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Abstract:  Learning from patterns and everyday creativity are two key trends in creative education. However, it is not 

easy to learn from or to create meaningful patterns. Fractals are repetitive patterns, which can result in 

interesting outcomes. Patterns can be based on a recursive whole or recursive modifications of decomposable 

parts of the patterns. However, developing fractals or relating fractals to real-life applications or creative 

innovations is not that easy. Since pattern recognition, recursion and relation to real-life applications are part 

of computational thinking (CT), we find potential in assessing CT skills. We scope our research to fractal 

projects at the Scratch website.  We aim to identify correlations between the respective scores for each 

project’s constructs corresponding to the respective total CT scores and to identify important human-computer 

interaction principles in scaffolding CT/fractal/fractal thinking development. Significance lies in 

identification of HCI design factors, possibility of using these findings as guides to better predict a student’s 

performance/mastery and to identify areas and strategies for improvement. Future work within a Restorative 

Innovation Framework concludes. 

1 INTRODUCTION  

Computational thinking is gaining prominence and 

popularity in diverse computer science curricula. 

Wing's (2006) definition of computational thinking 

covers both the technical and human aspects, i.e., 

solving problems, designing systems and 

understanding human behaviour. Subsequently, 

curricula often include: abstraction as the key CT 

attribute, followed by data structures (symbols and 

representations), systematic information processing, 

algorithmic flow control (such as iteration, recursion, 

parallelism and conditional logic), efficiency 

(debugging and systematic error identification) and 

performance constraints.  

Brennan and Resnick's (2012) definitions re-

categorized these into three aspects: computational 

skills, practice, concepts. We find both definitions to 

be integral, but targeted at slightly different 

audiences, users. 

On a broader front, the US National Research 

Council (2010 p. viii) highlights the importance of 
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linking “the nature of computational thinking (with) 

its cognitive and educational implications.”  The 

Royal Society (2012) shares similar emphasis on the 

importance of linking computing with natural and 

artificial systems and processes around us.   

Hence, Grover and Pea (2013) suggest refocusing 

on two aspects in relation to real-life application: big 

ideas and abstraction. Big ideas mooted by the 

National Science Foundation and the US College 

Board reframes computing practice as a creative 

human activity, which results in computational and 

hopefully innovative artefacts. Abstraction involves 

“identifying patterns and generalizing from specific 

instances.” It is crucial as it enables simplification 

from big data to rules, enabling easier application and 

transfer of learning, which may lead to the 

development of creative and innovative artefacts.   

More importantly, since most communities and 

professional bodies have agreed on CT definitions 

and recommended tools, Grover and Pea (2013) 

suggest that we should venture towards 

empirical/data-driven inquiries and assessments. 
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However, different assessments of CT provide 

additional types of scaffolding. Hence, multiple types 

of assessments are necessary to assess different CT 

aspects to form a big picture of the student model.  

For instance, Holbert and Wilensky’s (2011) 

NetLogo-enhanced FormulaT evaluates results 

through modelling and simulation to further engage 

students in CT. Grover (2011) however, evaluates the 

development in students’ use of computer science 

vocabulary and language. On the other hand, Werner, 

Denner, Campe and Kawamoto’s (2012) Fairy 

assessment in Alice evaluates in terms of 

understanding, use of abstraction, conditional logic 

and algorithmic thinking. Similarly, Aho’s (2012) 

assessment involves formulation of problems leading 

to solutions represented by computational steps and 

algorithms.  

Other aspects of interest highlighted by Grover 

and Pea (2013) involve determining grade and age-

appropriate CT curricula, socio-cultural (situated, 

distributed and embodied cognition, interaction and 

discourse analyses), and cognitive learning (thinking 

skills, debugging, transfer, scaffolding), CT as a 

medium to teach other subjects, and development of 

learner identity/dispositions/ attitudes.    

1.1 Objectives 

We situate the study within PwC’s (PwC, 2018) four 

worlds aimed at balancing each other (and 

corresponding prediction of work in 2030) and Cha’s 

(2017) Restorative Innovation Framework. Another 

aspect of interest involves McCaffrey and Spector’s 

(2012) obscure feature hypothesis framework to 

trigger/ prompt more interesting analogies.  

