
Integration of Monitoring and Alarm Management in Power Plants

Vincenza Carchiolo1 a, Alessandro Longheu2 b, Michele Malgeri2 c, S. Sorbello3 and A. Torcetta3
1Dipartimento di Matematica ed Informatica, Università degli Studi di Catania, Catania, Italy

2DIEEI, Università degli Studi di Catania, Catania, Italy
3Development and Support Center, BAX Energy, Catania, Italy

a.torcetta@gmail.com

Keywords: Monitoring Systems, Control System, Alarm Management, Agent Systems, Power Plants, Renewable

Energies.

Abstract: A power plant monitoring system is crucial for ensuring normal operation of the whole power plant as well

as initiating alarms to avoid further development of unattended fault within the power generating system. In

this work, a computer vision-based solution is introduced in order to quickly detect anomalies and possible

failure affecting the monitored infrastructure.

1 INTRODUCTION

Today, renewable energies as solar energy (thermal

and photovoltaic), hydraulic, wind and geothermal,

are a fundamental alternative to fossil fuels. Their use

indeed reduces not only gas emissions from energy

production and consumption, but also the dependence

on fossils fuels imports.

It is estimated that renewable sources have

satisfied globally almost 7% of the electricity demand

(BP, 2018). The problem of power plants condition

monitoring is crucial to the proper and effective

operation of any power generating system.

Today there are several types of monitoring, as

continuous monitoring, high frequency monitoring

and medium-low frequency monitoring. Continuous

monitoring can be applied on simple systems and

complex systems either in a non-critical or critical

context, where the desired values are known and must

be fulfilled. High frequency monitoring is applied

when the detection is not really continuous, rather at

a higher frequency compared to the monitored

process, so that any correction to the process can be

carried out meaningful and timely. Medium-low

frequency monitoring is typical in cases where

variables are generally very large, while surveys are

established on a daily, monthly or quarterly basis. The

a https://orcid.org/0000-0002-1671-840X
b https://orcid.org/0000-0002-9279-3129
c https://orcid.org/0000-0002-9898-8808

time between surveys is also necessary to normalize,

sort, and convert data to make it accessible.

In the past, maintenance of power plants was

manually performed by personnel assigned to each

building with the aim of providing high-quality and

reliable power of communications facilities.

However, as the reliability of power plants improved

and new monitoring equipments were introduced,

systems began to shift towards centralized monitoring

and maintenance of multiple buildings from one

location (So and Chan, 1991). For this reason, today

the need for a centralized monitoring system has

increased more and more.

An effective monitoring can be also considered as

a strategy to periodically track the quality of power

plants, endorsing a better energy management, from

a single building (Cernian et al., 2013) to a wider

context (Kapoor and Garg, 2018), even IoT-based

(Domova and Dagnino, 2017).

In this paper we present the monitoring system

developed within Bax Energy (Baxenergy, 2019),

able to ensure that all system’s components are

properly up and running; it uses a system’s state

representation to timely identify eventual faults or

failure. Moreover, a real time problem solving

approach is adopted. There are several approaches to

monitor a system, from analysing frequent operating

mode patterns (HU et al., 2018), to predictive

658
Carchiolo, V., Longheu, A., Malgeri, M., Sorbello, S. and Torcetta, A.
Integration of Monitoring and Alarm Management in Power Plants.
DOI: 10.5220/0007754706580665
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 658-665
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: Sentinel status view – Detail.

modeling (Ryan, 2017) to proactively find potential

failures and triggering the maintenance personnel to

fix the issue timely .

 A useful monitoring system must be able to

detect the failure in time, showing which system

components are affected. An incorrect localized

system fault, even in terms of simple time delay, or a

not detected fault (false negative) can have a

significant impact on the company.

In this paper, we will focus on two different tools

for monitoring systems: Sentinel, developed inside

BaxEnergy and Refocus (Refocus, 2019); both their

advantages and drawbacks are considered, in order to

select which one is better for proactive monitoring.

Finally, their integration with an alarm management

system is discussed.

The paper is organized as follows. In Section 2,

both Sentinel and Refocus monitoring systems are

introduced and compared, whereas in Section 3 the

alarm management that exploits monitoring systems

is discussed, showing our final remarks in section 4.

