
Assessment of Computational Thinking (CT) in Scratch Fractal

Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking

Chien-Sing Lee1 a and Bo Jiang2 b
1Department of Computing and Information Systems, Sunway University, Malaysia

2College of Educational Science and Technology, Zhejiang University of Technology, China

Keywords: Computational Thinking, Fractal Thinking, Scratch Fractal Projects, HCI, Assessment.

Abstract: Learning from patterns and everyday creativity are two key trends in creative education. However, it is not

easy to learn from or to create meaningful patterns. Fractals are repetitive patterns, which can result in

interesting outcomes. Patterns can be based on a recursive whole or recursive modifications of decomposable

parts of the patterns. However, developing fractals or relating fractals to real-life applications or creative

innovations is not that easy. Since pattern recognition, recursion and relation to real-life applications are part

of computational thinking (CT), we find potential in assessing CT skills. We scope our research to fractal

projects at the Scratch website. We aim to identify correlations between the respective scores for each

project’s constructs corresponding to the respective total CT scores and to identify important human-computer

interaction principles in scaffolding CT/fractal/fractal thinking development. Significance lies in

identification of HCI design factors, possibility of using these findings as guides to better predict a student’s

performance/mastery and to identify areas and strategies for improvement. Future work within a Restorative

Innovation Framework concludes.

1 INTRODUCTION

Computational thinking is gaining prominence and

popularity in diverse computer science curricula.

Wing's (2006) definition of computational thinking

covers both the technical and human aspects, i.e.,

solving problems, designing systems and

understanding human behaviour. Subsequently,

curricula often include: abstraction as the key CT

attribute, followed by data structures (symbols and

representations), systematic information processing,

algorithmic flow control (such as iteration, recursion,

parallelism and conditional logic), efficiency

(debugging and systematic error identification) and

performance constraints.

Brennan and Resnick's (2012) definitions re-

categorized these into three aspects: computational

skills, practice, concepts. We find both definitions to

be integral, but targeted at slightly different

audiences, users.

On a broader front, the US National Research

Council (2010 p. viii) highlights the importance of

a https://orcid.org/0000-0002-4703-457X
b https://orcid.org/0000-0002-7914-1978

linking “the nature of computational thinking (with)

its cognitive and educational implications.” The

Royal Society (2012) shares similar emphasis on the

importance of linking computing with natural and

artificial systems and processes around us.

Hence, Grover and Pea (2013) suggest refocusing

on two aspects in relation to real-life application: big

ideas and abstraction. Big ideas mooted by the

National Science Foundation and the US College

Board reframes computing practice as a creative

human activity, which results in computational and

hopefully innovative artefacts. Abstraction involves

“identifying patterns and generalizing from specific

instances.” It is crucial as it enables simplification

from big data to rules, enabling easier application and

transfer of learning, which may lead to the

development of creative and innovative artefacts.

More importantly, since most communities and

professional bodies have agreed on CT definitions

and recommended tools, Grover and Pea (2013)

suggest that we should venture towards

empirical/data-driven inquiries and assessments.

192
Lee, C. and Jiang, B.
Assessment of Computational Thinking (CT) in Scratch Fractal Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking.
DOI: 10.5220/0007755401920199
In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), pages 192-199
ISBN: 978-989-758-367-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

However, different assessments of CT provide

additional types of scaffolding. Hence, multiple types

of assessments are necessary to assess different CT

aspects to form a big picture of the student model.

For instance, Holbert and Wilensky’s (2011)

NetLogo-enhanced FormulaT evaluates results

through modelling and simulation to further engage

students in CT. Grover (2011) however, evaluates the

development in students’ use of computer science

vocabulary and language. On the other hand, Werner,

Denner, Campe and Kawamoto’s (2012) Fairy

assessment in Alice evaluates in terms of

understanding, use of abstraction, conditional logic

and algorithmic thinking. Similarly, Aho’s (2012)

assessment involves formulation of problems leading

to solutions represented by computational steps and

algorithms.

Other aspects of interest highlighted by Grover

and Pea (2013) involve determining grade and age-

appropriate CT curricula, socio-cultural (situated,

distributed and embodied cognition, interaction and

discourse analyses), and cognitive learning (thinking

skills, debugging, transfer, scaffolding), CT as a

medium to teach other subjects, and development of

learner identity/dispositions/ attitudes.