The objective for this paper is to assess CT skills 

in Scratch fractal projects obtained from the Scratch 

website. More specifically, we aim to identify 

correlations between the respective scores for each 

project’s concepts corresponding to the respective CT 

total score.  Furthermore, since learning often 

involves human-computer interaction (HCI), we are 

interested to identify HCI design factors, which 

would scaffold the development of such 

computational-fractal thinking.  

We are interested in Scratch fractal projects 

because fractals embody Wing’s (2006) CT skills 

(pattern recognition and recursion) while fractal 

thinking builds on these to emphasize on abstraction 

and novelty transferable to real-life applications.  

Furthermore, if knowledge tracing such as by Jiang, 

Ye and Zhang (2018) can be carried out, intelligent 

agents can be designed to provide more personalized 

learning. 

Furthermore, the findings from this study serve to 

inform another study in a Facebook-based learning 

environment called FunPlayCode (Lee & Ooi, 2019). 

Building on Lee (2010) and Lee and Wong (2015; 

2017; 2018), Lee and Ooi (2019) hypothesize that 

curation of content can encourage knowledge sharing 

but with analogical transfers as a task requirement. In 

addition, FunPlayCode involves analogical-

computational thinking in blocks of stories 

(videos/graphics/codes), similar to a certain extent, to 

block-chain building blocks. Hence, the level of 

abstraction and CT skills involved are higher.  

Perceptions from experts on FunPlayCode’s 

feasibility have been sought and findings indicate that 

Resnick’s (2016) propositions for user-friendliness, 

attractiveness, inclusivity, and multiple paths need to 

be further looked into. Sample analogical derivatives 

are presented in Figs. 1a, b. An example of the 

coding-storytelling we are emulating in future study 

is Gibbs’ (2018) codes illustrated in Fig. 2. 

 

 
 

Figure 1: Sample analogical derivatives: (a) Minoru 

Mikaya’s music and (b) expressions of connectivity. 

 

Figure 2: Gibbs’ analogical expression of panic in code 

form. 

Subsequently, the coding-storytelling-analogical 

thinking-computational thinking initiative switched 
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from the learning of Java to Python as Python is more 

popular among higher education students. Findings 

from Scratch and Scratch fractal projects, will inform 

the design and development of tools or techniques to 

improve CT concepts, practice and skills, in the 

process of learning Python (FunPlayCodev2) and 

subsequently, FunPlayCodev3 aided by agent-based 

interactions. Development of FunPlayCodev2 is 

expected to start by early to mid-2019.   

2 RELATED WORK  

Grover and Pea (2013) suggest multiple forms of 

assessments, depending on contexts and objectives.  

We agree as different learners have different 

aptitudes, dispositions and interests. We need to 

bring out students’ strengths, not highlight their 

weaknesses.  

In this study, we consider CT assessment via Dr. 

Scratch, design artefacts and implications to the 

design of human-computer interaction. As such, in 

the following subsections, we review Dr. Scratch 

and HCI principles which we use to assess the 

design artefacts.   

2.1 Dr. Scratch 

Moreno-León, Robles and Román-González’s (2015) 

Dr. Scratch, a free/open-source web tool, analyses 

Scratch projects automatically. It assigns a CT score 

and detects potential errors or bad programming 

habits (debugging). It is chosen due to its close 

relation to Wing's (2006) definitions.  

Students are categorized into three categories of 

CT competencies based on the seven CT concepts in 

the first column (Table 1).  Furthermore, in terms of 

data representation, we note that there is a progression  

from modifying properties to creating variables to 

lists. Operations on lists are hints of the development 

of refactoring. In addition, rule-based statements are 

indicative of higher levels of competency because 

rules are generalizations. Since CT assessments can 

be in terms of coding, fractals and many other forms,  

and learning progression is often fuzzy, we propose 

participatory design with peers and/or students in 

defining CT concepts to suit one’s objectives, tasks 

and assessments.  

 

 

 

 

Table 1: Moreno-León, Robles and Román-

González’s(2015) three categories of CT competencies.

 

2.2 HCI Principles 

The design of user interface and interaction 

influences the degree of cognitive access/the learning 

curve. We next review standard user interface and 

interaction design principles. Table 2 presents three 

standard human-computer interaction principles, 

encompassing the design of user interfaces to 

interaction design and implicitly, user experience.  

