deleted, modified or unchanged.

3.1 Comparison at the Level 3

For matched pairs of methods, CalcDiff

compares their statements. In addition to that,

CalcDiffAO compares pieces of advice per

matched method statements. Statements of matched

pieces of advice are also compared, but not pieces of

advice applied to them. Further, we only refer to

method statements.

To compare pieces of advice per matched

statements, CalcDiff is changed as follows: (1)

Methods are represented with aspect-oriented

control-flow graphs (AO-CFGs) - CFGs that

account for the interactions between the BC and the

AC (Katić, 2013); (2) The notion of a single-entry-

single-exit CFG sub-graph, which is called

hammock, is extended so that aspect-related parts of

AO-CFG can be recognized. Such a hammock that

marks an aspect part of the AO-CFG is referred to as

the artificial hammock; and (3) To support the

comparison of artificial (aspect) hammocks, new

steps of the algorithm are introduced.

AO-CFG: CFGs for AO program proposed by

(Zhao, 2006; Bernardi and Lucca, 2007; Xu and

Rountev, 2007) are not suitable to be used in

CalcDiffAO without their alterations because

they provide the inter-procedural representation,

while we need the intra-procedural representation

(as it has been used in CalcDiff). The authors in

(Görg and Zhao, 2009) used the intra-procedural

representation, but they did not provide enough

details about the creation of graph nodes. To

overcome this issue, we have defined the extended

CFG of a method, which is called AO-CFG, that is

Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs

445

suitable for our idea of extending CalcDiff. After

defining the AO-CFG, we will clarify the

differences between the AO-CFG and the

representation used by (Görg and Zhao, 2009).

CalcDiff is based on a traditional CFG

representation of a method called ECFG

(Apiwattanapong et al., 2007). The ECFG is

enhanced CFG that models OO features such as

dynamic binding and exception handling. For

method call statements, in AO-CFG, we apply the

modelling of dynamic binding from the ECFG,

which facilitates the detection of method-invocation

changes emerged because of changes in class

hierarchies.

In the process of building AO-CFG, the

extensions are done at the CFG nodes that represent

join-points. Which nodes represent join-points

depends on the type of a join-point. We consider

only the method execution and the method call join-

point types. Other types such as field get and set

join-points can be considered in an analogous way.

Since the method execution join-point

encompasses the body of a method, all the CFG

nodes for the method represent this join-point. For a

statement corresponding to the call of a method,

there are at least three nodes in the CFG as defined

by ECFG. They all represent the method call join-

point. Hereafter, we refer to all CFG nodes for a

join-point as a join-point-node.

How the CFG is extended is described with the

aspect graph (AG) and the around graph (ARNG).

The AG for a join-point p and pieces of advice that

apply to p is a CFG AGp = (Np, Ep, aentryp, aexitp)

that represents the paths of execution for p and the

corresponding pieces of advice. There are the

aspect-entry-node aentryp and the aspect-exit-node

aexitp that represent the entry and the exit node of

the AGp respectively. Np contains the join-point-

node, and, for each advice that applies to p, the

advice-node. The advice-node is labelled with the

corresponding advice identifier. Edges in Ep

represent flow of control between the join-point and

the corresponding pieces of advice.

For around advice, apart from the corresponding

advice-node, which is also called around-entry-

node, in AG, there is the around-exit-node that

denotes the end of the execution of the around

advice. This helps to recognize pieces of advice that

are surrounded with the around advice. The ARNG

is a sub-graph of AG such that it is also AG in which

the aspect-entry-node is equal to the around-entry-

node and the aspect-exit-node is equal to the around-

exit-node.

The AG represents pieces of advice that can be

applied according to static pointcuts (evaluated

during compile-time) and dynamic pointcuts

(evaluate during run-time). Similarly to (Stoerzer

and Graf, 2005), for the dynamic pointcuts, we

conservatively assume compile-time evaluation.

The AO-CFG for a method m is the CFG in

which each join-point-node p with applying advice

is replaced with a corresponding AG. If p is the

execution join-point, then, after the replacement of p

with AGp, new entry and exit nodes for the AO-CFG

are created. An edge is created from a newly created

entry node to aentryp, and an edge is created from

aexitp to a newly created exit node of the AO-CFG.