1.1 Objectives

We situate the study within PwC’s (PwC, 2018) four

worlds aimed at balancing each other (and

corresponding prediction of work in 2030) and Cha’s

(2017) Restorative Innovation Framework. Another

aspect of interest involves McCaffrey and Spector’s

(2012) obscure feature hypothesis framework to

trigger/ prompt more interesting analogies.

The objective for this paper is to assess CT skills

in Scratch fractal projects obtained from the Scratch

website. More specifically, we aim to identify

correlations between the respective scores for each

project’s concepts corresponding to the respective CT

total score. Furthermore, since learning often

involves human-computer interaction (HCI), we are

interested to identify HCI design factors, which

would scaffold the development of such

computational-fractal thinking.

We are interested in Scratch fractal projects

because fractals embody Wing’s (2006) CT skills

(pattern recognition and recursion) while fractal

thinking builds on these to emphasize on abstraction

and novelty transferable to real-life applications.

Furthermore, if knowledge tracing such as by Jiang,

Ye and Zhang (2018) can be carried out, intelligent

agents can be designed to provide more personalized

learning.

Furthermore, the findings from this study serve to

inform another study in a Facebook-based learning

environment called FunPlayCode (Lee & Ooi, 2019).

Building on Lee (2010) and Lee and Wong (2015;

2017; 2018), Lee and Ooi (2019) hypothesize that

curation of content can encourage knowledge sharing

but with analogical transfers as a task requirement. In

addition, FunPlayCode involves analogical-

computational thinking in blocks of stories

(videos/graphics/codes), similar to a certain extent, to

block-chain building blocks. Hence, the level of

abstraction and CT skills involved are higher.

Perceptions from experts on FunPlayCode’s

feasibility have been sought and findings indicate that

Resnick’s (2016) propositions for user-friendliness,

attractiveness, inclusivity, and multiple paths need to

be further looked into. Sample analogical derivatives

are presented in Figs. 1a, b. An example of the

coding-storytelling we are emulating in future study

is Gibbs’ (2018) codes illustrated in Fig. 2.

Figure 1: Sample analogical derivatives: (a) Minoru

Mikaya’s music and (b) expressions of connectivity.

Figure 2: Gibbs’ analogical expression of panic in code

form.

Subsequently, the coding-storytelling-analogical

thinking-computational thinking initiative switched

Assessment of Computational Thinking (CT) in Scratch Fractal Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking

193

from the learning of Java to Python as Python is more

popular among higher education students. Findings

from Scratch and Scratch fractal projects, will inform

the design and development of tools or techniques to

improve CT concepts, practice and skills, in the

process of learning Python (FunPlayCodev2) and

subsequently, FunPlayCodev3 aided by agent-based

interactions. Development of FunPlayCodev2 is

expected to start by early to mid-2019.

2 RELATED WORK

Grover and Pea (2013) suggest multiple forms of

assessments, depending on contexts and objectives.

We agree as different learners have different

aptitudes, dispositions and interests. We need to

bring out students’ strengths, not highlight their

weaknesses.

In this study, we consider CT assessment via Dr.

Scratch, design artefacts and implications to the

design of human-computer interaction. As such, in

the following subsections, we review Dr. Scratch

and HCI principles which we use to assess the

design artefacts.

2.1 Dr. Scratch

Moreno-León, Robles and Román-González’s (2015)

Dr. Scratch, a free/open-source web tool, analyses

Scratch projects automatically. It assigns a CT score

and detects potential errors or bad programming

habits (debugging). It is chosen due to its close

relation to Wing's (2006) definitions.

Students are categorized into three categories of

CT competencies based on the seven CT concepts in

the first column (Table 1). Furthermore, in terms of

data representation, we note that there is a progression

from modifying properties to creating variables to

lists. Operations on lists are hints of the development

of refactoring. In addition, rule-based statements are

indicative of higher levels of competency because

rules are generalizations. Since CT assessments can

be in terms of coding, fractals and many other forms,

and learning progression is often fuzzy, we propose

participatory design with peers and/or students in

defining CT concepts to suit one’s objectives, tasks

and assessments.

