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Abstract: In an aspect-oriented program, the cross-cutting functionalities are defined in pieces of advice such that they 

apply to program-execution points for the core functionalities. Program changes can affect the application of 

pieces of advice. To that end, a source-code differencing tool, for two versions of an aspect-oriented 

program, needs to support the identification of changes in pieces of advice at locations of their applications. 

To alleviate this task, we introduce an extension of the existing differencing technique for object-oriented 

programs. We implemented a tool AjDiff and used it to evaluate our technique on the two examples of 

aspect-oriented programs: Tracing and Telecom. We manually verified that our tool can successfully 

identify changes in pieces of advice at locations of their application. 

1 INTRODUCTION 

Aspect-oriented programming (AOP) (Kiczales, 

Lamping, et al., 1997) has been introduced as a way 

for separating the cross-cutting functionalities from 

the core program functionalities. With AOP, the 

program code is divided into the two parts: the base 

code (BC) for core functionality concerns and the 

aspect code (AC) for cross-cutting concerns. The 

interactions between the two parts are established 

following the concepts of a joinpoint, advice, and a 

pointcut.  

Join-points are program-execution points where 

the cross-cutting code, which is contained in pieces 

of advice, is injected (applied) according to the rules 

specified in pointcuts. For example, method calls 

represent join-points. Advice is contained within the 

main unit of the AC, aspect. There can be before, 

after, and around advice executed preceding, 

succeeding, and surrounding a join-point, 

respectively. The final executable aspect-oriented 

(AO) program is created by merging the BC and the 

AC, which is called weaving. Although the advice 

can be woven into the another advice, we only 

consider the weaving of pieces of advice into 

methods. 

AOP works such that it extends the features of 

another programming paradigm (Kiczales, Lamping, 

et al., 1997; Kiczales et al., 2001; Coady et al., 

2001). The well-established AOP language AspectJ 

(Kiczales et al., 2001) complements the object-

oriented programming paradigm (OOP). In this 

paper, we base our approach on AspectJ. 

Like with traditional programs such as object-

oriented (OO) programs, there is a need for 

automated techniques that support the maintenance 

and evolution of AO programs as well (Mens and 

Demeyer, 2008; Przybyłek, 2018). At the heart of 

many of such techniques, there is the identification 

of changes between two versions of a program: an 

original version and a modified version, which 

means the identification of differences and 

correspondences between the two versions 

(Apiwattanapong et al., 2007). Following the 

identification of changes, program entities are 

classified as deleted, added, and matched (modified 

or unchanged). When discussing the identification of 

changes, we assume such a classification of program 

entities. The examples of the techniques that use the 

result of the identification of changes between two 

versions of a program include change impact 

analysis (Arnold, 1996; S. Zhang et al., 2008), code 

review (Barnett et al., 2015), finding patterns of 

changes (Qian et al., 2008), and dynamic update 

generation (Katić, 2013).  

The identification of changes between two 

versions of a program can be done with differencing 

algorithms (Apiwattanapong et al., 2007) such as 

algorithms proposed by (Fluri et al., 2007; Falleri et 

al., 2014; Apiwattanapong et al., 2007). For two AO 
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programs, in addition to identification of changes 

between program entities, a differencing algorithm 

also needs to identify changes in applications of 

pieces of advice at join-points. This is needed 

because a change introduced in AO program can be 

manifested in the advice applications at join-point 

locations. Consider an example of moving advice 

from one aspect to another; this can introduce an 

unwanted change in the order of advice applications 

at places where multiple pieces of advice apply to 

the same join-point. Or, consider the example when 

renamed method changes the semantics of pointcuts 

thus causing them to incorrectly capture or miss 

capturing join-points that are related to the renamed 

method (Koppen and Störzer, 2004). This issue is 

known as the fragile pointcut problem.  

The manual identification of  changes in advice 

applications might be tedious and time-consuming 

even if the total number of pieces of advice per join-

point is small. This is because software systems 

often contain millions of source code lines and 

applying advice can be found at many of them. For 

example, advice such as logging can be applicable to 

many, if not all the method calls in a program. 

Changing such a program can affect the application 

of logging advice at many join-point locations. To 

this end, the automated support is needed for the 

identification of changes in pieces of advice per 

join-points. 

The application of the existing differencing 

approaches for OO programs such as 

(Apiwattanapong et al., 2007; Fluri et al., 2007; 

Falleri et al., 2014) to AO programs does not yield 

the expected results because such proposals do not 

account for interactions between the BC and the AC. 