This is to facilitate the comparison between two

execution join-points where applying advice exists

for only one of them. The definition of AO-CFG

conforms to the formal definition of CFG.

The similarities and differences between the AO-

CFG and the CFG used by (Görg and Zhao, 2009)

are as follows. The main similarity between the two

representations is that in both of them there is a

single node that corresponds to each advice.

Furthermore, in the representation used by Görg and

Zhao, it is not clear if they create weave and return

nodes (this is how they specify them) for each

advice node that is created at a join-point location or

if these nodes are created only once per join-point.

Another difference is the modelling of the around

advice. In particular, they do not create a node that

could be considered as an equivalent to the around-

exit-node of the AO-CFG. For that reason, in their

representation, it is not clear how to recognize pieces

of advice that are surrounded with the around

advice.

Hammocks: For a CFG G, a hammock H = (N', E',

n', e') is its sub-graph with the start node n' in H and

the exit node e' not in H, such that all the edges from

(G\H) to H go to n' and all the edges from H to

(G\H) go to e' (Ferrante et al., 1987). A hammock is

minimal if there is no another hammock with the

same start node and with a fewer number of nodes

(Apiwattanapong et al., 2007). We assume minimal

hammock, unless it is specified differently.

Differencing based on hammocks was adapted in

CalcDiff because the hammock structure

appeared to be useful for the identification of

changes between two CFGs (Apiwattanapong et al.,

2007).

The structure of the AO-CFG with hammocks is

built in a way proposed by Apiwattanapong et al.

First, we identify hammocks in AO-CFG, then, for

each hammock H we replace all its nodes with a

newly created node called a hammock node. The

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

446

replacement is done in such a way that all

predecessors of the start node of H are appropriately

connected with the hammock node and the

hammock node is appropriately connected with the

exit node of H. This procedure is repeated on an

obtained graph, called a hammock graph, until a

single hammock node is left. Similarly to

CalcDiff, CalcDiffAO also uses algorithms for

the identification of hammocks that are defined by

(Laski and Szermer, 1992) and (Ferrante et al.,

1987). Further, we focus on special hammocks,

called artificial hammocks, because they are our

main novelty with respect to hammocks.

Artificial Hammocks: By its definition, a hammock

is "unaware" of whether a node that it contains

belongs to the BC or to the AC. Therefore, in an

environment where we rely on hammocks to

facilitate the differencing of two AO-CFGs, the

association of advice-nodes to the corresponding

join-point-nodes is hampered. Having a graph

structure that supports such an association would

enable us to extend CalcDiff so that it preserves

the matching of two versions of the BC while

identifying changes in pieces of advice at the

corresponding BC statements. To this end, we define

the aspect hammock, the join-point hammock, and

the around hammock. They are called artificial

hammocks because they are defined to conform to

the formal hammock definition, but they would not

necessarily be identified as hammocks when

applying the formal hammock definition. They are

not necessarily minimal, and, for a join-point p,

they are defined as follows:

The Aspect Hammock (AH) corresponds to the

AG Gp = (Np, Ep, aentryp, aexitp). Its start and exit

nodes correspond to aentryp and to a successor of

aexitp respectively. If p is the execution join-point,

then AH is called the execution AH (EAH). If AG is

ARNG, then the AH is referred to as the Around

Hammock (ARNH).

The Join-Point Hammock (JPH) corresponds to

the join-point-node for p and it is a sub-hammock of

the AH for p. Its start node is the node from the join-

point-node that dominates any node from the join-

point-node. Its exit node is the node (not from the

join-point-node) that post-dominates any node from

the join-point-node. This means that for a call join-

point that is modelled with more than three nodes,

the corresponding JPH is not minimal. This

facilitates the matching of join-point-nodes,

independently of the aspect-related nodes.

We adapted the algorithms from (Laski and

Szermer, 1992) and (Ferrante et al., 1987) such that,

in the AO-CFG, the artificial hammocks are

identified in addition to minimal hammocks. An

artificial hammock is collapsed into a single node in

the same way as a minimal hammock.