Table 1: Moreno-León, Robles and Román-

González’s(2015) three categories of CT competencies.

2.2 HCI Principles

The design of user interface and interaction

influences the degree of cognitive access/the learning

curve. We next review standard user interface and

interaction design principles. Table 2 presents three

standard human-computer interaction principles,

encompassing the design of user interfaces to

interaction design and implicitly, user experience.

Both Nielsen (1995) and Shneiderman (1998)

focus on user interface design, towards effective

human-computer interaction. Norman (1998) regards

the gulf of execution and the gulf of evaluation as the

two main problems in user interface/user interaction

design. He applies cognitive science and usability

engineering to identify 6 concise principles.

Preece, Rogers and Sharp (2002) concur and

highlight the importance of going beyond user

interface and user interaction to a heavier and more

explicit emphasis on user experience. Past research in

the creative industries (Lee & Wong, 2015) and

computing and information systems (Lee & Wong,

2017) concur on the crucial role of problem

formulation, user interaction and user experience

among students in two Malaysian universities.

CSEDU 2019 - 11th International Conference on Computer Supported Education

194

Table 2: Three standard HCI standards/principles.

Nielsen’s (1995) 10 Usability

Heuristics for User Interface Design

Shneiderman’s (1998) 8 Golden

Rules of User Interface Design

Norman’s (1998) 6 principles

for interaction design/good UX

1. Visibility of system status
2. Match between system and the

real world
3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use
8. Aesthetic and minimalist design
9. Help users recognize, diagnose,

and recover from errors
10. Help and documentation

1. Strive for consistency
2. Enable frequent users to use

shortcuts.
3. Offer informative feedback.
4. Design dialogue to yield

closure.
5. Offer simple error handling.
6. Permit easy reversal of actions.
7. Support internal locus of

control.
8. Reduce short-term memory

load.

1. Visibility
2. Feedback
3. Affordance
4. Mapping
5. Constraints
6. Consistency

3 METHODOLOGY

The public dataset by Hill & Monroy-Hernández

(2017) and the TUDelftScratchLab’s Scratch dataset

from GitHub are downloaded. The data set consists of

25 fractal projects. Different types of fractal tools

have been used such as Mandelbrot fractal tree and

Fractal pen.

For analysis, a mixed method approach is

adopted: First, for quantitative analysis, the total

scores for each project based on Dr. Scratch’s CT

metrics were calculated and then sorted from lowest

to highest. Subsequently, the total scores for each CT

concept were calculated to identify which CT concept

contributes more to the total CT score. Scores lower

than 30, are regarded as non-contributing CT factors.

Second, qualitative evaluation is carried out by

considering the type of instructions/explanations

students included into their fractal projects.

Since Scratch is a public website, we present only

the higher scoring projects with no identifying

information or images or examples. Permission to

use the data has been obtained from Hill and Monroy-

Hernandez (2017). TUDelftScratchLab’s Scratch

dataset is from GitHub, an open-source site.

4 FINDINGS

We present our findings based on the following

outline: Concepts contributing to higher CT scores

(quantitative analysis), influence of tool to

remixing/transformation, type of instructions/

explanation (qualitative analysis), and finally

preliminary insights.

4.1 CT Concepts Contributing to
Higher CT Scores (Quantitative
Analysis)

Moreno-León, Robles and Román-González’s (2015)

evaluation matrix presents individual projects in rows

and CT concepts in columns. In terms of CT concepts,

Fig. 3 shows that the two highest total scores for all

projects (not just the high scoring projects) were for

flow control (46) and data representation (45),

followed by logic (42) and abstraction (41). Flow

control and data representation correspond with

algorithm and data structures in programming. Logic

and abstraction correspond with relational and object-

oriented schema and processes. Thus, these CT

concepts are suitable predictors.

 In terms of individual project scores, the highest

scoring projects (project ID 21-25) scored as follows in

descending order (Fig. 3):

a) abstraction (score of 3), followed by

b) logic (score of 3), data representation (score of 3),

and mastery (score of 3), followed by

c) flow control (score of 2) and user interactivity

(score of 2).