For that reason, researchers extend or complement 

the existing proposals by focusing on these 

interactions. Thus, (Koppen and Störzer, 2004; 

Stoerzer and Graf, 2005), in their approach, which 

tackles the fragile pointcut problem, focus on the 

identification of changes in advice applications at 

join-points. However, they do not deal with 

matching of program statements, and only match 

join-points based on the program elements (e.g. 

methods) that contain or reference join-points. The 

approach for differentiating AO programs at the 

statement level, proposed by (Görg and Zhao, 2009), 

misses to relate changes in advice applications to 

their corresponding join-points. Furthermore, the 

work proposed by (Khatchadourian et al., 2017), 

which deals with the fragile pointcut problem, does 

not provide a differencing result as it is, but suggests 

pointcuts that possibly become incorrect after the 

change of the BC. It works in real-time, thus 

notifying a developer about possibly incorrect 

pointcuts (causing incorrect advice applications) as 

soon as the change has been introduced. Approaches 

that work in the context of another task such as 

change impact analysis (S. Zhang et al., 2008) and 

regression testing (Xu and Rountev, 2007) do not 

focus on the classification of changes in advice 

applications. 

In summary, existing pure differencing 

approaches provide separate approaches to the ideas 

of the identification of changes between program 

statements and the identification of changes between 

advice applications at join-points. In this paper, we 

unify these two existing ideas and propose a novel 

technique that deals with both of them at the same 

time, thus providing a single differencing approach 

for AO programs. 

We propose the technique as an extension of the 

technique from (Apiwattanapong et al., 2007) 

because their algorithm CalcDiff works on 

control-flow graphs1 (CFGs) and because CFGs have 

already proved convenient, as noted by (Xu and 

Rountev, 2007), for modelling of the complicated 

semantics of AO programs. In addition, compared to 

other proposals such as (Fluri et al., 2007; Falleri et 

al., 2014), CalcDiff improves the detection of 

changes that are specific to OOP. Some of these 

changes can even be responsible for the changed 

pointcut semantics. For instance, changing the 

position of a class in the inheritance tree can cause 

that pointcuts unexpectedly capture or miss 

capturing join-points within that class. 

It is worth mentioning that (Görg and Zhao, 

2009) applied CalcDiff to their CFG 

representation of AO programs. Although the details 

of the representation are not available in the English 

language, we concluded that it accounts for the 

interactions between the BC and the AC. 

The focus of our technique is on the 

identification of changes between advice 

applications at those join-points that are matched 

between the two versions. Our work includes the 

clarification and the alterations of existing 

extensions of the CFG that account for the 

interactions between the AC and the BC, and it 

includes the extending of CalcDiff algorithm. 

The contributions of this paper are as follows: 

                                                                                              

1 The CFG of a method m CFGm=(N, E, ns, ne) is a directed graph 

that represents all possible paths traversed through the method 

(Aho et al., 2006). Nodes (set N) represent statements, and edges 

(set E) represent flow of control between statements. There are a 

single entry node ns and a single exit node ne.  
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 The definition of the alterations of the CFG 

representation for the interactions between the 

BC and the AC, which is inspired by the work 

provided by (Görg and Zhao, 2009). 

 The novel definitions of single-entry-single-

exit CFG sub-graphs, referred to as artificial 

hammocks, that are used to relate pieces of 

advice to join-points. 

 The extension of CalcDiff algorithm to AO 

programs, called CalcDiffAO, which uses 

the artificial hammocks to identify changes in 

advice applications for matched join-points.  

 The evaluation of the usefulness of our 

approach for two simple examples of AO 

programs, which is based on our tool that 

implements the proposed representation and 

CalcDiffAO for AspectJ programs.  

The rest of the paper is structured as follows. The 

motivating example is given in Section 2. Section 3 

brings out the CFG representation, definitions of 

artificial hammocks and the differencing algorithm. 

Section 4 presents the AjDiff tool and the evaluation 

studies. Section 5 gives conclusions and outlines the 

directions for future work. 

2 MOTIVATING EXAMPLE 

In this section, we present an example demonstrating 

how a program change can affect the application of 

pieces of advice in an undesirable way. 

In AspectJ, the order of execution of multiple 

pieces of advice that apply to the same join-point is 

inferred not only from the type of the advice 

(before, after, around) as mentioned in the 

introduction, but also from the precedence rules 

(Laddad, 2009). Around advice that has precedence 

over another advice, surrounds that advice and 

determines (via the call to proceed) whether that 

advice will be executed or not (Laddad, 2009). It 

also controls the execution of a join-point that it 

surrounds via the call to proceed. 

We extended Telecom example from the AspectJ 

example suite. For the original version we modified 

and extended the example. The modified version is 

created from the original version by changing only 

the corresponding AC. In Listings 1 and 2, we 

present only an excerpt of the code that is sufficient 

for the illustrative purposes. 