3.1.1 Comparison of Aspect Hammocks

In order to match hammocks from P and P',

CalcDiff uses the algorithm HmMatch which is

based on the algorithm for finding an isomorphism

between two graphs (Laski and Szermer, 1992). For

a pair of hammock nodes (n, n'), HmMatch

recursively expands them and, while traversing

through the resulting graphs in a depth-first search

manner, it compares and matches their nodes via the

comp procedure. HmMatch uses the values of the

two input parameters LH and S. LH is used to

determine the depth of the graph until which the

comparison is done. S is used as a similarity

threshold when HmMatch determines the similarity

between two hammocks. HmMatch returns a set of

matched node pairs from the pair (n, n').

CalcDiffAO

HmMatchAO

ExtendedHmMatch

comp

compareAspectHamm...

adviceNodeClass...

expandHammocks

Figure 1: Call graph for the differencing algorithm.

We changed HmMatch so that it can identify

changes in aspect-related nodes for matched join-

point-nodes. We call the changed algorithm

ExtendedHmMatch. Figure 1 presents our

interventions of CalDiff and HmMatch in form of

the call graph.

Our changes of HmMatch include: (1) The input

of ExtendedHmMatch also includes the set NA

with the information about changes in bodies

between pieces of advice matched at the level 2.

This is used in the classification of advice-nodes; (2)

Before a pair of nodes is compared with comp

procedure, an additional check for AHs is

incorporated so that, if at least one of the two nodes

is AH node, they are compared with the algorithm

HmMatchAO instead; (3) For each matched pair of

BC nodes (n ∈ P, n'∈ P'), the algorithm returns the

status of their comparison (modified or unchanged)

and the four sets of related advice-nodes. Let a and

a' denote advice-nodes. These sets are:

 D ={a ∈ P | a applies to n; (∄ a' ∈ P' such that a'

is a counterpart advice-node for a)}

 A ={a' ∈ P' | a' applies to n'; (∄ a ∈ P such that a

is a counterpart advice-node for a') }

Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs

447

 M ={(a, a') | a applies to n ˄ a' applies to n' ˄

a and a’ are classified as modified because of

the change in the body or in the execution

order for the corresponding pieces of advice}

 U ={(a, a') | a applies to n ˄ a' applies to n' ˄ a

and a’ are classified as unchanged for the

corresponding pieces of advice }

Algorithm 1 illustrates the steps of HmMatchAO

that, for a pair of nodes (n, n') returns the pair of

join-point nodes (jp, jp') and, in sets A, D, M, and U,

related advice-nodes. It also returns the comparison

result for jp and jp' after comparing them by calling

ExtendedHmMatch. This result is returned via the

variable status ("modified" if at least one pair in N is

modified, otherwise "unchanged").

Algorithm 1: HmMatchAO.

Algorithm HmMatchAO

1: if n is not AH and n’ is AH then

2: if n’ is EAH then jp←super-hammock of n

3: else jp ← n end if

4: A, jp’ ← expandHammocks(n’)

5: else if n is AH and n' is not AH then

6: if n is EAH then jp’←super-hammock of n’

7: else jp’ ← n’ end if

8: D, jp ←expandHammocks(n)

9: else if n is not EAH and n’ is EAH then

10: jp ← super-hammock of n

11: A, jp’ ← expandHammocks(n’)

12: else if n is EAH and n’is not EAH then

13: jp’ ←super-hammock of n’

14: D, jp ← expandHammocks(n)

15: else

16: A, D, M, U, (jp, jp’) ←

compareAspectHammocks(n, n’, NA,

false)

17: A, D, M' ←

adviceNodeClassification(A, D)

18: M ← M ∪ M'

19: end if

20: N←ExtendedHmMatch(jp, jp’, LH,S, NA)

21: return {(jp, jp’), {A, D, M, U}, status}

HmMatchAO uses the following procedures. For

a hammock node n, expandHammocks expands n

and returns a join-point-node and a set of

corresponding advice-nodes. The procedure

adviceNodeClassification matches advice-

nodes from sets A and D and returns a set of nodes

that are matched (M'), while removing

corresponding matched nodes from A and D (sets are

also returned). For a pair of AH, EAH or ARNH

nodes, compareAspectHammocks returns a pair

(jp, jp') and, in sets A, D, M, and U, related advice-

nodes. It does that following these steps:

(1) Hammock nodes n and n' are expanded and

prepared such that the aspect-entry-node, the aspect-

exit-node and the around-exit-node, which are not

relevant for the comparison, are removed from them.