We thus predict that for all students, when logic and

abstraction increase, the CT score for mastery will also

increase. These high scoring projects used the fractal

tool (fractal pen) and the design artefacts are artistic

and/or game-like. They were also able to include

instructions on how to play and explain what they hope

to achieve. The best scoring project also added in a

specific music to create a certain mood. The sense of

pride/accomplishment was clear and encouraging. A

summary of the findings is presented in Table 3.

Assessment of Computational Thinking (CT) in Scratch Fractal Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking

195

Figure 3: CT scores for each Scratch fractal project.

Table 3: Three standard HCI standards/principles.

Overall group Highest scoring groups Predictors (difference between overall

group and highest scoring groups)

 flow control (46)

 data representation (45)

 logic (42)

 abstraction (41).

 abstraction (score of 3),

 logic (score of 3),

 data representation (score of

3),

 mastery (score of 3),

 flow control (score of 2)

 user interactivity (score of 2).

 when logic & abstraction increase, the

CT score for mastery will also increase;

contributing to weighted criteria analysis;

 added in music, have a different

perspective e.g. from artistic view.

 included instructions on how to play and

explain what they hope to achieve.

4.2 Instantiation/Cloning/ Remixing/

Transformation

Scratch encourages curating, connecting and co-

designing/co-appropriating. Fractal thinking, best

exemplified in Scratch, focuses on novelty and

abstraction, remixing and transformation. Remixing in

Scratch 3.0 comes from the possible change of

backdrop, sprites, extensions and the introduction of a

surprise object (Fig. 4). The surprise object can

trigger/prompt novel ideas, remixes and

transformation.

For the Scratch fractal dataset, students used sprite

instances a total of 5 times but are a bit apprehensive

when it comes to cloning, with a total score of 2. Since

the students are using fractal tools, the low scores for

these two CT concepts are understandable. This might

be due to certain perceived connotations towards

cloning as copying, i.e., of not being original.

For fractals, transformation is more natural and

makes more sense than remixing. Remixing in fractals

based on the tools used may come at a later stage,

depending on what the tool allows and/or as a means

to or a form of transformation.

4.3 Type of Instructions/Explanation
and Outcomes (Qualitative
Analysis)

We also note that some projects received lesser views

and likes. We conjecture that perhaps students did not

see the relevance of learning fractals or its relevance

to the real-world. This is true for many unless they are

Mathematicians or designers/artists/ industrial

CSEDU 2019 - 11th International Conference on Computer Supported Education

196

engineers. We think, with time and better tools, and

scaffolds linking fractals and fractal thinking to their

curriculum and the real-world, appreciation of its

nature and possible use would increase.

We see this possibility in the projects themselves.

Although the better projects initially had minimal

views, the number of views and likes for these

projects increased over time. One project increased

from 11 views to 16 but another increased from 21

views to 129, almost a six-fold increase (Fig. 5).

One possible difference was due to the former not

providing instructions and/or explanations whereas

the latter instructed on speed, how to restart, trying to

be realistic and specifying a particular music as a

finishing touch. In short, communicating with the

audience could be a possible reason for more views

and more likes.

Figure 4: Scratch 3.0’s latest layout, palette, stage and additions (change backdrop, surprise, add extensions).

Figure 5: Number of views, likes, remix.

Assessment of Computational Thinking (CT) in Scratch Fractal Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking

197

5 INSIGHTS AND

SIGNIFICANCE

CT as a medium to teach other subjects and

development of learner identity/dispositions/ attitudes

has often been emphasized in many national policies.

At a macro level, socio-cultural considerations

(situated, distributed and embodied cognition,

interaction and discourse analyses) as well as

cognitive learning (thinking skills, debugging,

transfer) are important aspects in determining grade

and age-appropriate CT curricula.

In terms of tools, Resnick (2005), Grover and Pea

(2013) and many CT researchers have rightly pointed

out, it is important to design tools for users of different

competencies based on multi-pronged CT assessments

to triangulate data as pointed out by successful tools

reviewed above. What are the scaffolds and

affordances which we need to build into the tool?