2 MONITOR SYSTEMS

2.1 Refocus Monitor System

Refocus is a platform developed by Salesforce

(Salesforce, 2018) for visualizing health and status of

a system. Originally, Refocus was developed to

communicate with Argus (Argus, 2018), a time-series

monitoring and alerting platform. Refocus provides

real-time visibility into a company’s products and

infrastructure. It’s easy to use and also allows to

improve data comprehension by connecting with

other tools into an unified platform.

There are two possible ways to deploy Refocus,

either on Heroku (Heroku, 2018), a cloud platform as

a service (PaaS) supporting several programming

languages used as a web application deployment

model, or alternatively it can be deployed locally as a

docker (a software container platform used to

increase compute density). Refocus requires Redis

(Redis, 2019) in-memory data structure store,

PostgreSQL database (PostgreSQL, 2019) and

Node.js cross-platform JavaScript run-time

environment (Node JS, 2019).

2.2 The Monitor System Sentinel

Sentinel software is a system developed by

BaxEnergy and used by Service Operation Center

(SOC). It consists of two main pillars: Sentinel as a

service and Sentinel as a website tool. Sentinel as a

website tool allows to monitor a network with

particular focus on the components of Energy Studio

Pro (Energy studio Pro, 2019), a renewable energy

management software. Its main goal is to quickly

detects the anomalies affecting the monitored

infrastructure. Sentinel as a service is a distributed

system running over multiple subnets. It is composed

by one or more agents interconnected one each other,

whose information are visualized through a web

interface shown in Figure 1.

Sentinel represents the entities to monitor as host

sentinel nodes. The possible entity metrics are

divided in basic properties (CPU, data delay,

memory, ping) and custom properties which depend

on the host sentinel. There are two different metrics

range values, i.e. warning and error. Hierarchy

dependency is given by the full name attribute of the

sentinel host.

In Sentinel, data are represented with a tabular

view developed in HTML5, AngularJS and

wijmo.grid. Information about the status of a host

property is detailed and it is possible to examine the

numeric value in addition to the different ranges of

the columns. Sentinel provides users data filtering,

sorting and grouping.

Finally, a logged user is provided with a table

containing all the available host, their current state

and related values, to be refeshed manually or

automatically every ten minutes.

2.3 Sentinel vs Refocus

Refocus is a visualization platform for system

monitoring. Users can see very easily if some value

of a specific aspect is critical or invalid. There are

four different thresholds with different colors, Green

Integration of Monitoring and Alarm Management in Power Plants

659

Table 1: Comparison between Sentinel and Refocus.

for “ok”, Blue if the status of a particular sample of

data is in info range, Yellow as warning and Red if

the status is in critical range.

In Sentinel, information about the status of a

host’s property is more detailed than in Refocus and

the numeric value in addition to the different ranges

of the columns is also shown.

Both systems receive real-time traffic data. The

Sentinel UI access data by polling the Sentinel Server,

while in Refocus data are pushed by the sources. The

Sentinel UI will expose the data samples with the

timestamp provided by the server that is different by

the time when the poll is performed, thus preserving

the source timestamp. Refocus instead assigns the

receiving time as the timestamp for the samples

pushed in this; if the data gathering is delayed the time

of sample acquisition is lost and a wrong timestamp

is assigned to the sample.

In Refocus data are refreshed instantly, whereas

in Sentinel table values are automatically refreshed

every 10 minutes (manually refresh is available).

An important difference between Sentinel and

Refocus is the filtering mode. In Refocus, if a user

wants to filter for a specific subject of a perspective

this one must be updated. Furthermore, fast filtering

by searching for a string in a text box is not supported.

Conversely, Sentinel lets the user filter, sort and

group data. The total number of available hosts in the

system is shown in the top right part of the window

and if any filter is applied to the grid, the second

number, which represents the host in view, is updated

with the number of hosts complying with the filter. In

Sentinel, you can group or ungroup the table on one

or more column. You can group by a column with the

drag and drop of a column header into the group

panel, or apply filters on single column values.

An important function Refocus that is missing is

the fast filter function which applies basic text filter

on some host properties. Sentinel allows to write a

string in the fast filter text box and only columns

complying to fast filter will be shown. This function

is case insensitive and it verifies if the string is

contained in any of project, country, server name,

category, type (used to filter/group hosts), IP of the

host and description. In Sentinel, you can take in

charge a specific column value or assign it to a

specific user. This allows to make the active phase

by opening a report in the expertise’s field; this is not

possible in Refocus.