The BC, which is the same in both versions, is 

not listed. It includes the code that enables the 

communication via the telephone call between a 

caller and a receiver. For such a call to be 

established, there must be established a connection 

between the caller and the receiver (method 

complete does this). The connection is modelled 

with a class Connection. We extended Telecom 

such that the caller can request that the connection is 

established only if the receiver accepts to pay for the 

call. If the caller makes such a request, then the call 

and the connection are considered to be conditional. 

Listing 1: The AC in the original version. 

1: aspect  Aspect {/*...*/ 

2: pointcut pcConn (Connection c): 

target(c) && call(void 

Connection.complete());   

3: after (Connection c): pcConn(c){ 

/*...timing advice...*/}    

4: void around (Connection c):pcConn(c)  

{/*...check conn...*/ proceed(c);} 

5: } 

Listing 2: The AC in the modified version. 

1: aspect  Aspect {/*...*/ 

2: pointcut pcConn (Connection c): 

target(c) && call(void 

Connection.complete());    

3: void around (Connection c):pcConn(c)  

{/*... check conn...*/ proceed(c);} 

4: after (Connection c): pcConn(c){ 

/*...timing advice*/ }  

5: after (Connection c): pcConn(c) 

{/*...recording advice...*/ }     

6: } 

We investigate the application of pieces of 

advice to join-points that refer to invocations of the 

method complete. Listing 1 shows after and 

around pieces of advice that apply to such join-

points in the original version of Telecom. Listing 2 

shows around and two after pieces of advice that 

apply to such join-points in the modified version of 

Telecom. 

The around advice from Listing 1 wraps all 

join-points with calls of the method complete in 

order to prevent the execution of that method for 

conditional connection that must not be established 

as a consequence of the (reject) response provided 

by the receiver. The after advice starts a timer for 

measuring the duration of the call once the 

connection is established. It is placed before the  

around advice within the aspect Aspect so that its 

execution can be controlled by the around advice. 

In the modified version of Telecom (Listing 2), 

we added new after advice that supports the 

recording of calls and that applies according to the 

same pointcut as the timing after advice. To 
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illustrate the failure, we placed that advice below the 

around advice and we moved the timing after 

advice also below the around advice. In this way, 

the execution of two after pieces of advice is not 

controlled by the around advice. This is not correct 

because after pieces of advice must not execute 

unless the connection is established, which is 

controlled by the around advice. This mistake 

might appear small but it can have adverse and 

potentially widespread consequences on program 

behaviour because it affects all the statements with 

invocations of the method complete. The same 

error might happen if a programmer, during the 

refactoring process, creates a separate aspect for 

each advice and forgets to define the precedence 

order among the aspects. 

Our approach can be used to detect changes in 

the application of timing and recording pieces of 

advice. 

3 APPROACH 

CalcDiffAO is the differencing algorithm that 

extends CalcDiff such that it works for AO 

programs (Katić, 2013; Katic and Fertalj, 2013). It 

accepts two versions of an AO program, the original 

version P and the modified version P', and compares 

them at the three levels in the following order: the 

class and interface levels (level 1), the method level 

(level 2), and the node level (level 3). The three-

level comparison originates from CalcDiff. 

CalcDiffAO introduces the comparison of aspects 

at the level 1 and the comparison of pieces of advice 

at the level 2. The classification of compared 

program entities is done such that equal entities are 

classified as matched. Otherwise, they are classified 

as deleted if they are from P or as added if they are 

from P'.  

At the Level 1, CalcDiff compares classes 

and interfaces based on their fully-qualified names 

(package name joined with class or interface name). 

This also works for the comparison of aspects, in 

which case the fully-qualified name of an aspect 

consists of the package name joined with the aspect 

name.  

At the Level 2, for matched classes, interfaces 

and aspects, CalcDiffAO compares fully-qualified 

names of methods (fully-qualified class / interface / 

aspect name joined with method signature) in a 

similar way as CalcDiff. In particular, while 

CalcDiffAO matches only methods where their 

signature is equal, CalcDiff also matches 

methods with same names if it previously misses to 

match them based on their signatures. In order for 

this comparison to hold for pieces of advice from 

matched aspects, we define the advice identifier as a 

combination of the aspect name, the advice 

declaration and the pointcut specification.  

At the Level 3, CalcDiff needs to be changed 

significantly so that changes in the application of 

pieces of advice can be identified. This is where is 

the main contribution of our proposal. 

The output of CalcDiff consists of sets of 

matched classes, interfaces, and methods, and of the 

set N of matched pairs of CFG nodes along with the 

status of their comparison (modified or unchanged). 