Both Nielsen (1995) and Shneiderman (1998) 

focus on user interface design, towards effective 

human-computer interaction. Norman (1998) regards 

the gulf of execution and the gulf of evaluation as the 

two main problems in user interface/user interaction 

design. He applies cognitive science and usability 

engineering to identify 6 concise principles. 

Preece, Rogers and Sharp (2002) concur and 

highlight the importance of going beyond user 

interface and user interaction to a heavier and more 

explicit emphasis on user experience. Past research in 

the creative industries (Lee & Wong, 2015) and 

computing and information systems (Lee & Wong, 

2017) concur on the crucial role of problem 

formulation, user interaction and user experience 

among students in two Malaysian universities.  
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Table 2: Three standard HCI standards/principles. 

Nielsen’s (1995) 10 Usability 

Heuristics for User Interface Design 

Shneiderman’s (1998) 8 Golden 

Rules of User Interface Design 

Norman’s (1998) 6 principles 

for interaction design/good UX 

1. Visibility of system status 
2. Match between system and the 

real world 
3. User control and freedom 
4. Consistency and standards 
5. Error prevention 
6. Recognition rather than recall 
7. Flexibility and efficiency of use 
8. Aesthetic and minimalist design 
9. Help users recognize, diagnose, 

and recover from errors 
10. Help and documentation 

1. Strive for consistency 
2. Enable frequent users to use    

shortcuts. 
3. Offer informative feedback. 
4. Design dialogue to yield 

closure. 
5. Offer simple error handling. 
6. Permit easy reversal of actions. 
7. Support internal locus of 

control. 
8. Reduce short-term memory 

load. 

1. Visibility 
2. Feedback 
3. Affordance 
4. Mapping 
5. Constraints 
6. Consistency 
 

 

3 METHODOLOGY  

The public dataset by Hill & Monroy-Hernández 

(2017) and the TUDelftScratchLab’s Scratch dataset 

from GitHub are downloaded. The data set consists of 

25 fractal projects. Different types of fractal tools 

have been used such as Mandelbrot fractal tree and 

Fractal pen.  

For analysis, a mixed method approach is 

adopted: First, for quantitative analysis, the total 

scores for each project based on Dr. Scratch’s CT 

metrics were calculated and then sorted from lowest 

to highest. Subsequently, the total scores for each CT 

concept were calculated to identify which CT concept 

contributes more to the total CT score. Scores lower 

than 30, are regarded as non-contributing CT factors.  

Second, qualitative evaluation is carried out by 

considering the type of instructions/explanations 

students included into their fractal projects.   

Since Scratch is a public website, we present only 

the higher scoring projects with no identifying 

information or images or examples.  Permission to 

use the data has been obtained from Hill and Monroy-

Hernandez (2017). TUDelftScratchLab’s Scratch 

dataset is from GitHub, an open-source site.  

4 FINDINGS  

We present our findings based on the following 

outline: Concepts contributing to higher CT scores 

(quantitative analysis), influence of tool to 

remixing/transformation, type of instructions/ 

explanation (qualitative analysis), and finally 

preliminary insights.  

4.1 CT Concepts Contributing to 
Higher CT Scores (Quantitative 
Analysis) 

Moreno-León, Robles and Román-González’s (2015) 

evaluation matrix presents individual projects in rows 

and CT concepts in columns. In terms of CT concepts, 

Fig. 3 shows that the two highest total scores for all 

projects (not just the high scoring projects) were for 

flow control (46) and data representation (45), 

followed by logic (42) and abstraction (41). Flow 

control and data representation correspond with 

algorithm and data structures in programming. Logic 

and abstraction correspond with relational and object-

oriented schema and processes. Thus, these CT 

concepts are suitable predictors.   

     In terms of individual project scores, the highest 

scoring projects (project ID 21-25) scored as follows in 

descending order (Fig. 3):   

a) abstraction (score of 3), followed by 

b) logic (score of 3), data representation (score of 3), 

and mastery (score of 3), followed by 

c) flow control (score of 2) and user interactivity 

(score of 2).  