In Sentinel the user is allowed to take in charge

each single property or the entire host whether the

server is in error or not. A user can take in charge a

property in error if the property is not part of a host

that has been taken in charge. In addition, when a user

takes in charge an host or a property that was taken in

charge by another user, the property is automatically

released from the original user. Taking in charge a

host means that the user automatically takes in charge

all the property error that happens from the point in

time in which he has taken in charge the host until the

moment he releases the host. While a user takes in

charge the host no more work can be performed on it.

Every server which is affected is associated with a

ticket id. In addition, the user will see in separate

columns the information about the number of errors

taken in charge. It is also possible to filter on this one.

It’s mandatory that a note has to be associated to each

take in charge action.

When a user takes in charge one or more servers

or properties, he will be shown in the view in the

‘users’ column. Refocus presents a significant

limitation compared to Sentinel: the sample does not

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

660

Figure 2: SOC - Data Diagnostic Report – Detail.

have the timestamp related the time when the data

was actually produced from the source.

Another important Refocus drawback relies is the

user experience during host navigation. Navigation

on specific properties is not dynamic as in Sentinel

where a better focus management is available.

According to Refocus, you have to create new

perspectives by inserting the root node containing

associated subjects. You need also to specifying

aspects that you would like to monitor.

In Sentinel we only have two thresholds: warning

and error. Four thresholds can be an advantage for

monitoring certain properties whose trend is changing

over time (in a negative way) to allow a proactive

approach. Furthermore, there is the possibility of

using only some thresholds for some properties rather

than others and this is an advantage of Refocus.

In Sentinel, for data representation, you do not define

a common root for all the nodes you want to monitor.

However, this is necessary in Refocus if you want to

be aware of what is happening on the different

subjects’ properties.

Finally Sentinel, unlike Refocus, allows the

handling of any failure messages. Table 1

summarizes the overall comparison.

3 ALARM MANAGEMENT

One of BaxEnergy's use cases is designing,

integrating and deploying Worldwide Monitoring

Room (WMR). The WMR consists of different

subsystems from different vendors which have been

connected together to a central server infrastructure

located in Rome. In a WMR all data flows from

national Local Control Room (LCR), a room where

there are technicians involved in monitoring all power

plants. LCRs and WMRs are based on Energy Studio

Pro, that retrievies data from all power plants in Italy.

Data Monitoring can be either:

- Soft real-time, if data are available after minutes,

acquired by Live Data Manager (LDM), a module

designed to perform real-time bridging between

equipment on the field (e.g. a wind turbine, PV

inverter, PLC etc.) and client applications requesting

data for visualization or business logic and then

processed;

- Historical, when data are available after hours,

the main use is for the KPI (Key Performance

Indicator) calculation and O&M activities (Operation

and Maintenance), but also as a basis for forecasting

the future data or trends.

Sentinel arises from the need of the Service

Operation Center (SOC) to have a monitoring system

up and running 24x7 h from hardware infrastructure

in power plant to WMR and LCR monitors. SOC is a

service offered to customers for monitoring the data

acquisition chain of an LCR, the data completeness

and the data quality.

The SOC service focuses on three main aspects:

 Network diagnostics: monitoring of devices and

nodes responsible for data acquisition, data

transmission, data processing and data storage;

 Data diagnostics: measurement of data quality

and completeness;

 KPI Calculation: calculation of key

performance indicators for the hardware nodes and

software applications.
A sample of data collected by SOC is shown in

Fig. 2. The goal is to maximize the business value
chain and Data Quality throughout the whole data
acquisition chain. The SOC must (a) Detect problems
and take in charge anomalies (b) Make appropriate
corrections and check if they went successful.

3.1 Architecture

In the alarm management system there are three main
actors: Sentinel, Alarms Server and Refocus (see Fig.
3). Sentinel consists of one or more agents (e.g.
Alarms Server Sentinel Agent), connected each other.

Integration of Monitoring and Alarm Management in Power Plants

661

Alarms Server is an engine that is able to generate

Alarms according to rules applied on two types of

data: real-time data and historical data. Finally,

Refocus is a platform used to understand, visualize

and analyze the health and the status of systems

and/or services under observation.

The operations sequence is the following:

1. First, the Alarms Server’s module requires

Sentinel’s module the value or the values for a

property or possibly for properties of a Sentinel’s

host.

2. Sentinel responds with required information

3. The Alarms Server’s engine processes the

request and calculates the alarm status (active or

inactive) associated with this one.

4. In parallel to the previous activities, a Sentinel

Agent named Alarms Server Sentinel Agent

performs polling requests asking the result of the

previous computation.