In the process of removing a node, predecessors and

successors of the node are connected with the rest of

the graph so that the control-flow remains preserved.

(2) A pairwise comparison of nodes from the two

hammocks is done starting from their start nodes.

Thus, advice-nodes with the same order of

application with respect to the matching join-point-

nodes can be matched.

(3) Nodes are compared based on their types. For a

pair of advice-nodes, their advice identifiers are

compared. Also, the result of the comparison of their

bodies (available from NA) is used to conclude if the

pair if equal or not. For the same identifiers and

bodies, the pair is added to U. Otherwise, only if

identifiers are the same, the pair is added to M. For

two ARNH nodes, compareAspectHammocks is

called recursively if the identifiers of their around-

entry-nodes are the same. Two nodes with different

identifiers or two nodes that are not of the same type

are classified into A or D, depending on their origin.

(4) To increase the number of matched advice-

nodes, added and deleted ARNHs are compared.

Two ARNHs with the same identifiers are compared

with compareAspectHammocks, and they are

removed from A and D. This accounts for matching

of ARNHs at different positions with respect to

matched join-point-nodes. Matched advice-nodes

from such ARNHs are all classified as modified

because of the change in the order of execution. To

detect this particular origin for advice-nodes,

compareAspectHammocks uses a Boolean

variable that it receives via the input parameters. Its

value is set to true for advice-node from ARNHs at

different positions regarding join-points.

(5) For the ARNH classified as deleted (added), all

nested advice-nodes are classified as deleted

(added). Advice-nodes and join-point-nodes within

the ARNH are detected with expandHammocks.
For a pair of call join-points from Section2,

Figure 2 partly illustrates the steps of the

comparison in advice applications from the point

when HmMatchAO receives a pair of AHs and

continues the comparison at lines 16 and 17. We can

see that a pair of AH nodes is expanded, and then a

pair of ARNHs is expanded. Finally, into

HmMatchAO, there are returned a pair of call join-

points, a set A with two after pieces of advice, a

set D with after advice, and a set U with a pair of

around pieces of advice. This classification is

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

448

improved by adviceNodeClassification,

which takes two matching after pieces of advice

from A and D and returns them to HmMatchAO.

This pair of after pieces of advice has been

classified as modified because of the modification in

their application order (unlike in P', in P the advice

execution is controlled by the around advice).

aentry

aexit

aentry

after...

aexit

after...

ARNH

ARNH

around...

JPH

arn.-exit..

after...

around...

arn.-exit..

after...

after...

JPH

AH AH

P P’ P P’

Figure 2: Comparison of advice applications.

Worst-Case Time Complexity: We only

analyse the cost for the comparison of advice-nodes

introduced by CalcDiffAO. Let m and n be the

maximum number of advice-nodes per join-point-

node in P and P' respectively. In the worst case, we

compare advice-nodes of two AHs, and all of them

are different. The two main steps are: graph traversal

for a comparison and classification of advice-nodes;

comparison of the sets A and D. If we assume a bit

vector representation of a set, then the running time

of the first step is O(max(m,n)) and the running time

of the second step is O(min(m,n)). This means that

the additional comparison of the advice-nodes costs

us O(m+n).

4 EVALUATION

In order to evaluate our approach, we developed a

tool called AjDiff whose main components are:

compilation, graph construction, graph storage and

data access layer (DAL), and change identification.