We thus predict that for all students, when logic and 

abstraction increase, the CT score for mastery will also 

increase. These high scoring projects used the fractal 

tool (fractal pen) and the design artefacts are artistic 

and/or game-like. They were also able to include 

instructions on how to play and explain what they hope 

to achieve. The best scoring project also added in a 

specific music to create a certain mood. The sense of 

pride/accomplishment was clear and encouraging. A 

summary of the findings is presented in Table 3. 
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Figure 3: CT scores for each Scratch fractal project. 

Table 3: Three standard HCI standards/principles. 

Overall group Highest scoring groups Predictors (difference between overall 

group and highest scoring groups) 

 flow control (46)  

 data representation (45)  

 logic (42)  

 abstraction (41). 

 abstraction (score of 3),  

 logic (score of 3), 

 data representation (score of 

3),  

 mastery (score of 3),  

 flow control (score of 2)  

 user interactivity (score of 2).  

 when logic & abstraction increase, the 

CT score for mastery will also increase; 

contributing to weighted criteria analysis;  

 added in music, have a different 

perspective e.g. from artistic view.  

 included instructions on how to play and 

explain what they hope to achieve. 

 
4.2 Instantiation/Cloning/ Remixing/ 

Transformation  

Scratch encourages curating, connecting and co-

designing/co-appropriating. Fractal thinking, best 

exemplified in Scratch, focuses on novelty and 

abstraction, remixing and transformation. Remixing in 

Scratch 3.0 comes from the possible change of 

backdrop, sprites, extensions and the introduction of a 

surprise object (Fig. 4). The surprise object can 

trigger/prompt novel ideas, remixes and 

transformation.  

For the Scratch fractal dataset, students used sprite 

instances a total of 5 times but are a bit apprehensive 

when it comes to cloning, with a total score of 2. Since 

the students are using fractal tools, the low scores for 

these two CT concepts are understandable. This might 

be due to certain perceived connotations towards 

cloning as copying, i.e., of not being original.  

For fractals, transformation is more natural and 

makes more sense than remixing. Remixing in fractals 

based on the tools used may come at a later stage, 

depending on what the tool allows and/or as a means 

to or a form of transformation.  

4.3 Type of Instructions/Explanation 
and Outcomes (Qualitative 
Analysis) 

We also note that some projects received lesser views 

and likes. We conjecture that perhaps students did not 

see the relevance of learning fractals or its relevance 

to the real-world. This is true for many unless they are 

Mathematicians or designers/artists/ industrial 

CSEDU 2019 - 11th International Conference on Computer Supported Education

196



engineers. We think, with time and better tools, and 

scaffolds linking fractals and fractal thinking to their 

curriculum and the real-world, appreciation of its 

nature and possible use would increase.   

We see this possibility in the projects themselves. 

Although the better projects initially had minimal 

views, the number of views and likes for these 

projects increased over time. One project increased  

from 11 views to 16 but another increased from 21 

views to 129, almost a six-fold increase (Fig. 5).  

One possible difference was due to the former not 

providing instructions and/or explanations whereas 

the latter instructed on speed, how to restart, trying to 

be realistic and specifying a particular music as a 

finishing touch.  In short, communicating with the 

audience could be a possible reason for more views 

and more likes. 

 

 

  

Figure 4: Scratch 3.0’s latest layout, palette, stage and additions (change backdrop, surprise, add extensions). 

Figure 5: Number of views, likes, remix. 
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5 INSIGHTS AND 

SIGNIFICANCE 

CT as a medium to teach other subjects and 

development of learner identity/dispositions/ attitudes 

has often been emphasized in many national policies. 

At a macro level, socio-cultural considerations 

(situated, distributed and embodied cognition, 

interaction and discourse analyses) as well as 

cognitive learning (thinking skills, debugging, 

transfer) are important aspects in determining grade 

and age-appropriate CT curricula. 

In terms of tools, Resnick (2005), Grover and Pea 

(2013) and many CT researchers have rightly pointed 

out, it is important to design tools for users of different 

competencies based on multi-pronged CT assessments 

to triangulate data as pointed out by successful tools 

reviewed above. What are the scaffolds and 

affordances which we need to build into the tool? 

Fractals developed by the students were afforded 

by the respective fractal generating tools. This 

corresponded with Norman’s (1998) gulf of execution 

and the gulf of evaluation.  Scratch has pointed out 

that it is important to scaffold these tools, similar to 

standard programming tools, i.e., with libraries, 

templates, and sample scenarios or stories. Hence, it 

would be interesting to develop these for fractal 

development too.  