5. Alarms Server responds satisfying agent request.

6. The Alarms Server Sentinel Agent updates the

host status (whose property or properties

has/have been requested).

7. With a specific data ingestion module, Sentinel

sends the data to Refocus which allows it to

display through a dashboard.

More in detail, Refocus requires Node.js, Redis

and PostgreSQL. Redis and PostgreSQL must be up

and running. Node.js is used also for token-based

authentication.

3.2 Alarms Server

Alarm systems are the most important tools providing

process plant operators to improve power plant

performance and monitor plant safety. Process plant

operators are often heavily burdened with alarms both

during steady-state operation and following plant

upset. Events and alarms are the basis for system

status understanding and decision making process

(Liu, 2003).

Alarm management is a traditional feature of

Supervisor control and data acquisition (SCADA)

and distribution management systems (DMS).

SCADA systems are implemented in various types of

industries. The main reasons of development and the

use of these systems are to (1) support a better control

of distributed systems and (2) reduce cost and

maintaining assets.

SCADA specialties fall in the remote control of

systems and in the large distance between end

terminal units and the main control unit but in some

scenarios the communication system may be a

conflicting element in the system (Chumki, 2013).

 In the case of well-defined alarms, operators can

return the process to its normal operation and prevent

dangerous situations that can lead a disaster.

Therefore, alarms must be defined exactly on the

borderline of normal and abnormal operation, thus

avoiding unnecessary alerts and situations where

there is no enough time to take action. In ideal

situations, the signals of operators have defined so

that alarms require immediate actions, while

warnings do not appear.

The Alarms Server is a centralized module which

provides alarming functionalities. It is able to

generate events according to user-defined rules. The

Alarms Server can also be helpful to identify faulty

equipment, create maintenance work orders and

improve on operator’s effectiveness.

The user-defined rules can be applied on the

following data:

 Real-time data: where the data source is the Live

Data Manager (LDM), a server application that

collects data arriving from all the real-time data

sources, careless of the source protocol, and

exposes them as a proper interface;

Figure 3: Alarm Management system architecture.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

662

 Historical data: where the data source is

BaxEnergy ESP Historical Database, which

contains all the aggregated data coming from the

power plants (at five or ten minutes, depending

on the plant technology).

The Alarms Server is able to monitor parts of a

process that may require operator attention when

defined threshold are reached, e.g. safety limits of

equipment, event detection, abnormal situation and

similar. It also can be used to collect and record

alarms for audits or used in correlation with other

historical data.

Once events are generated, they can be sent to an

Alarm Client, which can be integrated in other

applications (in this case inside a Sentinel agent

called Alarms Server Agent), and these events are

automatically stored into an Alarms History database.

Once defined, the alarms in the system are

automatically generated, based on the operating

conditions and actions performed in the process plant,

so they provide advisory information to help

operators focus on important alarm information and

take correct, quick actions.

3.3 Alarms Configurator

The Alarms Server is a Windows Service that reads

from a configuration module named Alarms

Configurator. Thanks to this module, the end-user

can edit the configuration of the alarms. The Alarms

Configurator is a desktop application which is

responsible of the real-time data configuration and

alarms definition. Alarms can be created and

configured in the Alarm tab located in the right panel

of the window. The main elements of this tab are:

• Alarm Groups, represent common alarms or alarm

grouped by RES technology (e.g. wind,

photovoltaic, or based on user defined criteria), a

set of alarms that shares the same execution

settings;

• Areas, can be refer to specific alarms categories

(as environmental, measurements, status);

• Symbols, items created in order to configure

alarms for particular groups of devices. A sort of

devices subset, which replicates the rule of an

alarm over a set of multiple devices.

In order to specify a value for a certain Sentinel

host property you have to set a field of the Alarms

Configurator called condition, which represents the

scalar value that will be monitored. This one

represents a generic expression, which make use of

IronPython, an open-source implementation of the

Python programming language which is tightly

integrated with the .NET framework in order to use

Python code easily (Ironpython, 2019), and a specific

syntax to evaluate the input string and if it’s an

historical alarm this one will be stored in a database.

3.4 Creating New Alarm Sentinel Hosts

In order to create a Sentinel host property alarm, first

you have to create an Alarm Group, then the

following steps can be carried out:

• Specify Alarm name, e.g.

“WindowsServicesAlarm”;

• Check if this alarm is Historical or not

• Check if this alarm is Active or not

• Insert the condition (syntax is shown below)

• Chose the Alarm type

• Additionally, you can specify other properties.