CalcDiffAO extends this output with sets of 

matched aspects and pieces of advice, and extends 

the set N such that for each matched node pair, there 

are relevant advice-nodes classified in sets as added, 

deleted, modified or unchanged. 

3.1 Comparison at the Level 3 

For matched pairs of methods, CalcDiff 

compares their statements. In addition to that, 

CalcDiffAO compares pieces of advice per 

matched method statements. Statements of matched 

pieces of advice are also compared, but not pieces of 

advice applied to them. Further, we only refer to 

method statements. 

To compare pieces of advice per matched 

statements, CalcDiff is changed as follows: (1) 

Methods are represented with aspect-oriented 

control-flow graphs (AO-CFGs) - CFGs that 

account for the interactions between the BC and the 

AC (Katić, 2013); (2) The notion of a single-entry-

single-exit CFG sub-graph, which is called 

hammock, is extended so that aspect-related parts of 

AO-CFG can be recognized. Such a hammock that 

marks an aspect part of the AO-CFG is referred to as 

the artificial hammock; and (3) To support the 

comparison of artificial (aspect) hammocks, new 

steps of the algorithm are introduced. 

AO-CFG: CFGs for AO program proposed by 

(Zhao, 2006; Bernardi and Lucca, 2007; Xu and 

Rountev, 2007) are not suitable to be used in 

CalcDiffAO without their alterations because 

they provide the inter-procedural representation, 

while we need the intra-procedural representation 

(as it has been used in CalcDiff). The authors in 

(Görg and Zhao, 2009) used the intra-procedural 

representation, but they did not provide enough 

details about the creation of graph nodes. To 

overcome this issue, we have defined the extended 

CFG of a method, which is called AO-CFG, that is 
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suitable for our idea of extending  CalcDiff. After 

defining the AO-CFG, we will clarify the 

differences between the AO-CFG and the 

representation used by (Görg and Zhao, 2009). 

CalcDiff is based on a traditional CFG 

representation of a method called ECFG 

(Apiwattanapong et al., 2007).  The ECFG is 

enhanced CFG that models OO features such as 

dynamic binding and exception handling. For 

method call statements, in AO-CFG, we apply the 

modelling of dynamic binding from the ECFG, 

which facilitates the detection of method-invocation 

changes emerged because of changes in class 

hierarchies. 

In the process of building AO-CFG, the 

extensions are done at the CFG nodes that represent 

join-points. Which nodes represent join-points 

depends on the type of a join-point. We consider 

only the method execution and the method call join-

point types. Other types such as field get and set 

join-points can be considered in an analogous way. 

Since the method execution join-point 

encompasses the body of a method, all the CFG 

nodes for the method represent this join-point. For a 

statement corresponding to the call of a method, 

there are at least three nodes in the CFG as defined 

by ECFG. They all represent the method call join-

point. Hereafter, we refer to all CFG nodes for a 

join-point as  a join-point-node. 

How the CFG is extended is described with the 

aspect graph (AG) and the around graph (ARNG). 

The AG for a join-point p and pieces of advice that 

apply to p is a CFG AGp = (Np, Ep, aentryp, aexitp) 

that represents the paths of execution for p and the 

corresponding pieces of advice. There are the 

aspect-entry-node aentryp and the aspect-exit-node 

aexitp that represent the entry and the exit node of 

the AGp respectively. Np contains the join-point-

node, and, for each advice that applies to p, the 

advice-node. The advice-node is labelled with the 

corresponding advice identifier. Edges in Ep 

represent flow of control between the join-point and 

the corresponding pieces of advice.  

For around advice, apart from the corresponding 

advice-node, which is also called around-entry-

node, in AG, there is the around-exit-node that 

denotes the end of the execution of the around 

advice. This helps to recognize pieces of advice that 

are surrounded with the around advice. The ARNG 

is a sub-graph of AG such that it is also AG in which 

the aspect-entry-node is equal to the around-entry-

node and the aspect-exit-node is equal to the around-

exit-node.  

The AG represents pieces of advice that can be 

applied according to static pointcuts (evaluated 

during compile-time) and dynamic pointcuts 

(evaluate during run-time). Similarly to (Stoerzer 

and Graf, 2005), for the dynamic pointcuts, we 

conservatively assume compile-time evaluation.  

The AO-CFG for a method m is the CFG in 

which each join-point-node p with applying advice 

is replaced with a corresponding AG. If p is the 

execution join-point, then, after the replacement of p 

with AGp, new entry and exit nodes for the AO-CFG 

are created. An edge is created from a newly created 

entry node to aentryp, and an edge is created from 

aexitp to a newly created exit node of the AO-CFG. 