Fractals developed by the students were afforded

by the respective fractal generating tools. This

corresponded with Norman’s (1998) gulf of execution

and the gulf of evaluation. Scratch has pointed out

that it is important to scaffold these tools, similar to

standard programming tools, i.e., with libraries,

templates, and sample scenarios or stories. Hence, it

would be interesting to develop these for fractal

development too.

In terms of user interface design, all fractal

generating tools utilized by the students were

minimalist, and matched closely with Nielsen and

Shneiderman’s principles except for feedback. This

creates room for agent-based feedback/interactions,

given sufficient prior user interactions to develop the

knowledge base.

Significance of the study lies in:

a) confirming the importance of quantitative and

qualitative multi-pronged CT assessments;

b) identifying design factors and correlated attributes

for higher computational thinking scores, which

may correspond very well with fractal thinking.

These CT design factors can be used as guides to

better predict a student’s CT performance/mastery

and CT areas and strategies to help him/her to

improve further. These predictors may also lead

to more informed design of agent-based feedback

such as prior work on knowledge tracing (Jiang,

Ye, & Zhang, 2018). Given sufficient datasets, to

better understand students’ learning and to

provide more agent-assisted help or surprises to

trigger context-aware associations or reminders.

c) connecting CT assessment with HCI design by

highlighting the need to not only have clear

understanding of the objectives, skills, contexts,

tasks and assessments but also how the tool can

better scaffold modelling and simulation,

formulation of problems. Future studies may look

into the connections between HCI design and the

use of computer science vocabulary and language,

understanding, use of abstraction, conditional

logic and algorithmic thinking as reviewed in

Section 1 above.

d) Since findings contribute to FunPlayCode, where

analogical-fractal thinking may become suitable

playgrounds for simulating various analogies and

insights, there are possibilities of deriving clearer

links between CT, HCI, and fractals/fractal

thinking/analogical thinking.

e) Hopefully, with seed data and user interaction,

more useful scaffolding can be introduced, aimed

at the crux of CT: solving problems, designing

systems and understanding human behaviour.

5.1 Limitations of the Study

Different forms of fractal tools are used. We are not

sure whether the students who submitted the projects

are exposed to only one fractal tool or diverse tools.

Second, since the submissions are just for fun and not

for grades, we would like to qualify our findings as

very preliminary, as working towards a better

understanding of the link between CT, HCI and

fractals/fractal thinking.

The learning curve is naturally difficult for

anyone. We do not judge. Our aim is only to identify

CT concepts, which correlate higher with CT and to

use these as guides to develop more effective learning

environments and learning.

6 CONCLUSIONS

In conclusion, transformation and remixing are a part

of CT and a part of research practice. To broaden

students’ learning, from generating fractals to

designing for fractal thinking and to communicate

form and function as the better performing students

did with the pen fractals, multiple CT aspects need to

be considered. We have touched on only the tip of the

iceberg. Though CT is implicit in fractal development

and fractal thinking, we hope that students would

think deeper about computational practice and

graduate progressively towards firmer mastery of CT

concepts and better research skills.

CSEDU 2019 - 11th International Conference on Computer Supported Education

198

ACKNOWLEDGEMENT

This project came about due to prior works by both

authors in educational data mining and information

systems, the first author in student modelling and

creativity and the second author in Engineering and

knowledge tracing. We wish to thank Zhejiang

University of Technology, China, Sunway

University, Malaysia, Universiti Tunku Abdul

Rahman, Malaysia, and the Learning Sciences

(especially Georgia Tech), Multimedia University,

Malaysia, and Dr. K. Daniel Wong for past invaluable

fundamental groundings. This work is partly

supported by National Nature Science Foundation of

China No.71704160.

REFERENCES

Aho, A. V. 2012. Computation and computational thinking.

Computer Journal, 55, 832–835.

Cha, V. 2017. Restorative Innovation Framework. Online:

https://www.restorativeinnovation.com/

Gibbs, M. https://study.com/academy/lesson/while-loops-

in-java-example-syntax.html, last accessed 2018/07/29

Grover, S. 2011. Robotics and engineering for middle and

high school students to develop computational thinking.

Paper presented at the annual meeting of the American

Educational Research Association, New Orleans, LA.