In terms of user interface design, all fractal 

generating tools utilized by the students were 

minimalist, and matched closely with Nielsen and 

Shneiderman’s principles except for feedback. This 

creates room for agent-based feedback/interactions, 

given sufficient prior user interactions to develop the 

knowledge base. 

Significance of the study lies in:  

a) confirming the importance of quantitative and 

qualitative multi-pronged CT assessments;  

b) identifying design factors and correlated attributes 

for higher computational thinking scores, which 

may correspond very well with fractal thinking. 

These CT design factors can be used as guides to 

better predict a student’s CT performance/mastery 

and CT areas and strategies to help him/her to 

improve further.  These predictors may also lead 

to more informed design of agent-based feedback 

such as prior work on knowledge tracing (Jiang, 

Ye, & Zhang, 2018). Given sufficient datasets, to 

better understand students’ learning and to 

provide more agent-assisted help or surprises to 

trigger context-aware associations or reminders. 

c) connecting CT assessment with HCI design by 

highlighting the need to not only have clear 

understanding of the objectives, skills, contexts, 

tasks and assessments but also how the tool can 

better scaffold modelling and simulation, 

formulation of problems. Future studies may look 

into the connections between HCI design and the 

use of computer science vocabulary and language, 

understanding, use of abstraction, conditional 

logic and algorithmic thinking as reviewed in 

Section 1 above.  

d) Since findings contribute to FunPlayCode, where 

analogical-fractal thinking may become suitable 

playgrounds for simulating various analogies and 

insights, there are possibilities of deriving clearer 

links between CT, HCI, and fractals/fractal 

thinking/analogical thinking.  

e) Hopefully, with seed data and user interaction, 

more useful scaffolding can be introduced, aimed 

at the crux of CT: solving problems, designing 

systems and understanding human behaviour.  

5.1 Limitations of the Study  

Different forms of fractal tools are used. We are not 

sure whether the students who submitted the projects 

are exposed to only one fractal tool or diverse tools. 

Second, since the submissions are just for fun and not 

for grades, we would like to qualify our findings as 

very preliminary, as working towards a better 

understanding of the link between CT, HCI and 

fractals/fractal thinking.  

The learning curve is naturally difficult for 

anyone. We do not judge. Our aim is only to identify 

CT concepts, which correlate higher with CT and to 

use these as guides to develop more effective learning 

environments and learning.   

6 CONCLUSIONS 

In conclusion, transformation and remixing are a part 

of CT and a part of research practice. To broaden 

students’ learning, from generating fractals to 

designing for fractal thinking and to communicate 

form and function as the better performing students 

did with the pen fractals, multiple CT aspects need to 

be considered. We have touched on only the tip of the 

iceberg. Though CT is implicit in fractal development 

and fractal thinking, we hope that students would 

think deeper about computational practice and 

graduate progressively towards firmer mastery of CT 

concepts and better research skills.  

 

 

 

CSEDU 2019 - 11th International Conference on Computer Supported Education

198



ACKNOWLEDGEMENT 

This project came about due to prior works by both 

authors in educational data mining and information 

systems, the first author in student modelling and 

creativity and the second author in Engineering and 

knowledge tracing. We wish to thank Zhejiang 

University of Technology, China, Sunway 

University, Malaysia, Universiti Tunku Abdul 

Rahman, Malaysia, and the Learning Sciences 

(especially Georgia Tech), Multimedia University, 

Malaysia, and Dr. K. Daniel Wong for past invaluable 

fundamental groundings. This work is partly 

supported by National Nature Science Foundation of 

China No.71704160. 

REFERENCES 

Aho, A. V. 2012. Computation and computational thinking. 

Computer Journal, 55, 832–835. 

Cha, V. 2017. Restorative Innovation Framework. Online: 

https://www.restorativeinnovation.com/ 

Gibbs, M. https://study.com/academy/lesson/while-loops-

in-java-example-syntax.html, last accessed 2018/07/29 

Grover, S. 2011. Robotics and engineering for middle and 

high school students to develop computational thinking. 

Paper presented at the annual meeting of the American 

Educational Research Association, New Orleans, LA. 

Grover, S., Pea, R. 2013. Computational Thinking in K–12. 