For the compilation, we used abc compiler which

uses Soot (Vallée-Rai et al., 1999) to generate

Jimple intermediate code representation (Vallee-Rai

and Hendren, 1998). Jimple is suitable for building

AO-CFGs which are built as a part of the graph

construction component. The implementation of the

advice nesting tree (Xu and Rountev, 2007) from

AJANA framework (Xu and Rountev, 2008) is used

for the calculation of the advice order of execution

in AO-CFGs. AO-CFGs are stored in the graph

database created with Neo4J 2 . The Change

2 https://neo4j.com/

Identification component provides the

implementation of CalcDiffAO. It is dependent on

graph storage via DAL for providing the access to

AO-CFGs in the database. Although AjDiff does not

support the exception-handling, it works for

programs that apply exception-handling principles.

Table 1: Tracing and Telecom - main characteristics.

 Class/Aspect Method/Advice Call/Exec.

v1 5/1 32/4 0/19

v2 4/2 32/4 0/19

v3 4/2 32/4 0/16

v1 7/0 32/0 0/0

v2 8//2 55/3 2/0

v3 8/2 46/4 2/0

We run AjDiff on pairs of versions of two

programs from the AspectJ (version 1.8.6) example

suite: Tracing and Telecom. We used three versions

of Tracing, and build configurations basic, billing

and timing for the versions v1, v2 and v3 of

Telecom respectively. Table 1 presents the main

characteristics for versions of Tracing in the first

three rows and, in the other rows, it presents the

main characteristics for versions of Telecom. There

are only execution join-points in Tracing. In

Telecom, there are only call join-points.

We run AjDiff on pairs of Tracing (v1, v2), (v1,

v3), and (v2, v3) as well as on the same pairs of

Telecom. The parameters LH and S were both set to

zero. We manually verified the correctness of

identified changes. To get an indication of the

amount of matched join-points with changes in

pieces of advice, we looked for the number of join-

points pairs in the four categories: (1) pairs with

added pieces of advice only, (2) pairs with deleted

pieces of advice only, (3) pairs of the same type (call

or execution) with at least one of: deleted advice,

added advice, or a pair of matched-modified pieces

of advice, and (4) pairs of the same type with

matched-unchanged pieces of advice only. We also

looked for changes in classes, aspects, pieces of

advice and methods. The results are presented in

Table 2 where in each of the four categories (Added,

Deleted, Modified, Unchanged), the first, the second

and the third column refer to the results of AjDiff for

the pairs (v1, v2), (v1, v3), and (v2, v3) respectively.

The results show that with our approach it is

possible to identify numerous join-point locations

with changes in advice applications, while the

number of pieces of advice in compared programs is

small. There are 19 such join-point locations found

for (v1,v2) of Tracing while there are only 4 pieces

of advice in both compared programs.

Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs

449

Table 2: Tracing and Telecom - comparison results.

 Added Deleted

T
R

A
C

IN
G

 Call - - - - - -

Execution - - - - 3 3

Class - - - 1 1 -

Aspect 2 2 2 1 1 2

Advice 4 4 4 4 4 4

Method 11 11 11 11 11 11

T
E

L
E

C
O

M
 Call 2 2 - - - -

Execution - - - - - -

Class 2 2 1 1 1 1

Aspect 2 2 1 - - 1

Advice 3 4 2 - - 1

Method 26 17 8 3 3 17

 Modified Unchanged

T
R

A
C

IN
G

 Call - - - - - -

Execution 19 16 16 - - -

Class 3 3 3 1 1 1

Aspect - - - - - -

Advice - - - - - -

Method 19 19 19 2 2 2

T
E

L
E

C
O

M
 Call - - 1 - - 1

Execution - - - - - -

Class 5 2 5 1 4 2

Aspect - - 1 - - -

Advice - - - - - 2

Method 5 5 6 24 24 32

It is worth mentioning several interesting

observations: (1) A pair of matched classes or

aspects is considered modified if there is at least one

change between them, which can be a change in

advice applications. (2) Even though the numbers

reported might be the same among versions,

identified changes might be different. For example,

for pairs (v1, v2) and (v1, v3) of Telecom, AjDiff

identified two call join-points with only added

pieces of advice. In (v1, v2), there are two added

after pieces of advice, and in (v1, v3), there is

only one added after advice. (3) For (v1, v3) of

Telecom, for the aspect Timing, we found the

example of AjDiff not supporting the identification

of pieces of advice, which was expected. (4) The

example of the change in the advice order of

execution is found in (v2, v3) of Telecom, for a

matched pair of call join-points drop.

