
Evaluation and Comparison of Dynamic Call Graph Generators for
JavaScript

Zoltán Herczeg and Gábor Lóki
Department of Software Engineering, University of Szeged, Dugonics tér 13, 6720, Szeged, Hungary

Keywords: JavaScript, Call graph, Node.js, Comparison, Security, Complexity

Abstract: JavaScript is the most popular programming language these days and it is also the core language of the node.js
environment. Sharing code is a simple task in this environment and the shared code can be easily reused as
building blocks to create new applications. This vibrant and ever growing environment is not perfect though.
Due to the large amount of reused code, even simple applications can have a lot of indirect dependencies.
Developers may not even be aware of the fact that some of these dependencies could contain malware, since
harmful code can be hidden relatively easily due to the dynamic nature of JavaScript. Dynamic software
analysis is one way of detecting suspicious activities. Call graphs can reveal the internal workings of an
application and they have been used successfully for malware detection. In node.js, no tool has been available
for directly generating JavaScript call graphs before. In this paper, we are going to introduce three tools that
can be used to generate call graphs for further analysis. We show that call graphs contain a significant amount
of engine-specific information but filters can be used to reduce such differences.

1 INTRODUCTION

The trend of the past years is unbroken, JavaScript
is the most popular (StackOverflow, 2018) program-
ming language nowadays. JavaScript has been de-
signed to extend static Web documents with interac-
tive features, but eventually it appeared in other ar-
eas, such as server side scripting and embedded sys-
tems1. Although the syntax of the language is the
same on all systems, the application programming in-
terfaces (APIs) provided by each environment can be
quite different. From a security perspective, many of
these APIs provide access to system resources, such
as file systems, network connections, cameras, or pri-
vate user data, therefore, these resources must be pro-
tected from harmful uses and direct attacks.

Detecting malicious behaviour of JavaScript code
is among the key areas of protecting users and com-
puter systems. Many solutions (Yu et al., 2007;
Guarnieri and Livshits, 2009; Bielova, 2013) that
have been developed already are focusing on enforc-
ing security policies. Besides strengthening poli-
cies, a more promising approach can be the anal-
ysis of JavaScript code in order to detect harmful
actions especially on software ecosystems where a

1http://jerryscript.net

large amount of JavaScript code is downloaded and
executed from unverified sources. An example for
such an ecosystem is the npm2 software registry of
node.js3 modules where anybody can upload their
own JavaScript modules without any security checks.
Injecting a vulnerability, into a potentially transitive
and less rigorously tested dependency module, can
cause security threats at unexpected points higher in
the dependency chain.

A fundamental area of detecting harmful be-
haviour is analysing the function calls of a software.
One form of call information are call graphs and these
graphs were used successfully for malware detection
on both mobile (Gascon et al., 2013) and non-mobile
systems (Elhadi et al., 2012) to detect both known and
unknown harmful code.

A call graph (Ryder, 1979) is a directed graph,
in which nodes are the functions of a program and
edges represent direct function calls between them,
and where the direction of an edge points toward the
callee. A call graph can be constructed statically, i.e.,
without executing the program, or dynamically, dur-
ing the execution. The static analysis of JavaScript
programs – helping, among others, call graphs con-

2https://www.npmjs.com
3https://nodejs.org

472
Herczeg, Z. and Lóki, G.
Evaluation and Comparison of Dynamic Call Graph Generators for JavaScript.
DOI: 10.5220/0007752904720479
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 472-479
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



struction – is a well-researched topic (Jensen et al.,
2009; Fink and Dolby, 2012; Madsen et al., 2013;
Feldthaus et al., 2013). However, in this paper we are
focusing on the less studied dynamic approach to pave
the way of dynamic security analysis of JavaScript
programs.

Regarding dynamic call graph construction for
node.js, we raise the following questions:

RQ1: Are there any dynamic call graph generator
tools for node.js modules?

RQ2: How do dynamic call graph generators in-
fluence the generated graphs of a JavaScript module?

In this paper we investigate the differences of dy-
namic call graphs constructed by various call graph
generators. The rest of the paper is organized as fol-
lows. In Section 2, we introduce three essentially
different approaches that can generate dynamic call
graphs for node.js applications and modules. In Sec-
tion 3, we validate and compare the generated call
graphs on a popular JavaScript benchmark, while in
Section 4, we compare the call graphs of popular
node.js modules. In Section 5, we review related
work, and finally, conclusions and future works are
discussed in Section 6.