This is to facilitate the comparison between two 

execution join-points where applying advice exists 

for only one of them. The definition of AO-CFG 

conforms to the formal definition of CFG.  

The similarities and differences between the AO-

CFG and the CFG used by (Görg and Zhao, 2009)  

are as follows. The main similarity between the two 

representations is that in both of them there is a 

single node that corresponds to each advice. 

Furthermore, in the representation used by Görg and 

Zhao, it is not clear if they create weave and return 

nodes (this is how they specify them) for each 

advice node that is created at a join-point location or 

if these nodes are created only once per join-point. 

Another difference is the modelling of the around 

advice. In particular, they do not create a node that 

could be considered as an equivalent to the around-

exit-node of the AO-CFG. For that reason, in their 

representation, it is not clear how to recognize pieces 

of advice that are surrounded with the around 

advice.  

Hammocks: For a CFG G, a hammock H = (N', E', 

n', e') is its sub-graph with the start node n' in H and 

the exit node e' not in H, such that all the edges from 

(G\H) to H go to n' and all the edges from H to 

(G\H) go to e' (Ferrante et al., 1987). A hammock is 

minimal if there is no another hammock with the 

same start node and with a fewer number of nodes 

(Apiwattanapong et al., 2007). We assume minimal 

hammock, unless it is specified differently. 

Differencing based on hammocks was adapted in 

CalcDiff because the hammock structure 

appeared to be useful for the identification of 

changes between two CFGs (Apiwattanapong et al., 

2007).  

The structure of the AO-CFG with hammocks is 

built in a way proposed by Apiwattanapong et al. 

First, we identify hammocks in AO-CFG, then, for 

each hammock H we replace all its nodes with a 

newly created node called a hammock node. The 
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replacement is done in such a way that all 

predecessors of the start node of H are appropriately 

connected with the hammock node and the 

hammock node is appropriately connected with the 

exit node of H. This procedure is repeated on an 

obtained graph, called a hammock graph, until a 

single hammock node is left. Similarly to 

CalcDiff, CalcDiffAO also uses algorithms for 

the identification of hammocks that are defined by 

(Laski and Szermer, 1992) and (Ferrante et al., 

1987). Further, we focus on special hammocks, 

called artificial hammocks, because they are our 

main novelty with respect to hammocks. 

Artificial Hammocks: By its definition, a hammock 

is "unaware" of whether a node that it contains 

belongs to the BC or to the AC. Therefore, in an 

environment where we rely on hammocks to 

facilitate the differencing of two AO-CFGs, the 

association of advice-nodes to the corresponding 

join-point-nodes is hampered. Having a graph 

structure that supports such an association would 

enable us to extend CalcDiff so that it preserves 

the matching of two versions of the BC while 

identifying changes in pieces of advice at the 

corresponding BC statements. To this end, we define 

the aspect hammock, the join-point hammock, and 

the around hammock. They are called artificial 

hammocks because they are defined to conform to 

the formal hammock definition, but they would not 

necessarily be identified as hammocks when 

applying the formal hammock definition. They are 

not necessarily minimal, and, for a join-point p,  

they are defined as follows:  

The Aspect Hammock (AH) corresponds to the 

AG Gp = (Np, Ep, aentryp, aexitp). Its start and exit 

nodes correspond to aentryp and to a successor of 

aexitp respectively. If p is the execution join-point, 

then AH is called the execution AH (EAH). If AG is 

ARNG, then the AH is referred to as the Around 

Hammock (ARNH). 

The Join-Point Hammock (JPH) corresponds to 

the join-point-node for p and it is a sub-hammock of 

the AH for p. Its start node is the node from the join-

point-node that dominates any node from the join-

point-node. Its exit node is the node (not from the 

join-point-node) that post-dominates any node from 

the join-point-node. This means that for a call join-

point that is modelled with more than three nodes, 

the corresponding JPH is not minimal. This 

facilitates the matching of join-point-nodes, 

independently of the aspect-related nodes. 

We adapted the algorithms from (Laski and 

Szermer, 1992) and (Ferrante et al., 1987) such that, 

in the AO-CFG, the artificial hammocks are 

identified in addition to minimal hammocks. An 

artificial hammock is collapsed into a single node in 

the same way as a minimal hammock. 

3.1.1 Comparison of Aspect Hammocks 

In order to match hammocks from P and P', 

CalcDiff uses the algorithm HmMatch which is 

based on the algorithm for finding an isomorphism 

between two graphs (Laski and Szermer, 1992). For 

a pair of hammock nodes (n, n'), HmMatch 

recursively expands them and, while traversing 

through the resulting graphs in a depth-first search 

manner, it compares and matches their nodes via the 

comp procedure. HmMatch uses the values of the 

two input parameters LH and S. LH is used to 

determine the depth of the graph until which the 

comparison is done. S is used as a similarity 

threshold when HmMatch determines the similarity 

between two hammocks. HmMatch returns a set of 

matched node pairs from the pair (n, n'). 