5 CONCLUSIONS

The current approaches to identifying changes

between two versions of an AO program do not

work at the statement level, they are not designed for

pure program differencing, or they do not provide

enough precision with respect to the classification of

changes in advice applications at matched join-

points. In this paper, we present a differencing

algorithm for AO programs that, for two versions of

the AO program, gives us matched code parts and

for each matched pair of join-points it reports the

corresponding added, deleted, modified and

unchanged pieces of advice. Although our approach

cannot identify changes where advice does not apply

but should apply, which is possible with the work in

(Khatchadourian et al., 2017), it is the first approach

that gives the most precise information about

changes in advice applications at matched join-point

statements that are matched using one of the state-

of-the-art techniques for OO programs. To evaluate

our approach, we developed the AjDiff tool and

executed two small studies. The results show that the

approach could help developers and researchers who

need to identify changes in advice applications.

In future, we plan to improve our tool and to

fully evaluate our approach on real-world AO

programs to confirm our current findings. We are

interested in evaluating the usefulness and efficiency

of our approach with and without the use of the

database for storage of program versions. We also

plan to investigate the impact of the value of LH and

S on the precision and correctness of our technique.

ACKNOWLEDGEMENTS

I am grateful to Professor Kresimir Fertalj who

provided me with the environment to work on this

research under the project grant 036-0361983-2022

funded by the Ministry of Science, Education and

Sport, Republic of Croatia, as well as for his

valuable pieces of advice. For useful discussions, I

am grateful to Dr Boris Milasinovic, and PhD

students Dubravka Pukljak-Zokovic and Mario

Brcic.

REFERENCES

Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D., 2006.

Compilers: Principles, Techniques, and Tools.

Prentice Hall.

Apiwattanapong, T., Orso, A., Harrold, M.J., 2007. JDiff:

A differencing technique and tool for object-oriented

programs. Autom. Softw. Eng. 14.

https://doi.org/10.1007/s10515-006-0002-0

Arnold, R.S., 1996. Software Change Impact Analysis.

IEEE Computer Society Press Los Alamitos, CA,

USA.

Barnett, M., Bird, C., Brunet, J., Lahiri, S.K., 2015.

Helping Developers Help Themselves: Automatic

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

450

Decomposition of Code Review Changesets, in:

Proceedings of the 37th International Conference on

Software Engineering - Volume 1, ICSE ’15. IEEE

Press, Piscataway, NJ, USA, pp. 134–144.

Bernardi, M.L., Lucca, G.A. di, 2007. An Interprocedural

Aspect Control Flow Graph to Support the

Maintenance of Aspect Oriented Systems, in: 2007

IEEE International Conference on Software

Maintenance. pp. 435–444.

https://doi.org/10.1109/ICSM.2007.4362656

Coady, Y., Kiczales, G., Feeley, M., Smolyn, G., 2001.

Using aspectC to Improve the Modularity of Path-

specific Customization in Operating System Code.

SIGSOFT Softw Eng Notes 26, 88–98.

https://doi.org/10.1145/503271.503223

Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M.,

Montperrus, M., 2014. Fine-grained and Accurate

Source Code Differencing, in: Proceedings of the 29th

ACM/IEEE International Conference on Automated

Software Engineering, ASE ’14. ACM, New York,

NY, USA, pp. 313–324.

https://doi.org/10.1145/2642937.2642982

Ferrante, J., Ottenstein, K.J., Warren, J.D., 1987. The

Program Dependence Graph and Its Use in

Optimization. Acm Trans. Program. Lang. Syst. 9,

319–349.

Fluri, B., Wuersch, M., PInzger, M., Gall, H., 2007.