2 CALL GRAPH TOOLS

Strictly speaking, there are no publicly available tools
whose output is a dynamic call graph for node.js ap-
plications. On the other hand, there are tools which
can be extended to construct call information for fur-
ther processing. In the following sections, we intro-
duce three tools that employ essentially different ap-
proaches for generating call graphs.

2.1 Jalangi2 Framework

The first tool uses the Jalangi2 (Sen et al., 2015)
framework – an improved version of Jalangi (Sen
et al., 2013) – which allows dynamic analysis of
ECMAScript 5.1 (Ecma International, 2011) code,
and supports node.js and several web browsers. EC-
MAScript is the standard which defines the different
revisions of JavaScript and its version 5.1 was re-
leased in 2011.

Internally, Jalangi2 uses an instrumentation
framework, which can extend an ECMAScript 5.1
source code with event notifications without changing
its observable behaviour. Variable assignments, ex-
pression evaluation, entering to, or exiting from func-
tions are among the events which can be captured by
Jalangi2. These events are processed by JavaScript

applications called Jalangi2 analyses. We have cre-
ated such an analysis (Lóki and Herczeg, 2019) for
dynamic call graph construction, which registers han-
dlers for function entry/exit events to collect the nodes
and edges of a call graph.

Unlike other tools in this section, Jalangi2 is a
pure JavaScript-based framework that modifies the
source code of a JavaScript application, and the mod-
ified code is executed by node.js.

2.2 Nodeprof.js Framework

The second tool is nodeprof.js (Sun et al., 2018),
which is a dynamic program analysis tool for node.js
applications. Nodeprof.js is built on top of the
Graal-nodejs project. Graal-nodejs is a port of
node.js which employs the Graal.js engine for run-
ning JavaScript. The Graal.js is an EcmaScript 2017
compatible engine which translates JavaScript source
code into a generic abstract syntax tree (AST) repre-
sentation, and this AST is executed by the GraalVM
virtual machine.

Similar to Jalangi2, nodeprof.js also adds event
notifications to JavaScript programs. However, in-
stead of instrumenting the source code, the events
are linked to the AST representation of the program
and modifications required for reporting events are
also applied to the AST. To accelerate its adoptation,
nodeprof.js supports Jalangi2 analyses for processing
events, although the interface is not fully compatible.
Fortunately, we were able to reuse our call graph gen-
erator analysis (Lóki and Herczeg, 2019) with minor
modifications.

Unlike other tools in this section, nodeprof.js is a
Java-based framework which modifies the GraalVM
AST representation of a JavaScript source code, and
the modified AST is executed by GraalVM.

2.3 Nodejs-cg: A Modified Node.js

Finally, as the third tool, we have customized node.js
itself to create a variant called nodejs-cg (Lóki and
Herczeg, 2019). The default JavaScript engine of
node.js is the V84 JavaScript engine, which supports
execution tracing. The default behaviour of the built-
in tracing is to print information about functions
where the execution is entered or exited. We have
replaced this tracing mechanism with our own call
graph generator.

This call graph generator collects all nodes and
edges when a node.js application is executed and
dumps the whole graph when node.js terminates. All

4https://developers.google.com/v8

Evaluation and Comparison of Dynamic Call Graph Generators for JavaScript

473



Table 1: Running time and disk space consumed by express.

nodejs with nodejs-cg
tracing enabled

running time 48 s 5 s
disk space 161 MB 0.9 MB

Jalangi2

nodeprof.js nodejs-cg

199

30

0 6

0
272 581

Figure 1: Number of call graph edges on SunSpider.

the information is stored in memory in order to in-
fluence the performance of JavaScript execution with
printing as little as possible.

Table 1 shows that our approach can be 10 times
faster and can take 100 times less space than post-
processing the tracing output.

Unlike other tools in this section, the call graph is
directly generated by the JavaScript engine of nodejs-
cg. The source code or the intermediate representa-
tion are not modified by the generator tool.

3 SUNSPIDER CALL GRAPHS

In this section we compare the call graphs generated
from the widely used SunSpider5 benchmark suite in
order to examine the basic characteristics of the gen-
erated call graphs. Version 1.0.2 of the suite con-
tains 26 programs which are executed one-by-one by
a driver application. The source code of SunSpi-
der is EcmaScript 5.1 compatible so all three tools
(Jalangi2, nodeprof.js, and nodejs-cg) are able to run
it.