Grover, S., Pea, R. 2013. Computational Thinking in K–12.

A Review of the State of the Field. Educational

Researcher, 42(1), 38-43.

Hill, B. M. Monroy-Hernández, A. 2017. A longitudinal

dataset of five years of public activity in the Scratch

online community. Sci. Data 4:170002.

Holbert, N. R., Wilensky, U. 2011. Racing games for

exploring kinematics: a computational thinking

approach. Paper presented at the educational

Researcher annual meeting of the American

Educational Research Association, New Orleans, LA.

Jiang, B., Ye, Y., Zhang, H. 2018. Knowledge tracing

within single programming exercise using process data.

International Conference on Computers in Education.

November 26-30, 2018, Manila, Philippines.

Lee C. S. 2010. Towards creative reasoning: Scaffolding

systems thinking and decision-making. International

Conference on Computers in Education, Kuala

Lumpur, Malaysia, November 29-December 3, 2010,

pp. 655-662.

Lee, C. S., Ooi, E. H. 2019. Identifying design factors to

encourage reframing, reuse through granular coding-

analogical thinking-storytelling. International

Conference on Engineering Technology, July 6-7,

2019, Malaysia.

Lee, C. S., Wong K. D. 2015. Developing a disposition for

social innovations: An affective-socio-cognitive co-

design model. International Conference on Cognition

and Exploratory Learning in Digital Age, October 24-

26, 2015, Ireland, 180-186.

Lee, C. S., Wong K. D. 2017. An entrepreneurial narrative

media-model framework for knowledge building and

open co-design. SAI Computing, July 18-20, 2017,

London, UK, 1169 - 1175.

Lee, C. S., Wong, K. D. 2017. Design - computational

thinking, transfer and flavours of reuse: Scaffolds to

Information and Data Science for sustainable systems

in Smart Cities. IEEE International Conference on

Information Reuse and Integration, IEEE Computer

Society, Salt Lake City, Utah, July 7-9, 2018, pp. 225-

228.

McCaffrey, T., Spector, L. 2012. Behind every innovative

solution lies an obscure feature. Knowledge

Management & E-Learning. 4 (2).

Moreno-León, J., Robles, G. and Román-González, M.

2015. Dr. Scratch: Automatic Analysis of Scratch

Projects to Assess and Foster Computational Thinking.

RED. Revista de Educación a Distancia, 46, 1-23.

National Research Council. 2010. Committee for the

Workshops on Computational Thinking: Report of a

workshop on the scope and nature of computational

thinking. Washington, DC: National Academies Press.

Nielsen, J. 1995. 10 Usability Heuristics for User Interface

Design. Online:https://www.nngroup.com/articles/ten-

usability-heuristics/

Norman, D. 1988. The Design of Everyday Things. New

York: Basic Books.

Preece, J., Rogers, Y., and Sharp, H. 2002. Interaction

Design: Beyond Human-Computer Interaction. New

York: John Wiley & Sons.

PwC. 2018. Workforce of the future. The competing forces

shaping 2030. http://www.pwc.com/people.

Resnick, M. 2005, 2016. Designing for Wide Walls.

 https://design.blog/2016/08/25/mitchel-resnick-

 designing-for-wide-walls/

Royal Society. 2012. Shut down or restart: The way

forward for computing in UK schools. Retrieved from

http://royalsociety.org/education/policy/computing-in-

schools/report/

Shneiderman, B. 1998. Designing the User Interface:

Strategies for Effective Human-Computer Interaction.

(3rd ed. ed.). Menlo Park, CA: Addison Wesley.

TUDelftScratchLab’s Scratch dataset. 2017. A Dataset of

Scratch Programs: Scraped, Shaped and Scored. MSR

Data Showcase. GitHub.

Werner, L, Denner, J., Campe, S., and Kawamoto, D. C.

2012. The Fairy performance assessment: Measuring

computational thinking in middle school. In

Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education (SIGCSE ’12), 215-220.

New York.

Wing, J. 2006. Computational thinking. Communications of

the ACM, 49(3), 33–36.

Assessment of Computational Thinking (CT) in Scratch Fractal Projects: Towards CT-HCI Scaffolds for Analogical-fractal Thinking

199