CalcDiffAO

HmMatchAO

ExtendedHmMatch

comp

compareAspectHamm...

adviceNodeClass...

expandHammocks

 

Figure 1: Call graph for the differencing algorithm. 

We changed HmMatch so that it can identify 

changes in aspect-related nodes for matched join-

point-nodes. We call the changed algorithm 

ExtendedHmMatch. Figure 1 presents our 

interventions of CalDiff and HmMatch in form of 

the call graph.  

Our changes of HmMatch include: (1) The input 

of ExtendedHmMatch also includes the set NA 

with the information about changes in bodies 

between pieces of advice matched at the level 2. 

This is used in the classification of advice-nodes; (2) 

Before a pair of nodes is compared with comp 

procedure, an additional check for AHs is 

incorporated so that, if at least one of the two nodes 

is AH node, they are compared with the algorithm 

HmMatchAO instead; (3) For each matched pair of 

BC nodes (n ∈ P, n'∈ P'), the algorithm returns the 

status of their comparison (modified or unchanged) 

and the four sets of related advice-nodes. Let a and 

a' denote advice-nodes. These sets are: 

 D ={a ∈ P | a applies to n; (∄ a' ∈ P' such that a' 

is a counterpart advice-node for a)} 

 A ={a' ∈ P' | a' applies to n'; (∄ a ∈ P such that a 

is a counterpart advice-node for a') } 
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 M  ={(a, a') | a applies to n ˄ a' applies to n' ˄ 

a and a’ are classified as modified because of 

the change in the body or in the execution 

order for the corresponding pieces of advice} 

 U  ={(a, a') | a applies to n ˄ a' applies to n' ˄ a 

and a’ are classified as unchanged for the 

corresponding pieces of advice } 

Algorithm 1 illustrates the steps of HmMatchAO 

that, for a pair of nodes (n, n') returns the pair of 

join-point nodes (jp, jp') and, in sets A, D, M, and U, 

related advice-nodes. It also returns the comparison 

result for jp and jp' after comparing them by calling 

ExtendedHmMatch. This result is returned via the 

variable status ("modified" if at least one pair in N is 

modified, otherwise "unchanged"). 

Algorithm 1: HmMatchAO. 

Algorithm HmMatchAO 

1:     if n is not AH and n’ is AH then 

2:    if n’ is EAH then   jp←super-hammock of n 

3:    else   jp ← n end if   

4:    A, jp’ ← expandHammocks(n’) 

5:     else if n is AH and n' is not AH  then 

6:    if n is EAH then  jp’←super-hammock of n’ 

7:    else   jp’ ← n’ end if 

8:    D, jp ←expandHammocks(n) 

9:     else if n is not EAH and  n’ is EAH then 

10:     jp ← super-hammock of n 

11:    A, jp’ ← expandHammocks(n’) 

12: else if n is EAH and n’is not EAH then 

13:    jp’ ←super-hammock of  n’ 

14:   D, jp ← expandHammocks(n) 

15: else 

16:  A, D, M, U, (jp, jp’) ← 

compareAspectHammocks(n, n’, NA, 

false) 

17:  A, D, M' ← 

adviceNodeClassification(A, D) 

18:  M ← M ∪ M' 

19: end if 

20: N←ExtendedHmMatch(jp, jp’, LH,S, NA) 

21: return {(jp, jp’), {A, D, M, U}, status} 

HmMatchAO uses the following procedures. For 

a hammock node n, expandHammocks expands n 

and returns a join-point-node and a set of 

corresponding advice-nodes. The procedure  

adviceNodeClassification matches advice-

nodes from sets A and D and returns a set of nodes 

that are matched (M'), while removing 

corresponding matched nodes from A and D (sets are 

also returned). For a pair of AH, EAH or ARNH 

nodes, compareAspectHammocks returns a pair 

(jp, jp') and, in sets A, D, M, and U, related advice-

nodes. It does that following these steps: 

(1) Hammock nodes n and n' are expanded and 

prepared such that the aspect-entry-node, the aspect-

exit-node and the around-exit-node, which are not 

relevant for the comparison, are removed from them. 

In the process of removing a node, predecessors and 

successors of the node are connected with the rest of 

the graph so that the control-flow remains preserved. 

(2) A pairwise comparison of nodes from the two 

hammocks is done starting from their start nodes. 

Thus, advice-nodes with the same order of 

application with respect to the matching join-point-

nodes can be matched.  