3.1 Node Identification

To compare multiple call graphs of the same program,
the same nodes need to be identified in all call graphs.
This identification can be done by assigning a unique
identifier to each node which is independent from the
current execution of the program. Such identifier can
be created from the absolute path of the source file
where the function is defined and the location of the
function start. With this identification mechanism all

5https://webkit.org/perf/sunspider/sunspider.html

function replaceCallback() {
return "X";

}
function myReplace(str) {
return str.replace(/b/g,

replaceCallback);
}
var str = myReplace(’abcba’);

Figure 2: An example for using the replace() method.

the mentioned call graph generators found the same
set of nodes in SunSpider.

We have to note that JavaScript supports dynamic
script evaluation where scripts are not in files, but are
strings constructed at run-time. As a result, they have
no path information. Some heuristics can be designed
which try to add unique id for these strings, but the
identification of an element in such a dynamic code
is a complex task. Currently, all of these scripts are
assigned to a single <eval> node.

3.2 Comparison of Found Edges

After we have implemented the same node identifi-
cation method in each tool, we measured and com-
pared the results. Figure 1 shows the Venn diagram
of all call graph edges encountered during the exe-
cution of the SunSpider benchmark suite. The set of
edges found by each generator tool is shown inside a
circle corresponding to each tool. The intersections
of the circles contain the number of edges which are
collected by multiple tools. These edges are called
common edges in the following sections. By con-
trast, unique edges that are found only by a single
tool are shown in the non-intersected regions of the
circles. If the call graphs generated by the three tools
had been the same, only the intersection of the three
circles would have contained a non-zero value. How-
ever, we found several edges which were found only
by one or two tools and the reason for these differ-
ences will be discussed in the next subsections.

3.3 Jalangi2 and Nodejs-cg

The six edges found by both Jalangi2 and nodejs-
cg but not found by nodeprof.js are all related to the
built-in replace() method of JavaScript strings. This
method constructs a new string from an existing string
where substrings of the original string that matches to
a pattern are replaced by another substring. The ex-
ample shown in Figure 2 uses a regular expression for
the pattern and a callback function for generating re-
placement strings.

A JavaScript engine may implement a built-in
function (Ecma International, 2011, section 15) as a

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

474



myReplace()

replaceCallback()

Jalangi2 & nodejs-cg

myReplace()

∗<built-in>()

replaceCallback()

nodeprof.js

Figure 3: Subgraphs from Figure 2 example.

JavaScript function or as a native function. Native
functions are non-JavaScript functions which can be
called from JavaScript. They are usually compiled as
part of the JavaScript engine and stored in the same
binary executable file. JavaScript engines may imple-
ment the replace() function as a native function, and
they often cannot track the entry/exit of such func-
tions.

Figure 3 shows two different subgraphs which
connect the nodes of the myReplace() and replace-
Callback() function declared in Figure 2. The sub-
graph on the left is part of the call graphs generated by
Jalangi2 and nodejs-cg. In this case, there is no node
assigned to the replace() method, because Jalangi2
cannot instrument any built-in functions, and nodejs-
cg cannot detect native function calls. Hence, when
the replace() method calls its callback function, an
edge is created which directly connects the myRe-
place() and replaceCallback() functions.

Unlike the other two tools, nodeprof.js captures
the built-in function calls, although it assigns the
same node called ∗<built-in>() to all of them, which
makes impossible to tell which particular built-in
function is called. The subgraph including the
∗<built-in>() node is visible on the right side of Fig-
ure 3.

3.4 Unique Jalangi2 Edges

Twenty-seven edges – out of the thirty edges found
only by Jalangi2 in Figure 1 – are related to mod-
ule loading. In node.js, every JavaScript input file is
loaded as a module. First, the source code loaded
from a file is wrapped into a new JavaScript func-
tion as shown in Figure 4. The wrapped source code
is then evaluated by the JavaScript engine of node.js
which returns with a JavaScript function if no syn-
tax error is found. Then the returned function is
called from the module loader with the appropriate
arguments. This explains why we consider node.js
modules as functions: because their source code is
wrapped into a JavaScript function first.

console.log(’a.js loaded’);

(a) Original source code

(function(exports , ...) {
console.log(’a.js loaded’);
})

(b) Wrapped source code

Figure 4: Example for source code wrapping.

function f() { eval("") }
Object.prototype.g = function() {}
f();

Figure 5: Invalid edges by Jalangi2.