A Review of the State of the Field. Educational 

Researcher, 42(1), 38-43. 

Hill, B. M. Monroy-Hernández, A. 2017. A longitudinal 

dataset of five years of public activity in the Scratch 

online community. Sci. Data 4:170002.  

Holbert, N. R., Wilensky, U. 2011. Racing games for 

exploring kinematics: a computational thinking 

approach. Paper presented at the educational 

Researcher annual meeting of the American 

Educational Research Association, New Orleans, LA. 

Jiang, B., Ye, Y., Zhang, H. 2018. Knowledge tracing 

within single programming exercise using process data. 

International Conference on Computers in Education. 

November 26-30, 2018, Manila, Philippines.  

Lee C. S. 2010. Towards creative reasoning: Scaffolding 

systems thinking and decision-making. International 

Conference on Computers in Education, Kuala 

Lumpur, Malaysia, November 29-December 3, 2010, 

pp. 655-662.   

Lee, C. S., Ooi, E. H. 2019. Identifying design factors to 

encourage reframing, reuse through granular coding-

analogical thinking-storytelling. International 

Conference on Engineering Technology, July 6-7, 

2019, Malaysia.   

Lee, C. S., Wong K. D. 2015. Developing a disposition for 

social innovations: An affective-socio-cognitive co-

design model. International Conference on Cognition 

and Exploratory Learning in Digital Age, October 24-

26, 2015, Ireland, 180-186.  

Lee, C. S., Wong K. D. 2017. An entrepreneurial narrative 

media-model framework for knowledge building and 

open co-design. SAI Computing, July 18-20, 2017, 

London, UK, 1169 - 1175.   

Lee, C. S., Wong, K. D. 2017. Design - computational 

thinking, transfer and flavours of reuse: Scaffolds to 

Information and Data Science for sustainable systems 

in Smart Cities. IEEE International Conference on 

Information Reuse and Integration, IEEE Computer 

Society, Salt Lake City, Utah, July 7-9, 2018, pp. 225-

228. 

McCaffrey, T., Spector, L. 2012. Behind every innovative 

solution lies an obscure feature. Knowledge 

Management & E-Learning. 4 (2). 

Moreno-León, J., Robles, G. and Román-González, M. 

2015. Dr. Scratch: Automatic Analysis of Scratch 

Projects to Assess and Foster Computational Thinking. 

RED. Revista de Educación a Distancia, 46, 1-23. 

National Research Council. 2010. Committee for the 

Workshops on Computational Thinking: Report of a 

workshop on the scope and nature of computational 

thinking. Washington, DC: National Academies Press. 

Nielsen, J. 1995. 10 Usability Heuristics for User Interface 

Design. Online:https://www.nngroup.com/articles/ten-

usability-heuristics/  

Norman, D. 1988. The Design of Everyday Things. New 

York: Basic Books. 

Preece, J., Rogers, Y., and Sharp, H. 2002. Interaction 

Design: Beyond Human-Computer Interaction. New 

York: John Wiley & Sons. 

PwC. 2018. Workforce of the future. The competing forces 

shaping 2030. http://www.pwc.com/people.  

Resnick, M. 2005, 2016. Designing for Wide Walls.  

      https://design.blog/2016/08/25/mitchel-resnick- 

      designing-for-wide-walls/ 

Royal Society. 2012. Shut down or restart: The way 

forward for computing in UK schools. Retrieved from 

http://royalsociety.org/education/policy/computing-in-

schools/report/ 

Shneiderman, B. 1998. Designing the User Interface: 

Strategies for Effective Human-Computer Interaction. 

(3rd ed. ed.). Menlo Park, CA: Addison Wesley.  

TUDelftScratchLab’s Scratch dataset. 2017. A Dataset of 

Scratch Programs: Scraped, Shaped and Scored. MSR 

Data Showcase. GitHub.  

Werner, L, Denner, J., Campe, S., and Kawamoto, D. C. 

2012. The Fairy performance assessment: Measuring 

computational thinking in middle school. In 

Proceedings of the 43rd ACM Technical Symposium on 

Computer Science Education (SIGCSE ’12), 215-220. 

New York. 

Wing, J. 2006. Computational thinking. Communications of 

the ACM, 49(3), 33–36. 

Assessment of Computational Thinking (CT) in Scratch Fractal Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking

199