(3) Nodes are compared based on their types. For a 

pair of advice-nodes, their advice identifiers are 

compared. Also, the result of the comparison of their 

bodies (available from NA) is used to conclude if the 

pair if equal or not. For the same identifiers and 

bodies, the pair is added to U. Otherwise, only if 

identifiers are the same, the pair is added to M. For  

two ARNH nodes, compareAspectHammocks is 

called recursively if the identifiers of their around-

entry-nodes are the same. Two nodes with different 

identifiers or two nodes that are not of the same type 

are classified into A or D, depending on their origin. 

(4) To increase the number of matched advice-

nodes, added and deleted ARNHs are compared. 

Two ARNHs with the same identifiers are compared 

with compareAspectHammocks, and they are 

removed from A and D. This accounts for matching 

of ARNHs at different positions with respect to 

matched join-point-nodes. Matched advice-nodes 

from such ARNHs are all classified as modified 

because of the change in the order of execution. To 

detect this particular origin for advice-nodes, 

compareAspectHammocks uses a Boolean 

variable that it receives via the input parameters. Its 

value is set to true for advice-node from ARNHs at 

different positions regarding join-points. 

(5) For the ARNH classified as deleted (added), all 

nested advice-nodes are classified as deleted 

(added). Advice-nodes and join-point-nodes within 

the ARNH are detected with expandHammocks.  
For a pair of call join-points from Section2, 

Figure 2 partly illustrates the steps of the 

comparison in advice applications from the point 

when HmMatchAO receives a pair of AHs and 

continues the comparison at lines 16 and 17. We can 

see that a pair of AH nodes is expanded, and then a 

pair of ARNHs is expanded. Finally, into 

HmMatchAO, there are returned a pair of call join-

points, a set A with two after pieces of advice, a 

set D with after advice, and a set U with a pair of 

around pieces of advice. This classification is 
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improved by adviceNodeClassification, 

which takes two matching after pieces of advice 

from A and D and returns them to HmMatchAO. 

This pair of after pieces of advice has been 

classified as modified because of the modification in 

their application order (unlike in P', in P the advice 

execution is controlled by the around advice). 

aentry

aexit

aentry

after...

aexit

after...

ARNH

ARNH

around...

JPH

arn.-exit..

after...

around...

arn.-exit..

after...

after...

JPH

AH AH

P P’ P P’

 

Figure 2: Comparison of advice applications. 

Worst-Case Time Complexity: We only 

analyse the cost for the comparison of advice-nodes 

introduced by CalcDiffAO. Let m and n be the 

maximum number of advice-nodes per join-point-

node in P and P' respectively. In the worst case, we 

compare advice-nodes of two AHs, and all of them 

are different. The two main steps are: graph traversal 

for a comparison and classification of advice-nodes; 

comparison of the sets A and D. If we assume a bit 

vector representation of a set, then the running time 

of the first step is O(max(m,n)) and the running time 

of the second step is O(min(m,n)). This means that 

the additional comparison of the advice-nodes costs 

us O(m+n). 

4 EVALUATION 

In order to evaluate our approach, we developed a 

tool called AjDiff whose main components are: 

compilation, graph construction, graph storage and 

data access layer (DAL), and change identification. 

For the compilation, we used abc compiler which 

uses Soot (Vallée-Rai et al., 1999) to generate 

Jimple intermediate code representation (Vallee-Rai 

and Hendren, 1998). Jimple is suitable for building 

AO-CFGs which are built as a part of the graph 

construction component. The implementation of the 

advice nesting tree (Xu and Rountev, 2007) from 

AJANA framework (Xu and Rountev, 2008) is used 

for the calculation of the advice order of execution 

in AO-CFGs. AO-CFGs are stored in the graph 

database created with Neo4J 2 . The Change 

                                                                                              

2 https://neo4j.com/ 

Identification component provides the 

implementation of CalcDiffAO. It is dependent on 

graph storage via DAL for providing the access to 

AO-CFGs in the database. Although AjDiff does not 

support the exception-handling, it works for 

programs that apply exception-handling principles. 

Table 1: Tracing and Telecom - main characteristics. 

 Class/Aspect Method/Advice Call/Exec. 

v1 5/1 32/4 0/19 

v2 4/2 32/4 0/19 

v3 4/2 32/4 0/16 

v1 7/0 32/0 0/0 

v2 8//2 55/3 2/0 

v3 8/2 46/4 2/0 

We run AjDiff on pairs of versions of two 

programs from the AspectJ (version 1.8.6) example 

suite: Tracing and Telecom. We used three versions 

of Tracing, and build configurations basic, billing 

and timing for the versions v1, v2 and v3 of 

Telecom respectively. Table 1 presents the main 

characteristics for versions of Tracing in the first 

three rows and, in the other rows, it presents the 

main characteristics for versions of Telecom. There 

are only execution join-points in Tracing. In 

Telecom, there are only call join-points.  