The module loading in node.js is mostly per-
formed by JavaScript helper functions. This process
is clearly visible on the call graphs generated by node-
prof.js and nodejs-cg. However, Jalangi2 does not
track the internal JavaScript function calls of node.js,
and it adds a direct edge between two modules if one
of them loads the other. Since the SunSpider driver
loads twenty-six programs, it is represented by the
same amount of edges between the driver and the
loaded programs. The driver itself is loaded as a mod-
ule and the edge between a virtual entry node and the
driver is the twenty-seventh edge.

The string-tagcloud.js SunSpider program per-
forms a sort operation on an Array object. This op-
eration is done by calling the sort() built-in method,
which has a callback argument similar to the replace()
method. Since Jalangi2 only detects the calling of
the callback function, a direct edge is added between
the caller of sort() method and the callback function.
As for nodejs-cg, the sort() method is implemented
in JavaScript and the appropriate nodes and edges
are added to the call graph. nodeprof.js assigns the
∗<built-in>() node for the sort() method similar to
replace().

The last two unique Jalangi2 edges out of the
thirty are invalid. Figure 5 shows a simplified exam-
ple for creating such invalid edges. A new function
property called g is assigned to the Object.prototype
built-in object. This function should never be called
by the f function according to the ECMAScript stan-
dard but it does happen when this source code is ex-
ecuted in a Jalangi2 environment. Jalangi2 captures
the calling of the built-in eval function which allows
dynamic evaluation of JavaScript source code and re-
places the source code passed to the eval function
with an instrumented one. During the instrumenta-
tion, the properties of an object, which inherits the
properties of Object.prototype, are enumerated and
these properties are called as functions. Since the in-
strumented g function is called as well, the generator
adds a new edge between f and g functions. Simi-

Evaluation and Comparison of Dynamic Call Graph Generators for JavaScript

475



Table 2: Call graph edge groups by nodeprof.js.

group name number of edges
common 199 (42.3%)
node.js init 107 (22.7%)
JS built-ins 99 (21.0%)
module loading 66 (14.0%)
total 471 (100.0%)

Table 3: Call graph edge groups by nodejs-cg.

group name number of edges
common 199 (25.3%)
common Jalangi2 6 (0.8%)
nodejs init 491 (62.5%)
JS built-ins 22 (2.7%)
module loading 68 (8.7%)
total 786 (100.0%)

lar invalid edges appear in the actual call graph after
the string-tagcloud.js program adds a function prop-
erty to Object.prototype. This issue shows the imple-
mentation challenge of JavaScript-based instrumen-
tation tools: they need to avoid interacting with the
JavaScript environment.

3.5 Nodeprof.js and Nodejs-cg Edges

Edges of the call graph generated by nodeprof.js can
be divided into four groups. Table 2 shows these
groups and the number of edges for each group. The
value of the common group is the same as the value
inside the intersection of the three circles in Figure 1.
Although this group is the largest, only less than half
of the edges belong here. The remaining three groups
contain those 272 edges which were found only by
nodeprof.js.

The edges of the node.js init group are recorded
during node.js initialization. So, they are part of ev-
ery call graph generated by nodeprof.js regardless of
the application run by node.js. The JS built-ins group
contains those edges that involve internal functions
provided by the JavaScript interpreter, e.g., calling
JavaScript built-ins or calling other functions by these
built-ins. We should emphasize that node.js specific
helpers are not part of this group, they belong to the
last group, which is called module loading. SunSpider
does not use any features of node.js except the driver
program, which loads the other programs as modules.
Hence, the edges in this group are all related to mod-
ule loading.

To put the values of Table 2 in context, a similar
grouping is shown for nodejs-cg in Table 3. The only
difference is an extra group called common Jalangi2,
which contains those six edges that are found only by

Jalangi2 and nodejs-cg. These six edges have been
discussed before. Compared to nodeprof.js, the num-
ber of edges in node.js init group is 4.5 times big-
ger and this difference has two reasons. First, the
JavaScript engine of node.js has its own initialization
process, where several scripts written in JavaScript
are executed. The other reason is that nodeprof.js does
not record anything before an analysis is loaded and
node.js is partly initialized by this time. The num-
ber of JS built-ins edges are lower than in nodeprof.js,
since several built-in functions are implemented as
native functions in node.js. The edges representing
these native function calls are not part of the call
graph. The module loading group has the lowest dif-
ference between nodejs-cg and nodeprof.js because
this group depends only on node.js internals. The rea-
son for this slight change is that the tools use a differ-
ent version of node.js.