The condition syntax is expressed as:

{SentinelServer#hostProject.hostName |

hostProperty}

It is also possible to control more than one property

associated to the same host by using and/or operators.

The current syntax does not allow to specify more

than one host in a single alarm because you have to

specify also the Alarm identifier which represents the

name of a single host.

 Considering Alarm types, which indicates the

type of condition that triggers the alarm, the following

values can be distinguished:

 Hi, HiHi: the alarm triggers if the value in the

condition field is over a selected threshold. Hi

and HiHi represent two different levels of

severity.

 Low, LowLow: the alarm triggers if the value in

the condition field is under a selected threshold.

Low and LowLow represent two different levels

of severity.

 Digital: the alarm triggers if the value in the

condition field is true (in this case you don’t have

to insert a threshold).

 User Input: the status of the alarm is set by an

external process.

 Rate of Change (RoC) Analog: the alarm triggers

if the number of changes of condition field (ΔV)

exceeded the limit in a given time frame (ΔT).

 Sequence Digital: the script that is called by the

condition field has the responsibility to manage

the status transitions of the alarm, through the

property “alarmState”. It is also possible to store

variable to maintain the status of the script in a

specific memory area that is hold between

different executions.

 Rate of Change (RoC) Digital: the alarm triggers

if the condition field occurs in a True value for a

Integration of Monitoring and Alarm Management in Power Plants

663

specified number of times in a given time frame.

The other additional properties that can be specified

in an alarm definition are:

 Symbol: the symbol the alarm applies to

 Limit: applies only to alarms of the Hi, HiHi,

Low and LowLow types and defines the

threshold limit of the value in the condition field

to trigger the alarm

 Deadband: represents the range of values above

and beyond the limit where the alarm is inactive.

It’s applied only to alarms of the Hi, HiHi, Low

and LowLow types

 Severity: indicates the severity of the specific

alarm. According to OPC specification this value

ranges from 1 to 1000

 Message: indicates the message text defined for

the current alarm, as a static string, an IronPython

expression or a tag value

 Code: the user defined code of the current alarm

 Area: one or more areas associated to the alarm

 Site: the power plant associated to the alarm

 Device: the device associated to the alarm

 Model: the model of the alarm device

 Ack: when this check-box is marked, the alarm

will require acknowledgement by the operator

3.5 Sentinel Data Hub

A generic data hub is a data collection from multiple

sources organized to share and distribute, providing

an organization with a centralized data source.

Sentinel does not have an alarm management

system and it’s not be able to throw alarms when a

particular condition occurs by means of which to

connect alarms with Sentinel host properties. This

lack is compensated with an enhancement of an

Alarms Server local instance. With the Alarms

Configurator indeed we can attach alarms to host

Sentinel properties by inserting the property

condition in the field, leading to a so-called Sentinel

data hub to access data in Sentinel and consequently

triggers alarms based on variations exceeding the

relative property’s threshold, in monitored properties.

Starting from a generic data hub Alarms class, it

has been developed a Sentinel data hub class which

inherits from the previous and represent a particular

kind of data hub for Sentinel traffic. This class

provides alarm generation based on host Sentinel

properties and overrides the following methods:

1. Initialize, which calls for the first time

GetValues() that updates host Sentinel properties

and status.

2. BuildPath, returning a DataHubPath from

a) the source identifier, in this case

“SentinelServer”;

b) the source path, whose syntax follows this format:

hostProject.hostName|hostProperty;

c) and a parameter whose value indicates if the

source is valid or not.

3. Subscribe, which provides the subscription to

alarms (not to properties of the host) by

specifying the alarm path. It takes in input an

array of alarm’s paths and a sampling rate.

4. Commit, which calls a scheduler that

periodically executes the GetValues() method for

updating the host properties and status.

5. GetNextValidTimestamp, which returns the next

valid timestamp starting from a list of requests

which receives in input. In particular a

comparison is made between timestamp values

from incoming requests with a value representing

the last valid timestamp. The last valid timestamp

value will be the result of the search for the

minimum of all timestamp transmitted by these

requests.

6. Read, which reads the timestamps of the

incoming items and if this one is the same as the

one required, is added to the result, otherwise

not. In this way a collection of items, whose

timestamp is the required one, is created and

returned.

The timestamp required is specified as an input

parameter of the function. In the example shown in

Figure 4, there are 3 generic properties of a unique

host, and the timestamp 12:20 has been chosen since

it is the minimum value. Although there may be some

recently updated properties, only values with

associated timestamp of 12:20 will be read.