We run AjDiff on pairs of Tracing (v1, v2), (v1, 

v3), and (v2, v3) as well as on the same pairs of 

Telecom. The parameters LH and S were both set to 

zero. We manually verified the correctness of 

identified changes. To get an indication of the 

amount of matched join-points with changes in 

pieces of advice, we looked for the number of join-

points pairs in the four categories: (1) pairs with 

added pieces of advice only, (2) pairs with deleted 

pieces of advice only, (3) pairs of the same type (call 

or execution) with at least one of: deleted advice, 

added advice, or a pair of matched-modified pieces 

of advice, and (4) pairs of the same type with 

matched-unchanged pieces of advice only. We also 

looked for changes in classes, aspects, pieces of 

advice and methods. The results are presented in 

Table 2 where in each of the four categories (Added, 

Deleted, Modified, Unchanged), the first, the second 

and the third column refer to the results of AjDiff for 

the pairs (v1, v2), (v1, v3), and (v2, v3) respectively. 

The results show that with our approach it is 

possible to identify numerous join-point locations 

with changes in advice applications, while the 

number of pieces of advice in compared programs is 

small. There are 19 such join-point locations found 

for (v1,v2) of Tracing while there are only 4 pieces 

of advice in  both compared programs. 

Hammock-based Identification of Changes in Advice Applications between Aspect-oriented Programs

449



Table 2: Tracing and Telecom - comparison results. 

  Added Deleted 

T
R

A
C

IN
G

 Call - - - - - - 

Execution - - - - 3 3 

Class - - - 1 1 - 

Aspect 2 2 2 1 1 2 

Advice 4 4 4 4 4 4 

Method 11 11 11 11 11 11 

T
E

L
E

C
O

M
 Call 2 2 - - - - 

Execution - - - - - - 

Class 2 2 1 1 1 1 

Aspect 2 2 1 - - 1 

Advice 3 4 2 - - 1 

Method 26 17 8 3 3 17 

  Modified Unchanged 

T
R

A
C

IN
G

 Call - - - - - - 

Execution 19 16 16 - - - 

Class 3 3 3 1 1 1 

Aspect - - - - - - 

Advice - - - - - - 

Method 19 19 19 2 2 2 

T
E

L
E

C
O

M
 Call - - 1 - - 1 

Execution - - - - - - 

Class 5 2 5 1 4 2 

Aspect - - 1 - - - 

Advice - - - - - 2 

Method 5 5 6 24 24 32 

It is worth mentioning several interesting 

observations: (1) A pair of matched classes or 

aspects is considered modified if there is at least one 

change between them, which can be a change in 

advice applications. (2) Even though the numbers 

reported might be the same among versions, 

identified changes might be different. For example, 

for pairs (v1, v2) and (v1, v3) of Telecom, AjDiff 

identified two call join-points with only added 

pieces of advice. In (v1, v2), there are two added 

after pieces of advice, and in (v1, v3), there is 

only one added after advice. (3) For (v1, v3) of 

Telecom, for the aspect Timing, we found the 

example of AjDiff not supporting the identification 

of pieces of advice, which was expected. (4) The 

example of the change in the advice order of 

execution is found in (v2, v3) of Telecom, for a 

matched pair of call join-points drop. 

5 CONCLUSIONS 

The current approaches to identifying changes 

between two versions of an AO program do not 

work at the statement level, they are not designed for 

pure program differencing, or they do not provide 

enough precision with respect to the classification of 

changes in advice applications at matched join-

points. In this paper, we present a differencing 

algorithm for AO programs that, for two versions of 

the AO program, gives us matched code parts and 

for each matched pair of join-points it reports the 

corresponding added, deleted, modified and 

unchanged pieces of advice. Although our approach 

cannot identify changes where advice does not apply 

but should apply, which is possible with the work in 

(Khatchadourian et al., 2017), it is the first approach 

that gives the most precise information about 

changes in advice applications at matched join-point 

statements that are matched using one of the state-

of-the-art techniques for OO programs. To evaluate 

our approach, we developed the AjDiff tool and 

executed two small studies. The results show that the 

approach could help developers and researchers who 

need to identify changes in advice applications.  

In future, we plan to improve our tool and to 

fully evaluate our approach on real-world AO 

programs to confirm our current findings. We are 

interested in evaluating the usefulness and efficiency 

of our approach with and without the use of the 

database for storage of program versions. We also 

plan to investigate the impact of the value of LH and 

S on the precision and correctness of our technique. 
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