Although the number of edges in the common
group is the same for nodejs-cg and nodeprof.js, only
twenty-five percent of the edges belong here from the
call graph generated by nodejs-cg. This ratio is even
lower than nodeprof.js, where it was around forty per-
cent. The rest of the edges are engine specific and
they reveal information about the internal workings
of an engine rather than how SunSpider works.

4 CALL GRAPHS OF
APPLICATIONS

In the previous section, we compared the edges of
multiple call graphs generated from the SunSpider
benchmark suite. We found that some call graphs
have a large amount of unique edges, e.g., seventy-
five percent of the edges are unique in the call graph
generated by nodejs-cg. However, SunSpider is a rel-
atively small benchmark suite, so it would be bene-
ficial if additional investigation was done with other
applications before drawing conclusions.

In this section, we compare the call graphs gen-
erated from seven popular node.js modules (Gyimesi
et al., 2019) from GitHub. Each module has a test-
ing system which runs on top of node.js and spawns
other node.js instances to do the testing. The previ-
ously discussed call graph generators can run as these
instances since they are drop-in replacements for a
node.js executable. The only difference is that be-
sides running tests, the generators also produce call
graphs. After the testing is completed, a final call
graph, which is the union of the produced call graphs,
is created. The final call graph contains all function
calls that happened during testing , including the func-
tion calls of test drivers, test cases, engine internals,

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

476



Table 4: Number of call graph edges found by nodeprof.js and nodejs-cg.

All call graph edges Non-builtin call graph edges Module call graph edges
Name nodeprof.js common nodejs-cg nodeprof.js common nodejs-cg nodeprof.js common nodejs-cg
bower 11821 10273 10422 8063 11967 8545 133 18455 82
doctrine 2778 2333 2692 1644 2786 2053 17 3567 6
express 6633 8413 6028 3842 9990 4306 6 11452 6
hessian 3344 2064 3206 2205 2518 2667 5 3441 6
jshint 2979 1957 2763 1945 2249 2373 5 3184 6
pencilblue 7779 5579 7089 5123 6852 5659 16 9989 24
request 8359 3639 7517 5875 4674 6316 22 7607 24

0% 20% 40% 60% 80% 100%

request

pencilblue

jshint

hessian

express

doctrine

bower

nodeprof.js common nodejs-cg

0% 20% 40% 60% 80% 100% 0% 1% 99% 100%

Figure 6: Distribution of call graph edges found by nodeprof.js and nodejs-cg.

and helper modules. Checking helper modules is im-
portant from a security perspective, since any of them
may contain malware. In this section, we focus on
nodeprof.js and nodejs-cg only, and exclude Jalangi2
because all applications require ECMAScript 2015
support for testing but Jalangi2 is ECMAScript 5.1
compatible only.

4.1 Overview of the Comparison
Results

Table 4 shows three subtables separated by vertical
lines, and Figure 6 shows the visual representation of
these tables in the same order. Each line in these ta-
bles contains three numbers that represent the num-
ber of call graph edges recorded by nodeprof.js and
nodejs-cg during the testing of a module. The first
and last numbers show the unique edges collected by
nodeprof.js and nodejs-cg respectively, and the com-
mon column shows those edges that were found by
both tools. The name of the module whose call graph
information is presented in a given line is shown in
the leftmost column before the first subtable.

The first subtable in Table 4 shows the number
of all edges which are captured by nodeprof.js and
nodejs-cg. This table reveals that there are consid-
erable differences between the call graphs. For ex-
ample, the number of unique edges for the request
program is more than twice as big as the common

edges. The large number of unique edges makes the
comparison difficult. To simplify the comparison,
we applied run-time filters to eliminate certain differ-
ences observed during the comparison of SunSpider
call graphs.

The first filter ignores the built-in functions of the
JavaScript interpreter. The effect of this filter is sim-
ilar to inlining the code of a built-in function into its
caller function. Subgraphs – similar to the one above
at the nodeprof.js label in Figure 3 – are simplified to
the one above the jalangi2 & nodejs.cg label. The re-
sults after applying this filter are shown in the middle
subtable of Table 4. Although the number of unique
edges have decreased, their number is still high.