Change Distilling: Tree Differencing for Fine-Grained

Source Code Change Extraction. IEEE Trans Softw

Eng 33, 725–743.

https://doi.org/10.1109/TSE.2007.70731

Görg, M.T., Zhao, J., 2009. Identifying Semantic

Differences in AspectJ Programs, in: Proceedings of

the Eighteenth International Symposium on Software

Testing and Analysis, ISSTA ’09. ACM, New York,

NY, USA, pp. 25–36.

https://doi.org/10.1145/1572272.1572276

Katić, M., 2013. Dynamic Evolution of Aspect Oriented

Software (PhD Thesis). University of Zagreb, Zagreb,

Croatia.

Katic, M., Fertalj, K., 2013. Identification of Differences

between Aspect-Oriented Programs. Seminar Series on

Advanced Techniques & Tools for Software

Evolution.

Khatchadourian, R., Rashid, A., Masuhara, H., Watanabe,

T., 2017. Detecting broken pointcuts using structural

commonality and degree of interest. Sci. Comput.

Program. https://doi.org/10.1016/j.scico.2017.06.011

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,

J., Griswold, W.G., 2001. An Overview of AspectJ, in:

Proceedings of the 15th European Conference on

Object-Oriented Programming, ECOOP ’01. Springer-

Verlag, London, UK, UK, pp. 327–353.

Kiczales, G., Lamping, J., et al., 1997. Aspect-oriented

programming. Presented at the ECOOP 97, Springer,

pp. 220–242.

Koppen, C., Störzer, M., 2004. PCDiff: Attacking the

Fragile Pointcut Problem. Presented at the European

Interactive Workshop on Aspects in Software

(EIWAS).

Laddad, R., 2009. Aspectj in Action: Enterprise AOP with

Spring Applications, second. ed. Manning

Publications.

Laski, J., Szermer, W., 1992. Identification of Program

Modifications and its Application in Software

Maintenance. Presented at the ICSM, IEEE, pp. 282–

290. https://doi.org/10.1109/ICSM.1992.242533

Mens, T., Demeyer, S., 2008. Software Evolution, first.

ed. Springer.

Przybyłek, A., 2018. An empirical study on the impact of

AspectJ on software evolvability. Empir. Softw. Eng.

23, 2018–2050. https://doi.org/10.1007/s10664-017-

9580-7

Qian, Y., Zhang, S., Qi, Z., 2008. Mining Change Patterns

in AspectJ Software Evolution, in: Computer Science

and Software Engineering, 2008 International

Conference On. pp. 108–111.

https://doi.org/10.1109/CSSE.2008.802

Stoerzer, M., Graf, J., 2005. Using pointcut delta analysis

to support evolution of aspect-oriented software, in:

21st IEEE International Conference on Software

Maintenance (ICSM’05). pp. 653–656.

https://doi.org/10.1109/ICSM.2005.99

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P.,

Sundaresan, V., 1999. Soot - a Java bytecode

optimization framework, in: Press, I. (Ed.), . Presented

at the Proceedings of the 1999 conference of the

Centre for Advanced Studies on Collaborative

research.

Vallee-Rai, R., Hendren, L., 1998. Jimple: Simplifying

Java Bytebode for Analyses and Transformations.

Xu, G., Rountev, A., 2008. AJANA: a general framework

for source-code-level interprocedural dataflow

analysis of AspectJ software. Presented at the 7th

International Conference on Aspect-Oriented Software

Development, ACM.

https://doi.org/10.1145/1353482.1353488

Xu, G., Rountev, A., 2007. Regression Test Selection for

AspectJ Software. Presented at the 29th International

Conference on Software Engineering, ICSE ’07, IEEE

Computer Society.

https://doi.org/10.1109/ICSE.2007.72

Zhang, S., Gu, Z., Lin, Y., Zhao, J., 2008. Change impact

analysis for AspectJ programs, in: Software

Maintenance, 2008. ICSM 2008. IEEE International

Conference On. pp. 87–96.

https://doi.org/10.1109/ICSM.2008.4658057

Zhao, J., 2006. Control-Flow Analysis and Representation

for Aspect-Oriented Programs. Presented at the Sixth

International Conference on Quality Software, pp. 38–

48. https://doi.org/10.1109/QSIC.2006.20

Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs

451