3.6 Alarms Server Sentinel Agent

Sentinel is composed of a variable number of Agents.

Agents are modules responsible of monitoring a

certain host type. They can be considered as

connectors for a particular host type. By

implementing an agent connected to a specific

Alarms Server it will be possible to immediately

recognize problems in this Alarm Server connection.

So, this Alarms Server Sentinel Agent was developed

to be able to add alarm management and calculation.

What has been developed can be considered as an

improvement to Sentinel.

The Alarms Server Sentinel Agent is used to

monitor all the active alarms of the host properties.

To accomplish this enhancement of the Sentinel

system, first a Sentinel instance is installed locally

and modified the configuration files, and then an

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

664

Figure 4: Timeline diagram example.

agent using the composite pattern is created.

To implement the Alarms Server Sentinel Agent

within Sentinel it has been used the UML composite

design pattern. In software engineering, the

composite pattern is a partitioning design pattern

which describes a group of objects that is treated the

same way as a single instance of the same type of

object. It’s one of the 23 well-known GoF design

patterns that describes how to solve recurring design

problems to design flexible and reusable object-

oriented software. It is used where we need to treat a

group of objects in similar way as a single object.

The aim is to compose objects into tree structures

to represent part-whole hierarchies. So, you can work

through the component interface to treat leaf and

composite objects uniformly. In this case, composite

pattern allows to treat single agents as Alarm Server

Sentinel Agent or WMI Agent and Composite Agents

uniformly, so there is no difference between a leaf-

node and a branch. Individual leaf objects implement

the component interface directly, and composite

objects forward requests to their child components.

4 CONCLUSIONS

In this work, the open source monitoring system

Refocus has been considered. Data on Refocus came

from Sentinel, which has a twofold value (1)

distributed software system and (2) monitoring

system of the different hosts. Refocus and Sentinel

monitoring system have been compared; moreover,

the integration of Sentinel with the Alarms Server has

been discussed. A proactive approach allows the

system to plan appropriate actions timely, thus

preventing problems before they occur. An effective

monitoring saves both costs due to unforeseen

failures and to physical replacement of all monitoring

chain elements out of service or whose behavior is un

expected. Since the agent responsible to acquire data

status has not yet been implemented, a possible future

developments of Sentinel is to create this agent to

allow Alarms Sever to manage such alarms as well.

REFERENCES

BP, 2018. BP Energy Outlook. Online:

https://www.bp.com/en/global/corporate/energy-

economics/energy-outlook.html

So, A. T. P., Chan, W. L., 1991. A computer-vision based

power plant monitoring system. In proc. Of APSCOM-

91., Hong Kong, pp. 335-340 vol.1

Cernian, K. et al. , 2013. A Service-Oriented Alarms

System for Intelligent Building Management. In 19th

Intl Conf. on CSCS., IEEE press

Kapoor, M. and Garg, R.D., 2018. Cloud computing for

energy requirement and solar potential assessment. In

Spatial Information Research, Vol. 26, Issue 4. Springer

Domova V. and Dagnino, A., 2017. Towards intelligent

alarm management in the Age of IIoT. In Global

Internet of Things Summit (GIoTS), IEEE press

BaxEnergy, 2019. Online: https://www.baxenergy.com.

Hu, W. et al., 2018. Discovering Association Rules of

Mode-Dependent Alarms From Alarm and Event Logs.

In IEEE Trans. on Control Systems Technology, 26-3

Ryan, E., 2014. Improving alarm management efficacy

through predictive modeling and trending. In 40th

Annual Northeast Bioengineering Conf. IEEE press

Refocus, 2019. Online: http://refocus.sourceforge.net/

Salesforce, 2019. Online: https://www.salesforce.com

Argus, 2019. Online: https://github.com/salesforce/argus.

Heroku, 2019. Online: https://www.heroku.com.

Redis, 2019. Online: https://redis.io/

PostgreSQL, 2019. Online: https://www.postgresql.org/

Node JS, 2019. Online: https://nodejs.org

Liu J. et al., 2003. The Intelligent Alarm Management

System. In IEEE Software. Vol. 20, no. 2

Chumki et al., 2013. Real-time alarm management system

for wide-area monitoring. In IEEE Innovative SGT.

Ironpython, 2019. Online: http://ironpython.net/.

Integration of Monitoring and Alarm Management in Power Plants

665