The previous filter was extended to ignore those
node.js core modules which are embedded into the
node.js executable as well. The source codes of these
modules are different since the two tools use different
versions of node.js. The rightmost subtable in Table 4
shows the edges that remained after applying the new
filter. Since the number of unique edges is quite low
in this table, we can conclude that the majority of dif-
ferences are caused by node.js and JavaScript engine
internal functions.

4.2 Remaining Differences

The unique edges at the rightmost table in Table 4
were checked by hand, and they fall into one of the
following two categories.

Evaluation and Comparison of Dynamic Call Graph Generators for JavaScript

477



The first category is related to the class language
construct which supports explicit and implicit con-
structors. When a class is instantiated, nodejs-cg cap-
tures explicit constructor calls only. However, node-
prof.js captures both constructor calls, and the first
character of the class keyword is identified as the lo-
cation of constructors. Since the location of a function
is part of the unique identifier, the nodes assigned to
constructors cannot be paired in the two call graphs.

The second category is test result differences. Be-
cause the versions of node.js used by the two tools
are different, a few tests have run-time issues. E.g.,
one test may fail with one version of the execution
environment but pass with the other. Obviously, the
function calls of a test after a fail are missing from
the corresponding call graph, but new function calls
are often added as well by the error recovery system
of the testing environment. Furthermore, some tests
are skipped on certain versions of node.js.

4.3 Comparison Findings

We found that a large percentage of call graph edges
may be engine specific. Applications performing
high level analysis of JavaScript software should be
aware of this fact and may want to adjust their anal-
ysis strategy accordingly. Call graph generators may
also help improving certain analyses by filtering un-
wanted edges. For example, filtering out engine spe-
cific nodes simplifies the comparison of call graphs,
which can be useful for finding the same malware
even if the call graph is produced by a newer version
of node.js extended with the same call graph genera-
tor.

5 RELATED WORKS

Call graphs can be constructed statically or dynam-
ically. There are several tools for generating static
call graphs from JavaScript code (Jensen et al., 2009;
Fink and Dolby, 2012; Madsen et al., 2013; Feldthaus
et al., 2013). Their strength is that they can pro-
cess JavaScript code regardless of the execution en-
vironment (web browser, node.js, etc.). Their weak-
ness is their precision. JavaScript is a highly dynamic
language where all functions are objects constructed
from a source code and a lexical environment, and
it is difficult to predict which particular function ob-
ject is used by a function call. Some tools try to im-
prove these call graphs when well-known APIs are
used. For example, the formalized event emitter API
of node.js can be used to register listener functions,

and these calls can be detected by a static, event-based
call graphs analysis (Madsen et al., 2015).

Dynamic call graph generators for web browsers
are available (Toma and Islam, 2014; Nguyen et al.,
2014). The aim of these tools is to provide run-
time feedback to integrated development environ-
ments (IDEs) and ultimately to developers about the
execution of their own code in a web browser. Unlike
our tools, these tools do not support node.js.

6 SUMMARY

In this paper, we have introduced three new call graph
generator tools which are based on Jalangi2, node-
prof.js, and node.js, and are developed to fill the miss-
ing dynamic call graph gap in the field of node.js ap-
plications. In their original form, none of them were
capable of generating call graphs. We have shown that
these tools can be extended to extract call graph infor-
mation. Hence, the answer to the first research ques-
tion (RQ1) – if there are any dynamic call graph gen-
erator tools for JavaScript modules – is that there are
such tools available now (Lóki and Herczeg, 2019).

To answer the second research question (RQ2) –
how dynamic call graph generators influence the gen-
erated graphs of a JavaScript module – we have com-
pared the call graphs generated by our three tools and
noticed that the call graphs of our test programs have
many unique edges. These edges are related to the
different handling of built-in functions, ECMAScript
classes, and different versions of node.js. Further-
more, we found some invalid edges which has re-
vealed an issue in the instrumentation framework of
Jalangi2. Thus, our conclusion is that the internal op-
eration of dynamic call graph generators can signifi-
cantly influence generated call graphs. However, we
also presented that these differences can be eliminated
by proper filtering mechanisms that may improve the
efficiency of further dynamic analyses.

Our future plan is to extend this research by gen-
erating more detailed call information. We aim at in-
vestigating call paths (call chains). We also plan to
analyse how such information can be utilized to de-
tect unusual program activity.

ACKNOWLEDGMENTS

This research was partially supported by the Hun-
garian Government and the European Regional De-
velopment Fund grant GINOP-2.3.2-15-2016-00037
(“Internet of Living Things”) and by the Min-

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

478



istry of Human Capacities, Hungary grant 20391-
3/2018/FEKUSTRAT.

REFERENCES

Bielova, N. (2013). Survey on JavaScript security policies
and their enforcement mechanisms in a web browser.
The Journal of Logic and Algebraic Programming,
82(8):243 – 262.

Ecma International (2011). Ecmascript language
specification 5.1 edition. http://www.ecma-
international.org/ecma-262/5.1.

Elhadi, A., Maarof, M., and Hamza Osman, A. (2012). Mal-
ware detection based on hybrid signature behaviour
application programming interface call graph. Ameri-
can Journal of Applied Sciences, 9:283–288.

Feldthaus, A., Schäfer, M., Sridharan, M., Dolby, J., and
Tip, F. (2013). Efficient Construction of Approximate
Call Graphs for JavaScript IDE Services. In Proceed-
ings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 752–761. IEEE Press.

Fink, S. and Dolby, J. (2012). WALA-The TJ Watson Li-
braries for Analysis. http://wala.sourceforge.net.

Gascon, H., Yamaguchi, F., Arp, D., and Rieck, K. (2013).
Structural detection of Android malware using em-
bedded call graphs. In Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security,
AISec ’13, pages 45–54. ACM.

Guarnieri, S. and Livshits, V. B. (2009). Gatekeeper:
Mostly static enforcement of security and reliability
policies for JavaScript code. In USENIX Security Sym-
posium, volume 10, pages 78–85.

Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D.,
Beszédes, Á., Ferenc, R., and Mesbah, A. (2019).
BugsJS: a benchmark of JavaScript bugs. 12th IEEE
International Conference on Software Testing, Verifi-
cation and Validation. https://github.com/bugsjs.

Jensen, S. H., Møller, A., and Thiemann, P. (2009). Type
Analysis for JavaScript. In International Static Anal-
ysis Symposium, pages 238–255. Springer.

Lóki, G. and Herczeg, Z. (2019). Dynamic call graph gener-
ators for JavaScript. https://github.com/szeged/js-call-
graphs/tree/call-graphs.

Madsen, M., Livshits, B., and Fanning, M. (2013). Prac-
tical Static Analysis of JavaScript Applications in the
Presence of Frameworks and Libraries. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 499–509. ACM.

Madsen, M., Tip, F., and Lhoták, O. (2015). Static analysis
of event-driven node.js JavaScript applications. SIG-
PLAN Not., 50(10):505–519.

Nguyen, H. V., Kästner, C., and Nguyen, T. N. (2014).
Building call graphs for embedded client-side code
in dynamic web applications. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014,
pages 518–529. ACM.

Ryder, B. (1979). Constructing the call graph of a program.
IEEE Transactions on Software Engineering, 5:216–
226.

Sen, K., Kalasapur, S., Brutch, T., and Gibbs, S. (2013).
Jalangi: A selective record-replay and dynamic anal-
ysis framework for JavaScript. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 488–498. ACM.

Sen, K., Sridharan, M., and Adamsen, C. Q. (2015).
Jalangi2 dynamic analyses framework for JavaScript.
https://github.com/Samsung/jalangi2.

StackOverflow (2018). Stack Over-
flow annual developer survey.
https://insights.stackoverflow.com/survey/2018.

Sun, H., Bonetta, D., Humer, C., and Binder, W. (2018). Ef-
ficient dynamic analysis for node.js. In Proceedings of
the 27th International Conference on Compiler Con-
struction, CC 2018, pages 196–206. ACM.

Toma, T. R. and Islam, M. S. (2014). An efficient mecha-
nism of generating call graph for JavaScript using dy-
namic analysis in web application. In 2014 Interna-
tional Conference on Informatics, Electronics Vision,
pages 1–6.

Yu, D., Chander, A., Islam, N., and Serikov, I. (2007).
JavaScript instrumentation for browser security. SIG-
PLAN Not., 42(1):237–249.

Evaluation and Comparison of Dynamic Call Graph Generators for JavaScript

479


