
Issue Reports Analysis in Enterprise Open Source Systems

Lerina Aversano
Department of Engineering, University of Sannio, Benevento, Italy

Keywords: Enterprise Systems, Software Evolution, Software Maintenance, Issue Report.

Abstract: In many organizations Enterprise Resource Planning (ERP) systems can be considered the backbone to

managing business processes. Therefore, understanding their maintenance processes is a relevant topic for

practitioners. As occur for many open source projects change requirements for ERP software are managed

trough Issue Tracker systems, that, collect requests for change in form of Issue Reports. However, very often

issue reports have relevant lack of information. Consequently, the time to resolution is strongly influenced by

the quality of the reporting. In this paper, we investigate the quality of issue reports for enterprise open source

systems. We examined some relevant metrics impacting the quality of issue reports, such as the presence of

itemization, presence of attachments, comments, and readability. Then, the evaluation of the quality of the

issue reports has been conducted on enterprise open source software.

1 INTRODUCTION

Despite the extensive knowledge about Enterprise

resource planning (ERP) projects, research on their

maintenance effects is still limited. ERP systems in

most enterprises can be considered the backbone to

managing business processes. Therefore,

understanding their evolution processes is a relevant

topic. As happen for many open source projects the

ERP evolution is managed trough Issue Tracker that

collect requests for change in form of Issue Reports.

Specifically, the Issues management is a very crucial

aspect that influences the quality of an ERP system.

Issue reports about a software system could be

about a failure that produces an incorrect or

unexpected behavior, therefore it causes numerous

effects. In some cases, an issue has a low impact on

the functionalities of the software system and

consequently may remain unknown for a long time.

In others cases the issue could impact quality aspects,

such as security, for example it could allow an user to

bypass access controls, in order to gain unauthorized

privileges.

In any case issue reports are essential for the

maintenance and evolution of most software systems.

These allow final users of a software to inform

maintainers about the problems encountered during

the system usage. Typically issue reports contain a

detailed description of a failure, sometimes in the

report there is the indication to the involved code

fragment (in the form of patches or stack traces). The

quality of the issue reports can be different according

to their content, however, very often they provide

incorrect or inadequate information.

The consequence is that the understanding of a

problem requires an effort higher than the effort

required to solve the problem. To address this

difficulty many guidelines on how to write a good bug

report have been defined (Goldmerg, 2010) (Breu et

al., 2010).

The quality of a issue report could impact the

entire software system life cycle. In fact, it is a

common practice in many software project, to discard

issue reports unclear or having a severe lack of

information.

In the context of ERP – Enterprise Resource

Planning, the relevance of the good quality issue

reports is even more important due to the complexity

of such a kind of software systems and the strategic

role they have within operative organizations.

This paper focuses on the evaluation of the quality

of issue reports respect to the main features of the

considered software system and an reports about

results of an analysis that has been performed to

detected the features categories of systems mainly

impacted by issues.

In particular, categories of features are extracted

by investigated ERP systems documentation through

a manual inspection of the software main

functionalities.

Aversano, L.
Issue Reports Analysis in Enterprise Open Source Systems.
DOI: 10.5220/0007757803370344
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 337-344
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

337

In particular, this paper investigates the quality of

issue reports from the perspective of software

maintainers. Several attributes impacting the quality

of issue reports have been considered, such as the

presence of stack traces and attachments (such as

screenshots). However, in particular, the authors

investigate the presence of comments and the waiting

time to resolution.

The analysis focus on enterprise open source

systems (ERP or CRM used by small and medium-

sized companies). The systems selected for this study

are: Dolibarr, ERPNext, and SuiteCRM.

The paper is structured as follows: Section 2

describes the state of the art and provides information

about some relevant research work related to the

quality of a issue report; Section 3 describes the plan

of study followed for the for the evaluation; Section 4

describes the obtained results. Finally, Section 5

section outlines the conclusions and future work.

2 BACKGROUND

The literature reports different studies addressing

topics related to the quality of an issue report, but in

few cases propose approaches methods for the

evaluation of the quality of the report.

Breu et al., have identified the information that

developers consider necessary within a bug report

(Breu et al., 2010) and suggest, on the basis of the

investigations carried out, improvements to the bug

tracking systems.

Another work describes an adaptive model for the

life cycle of a bug report identifying in the time to

resolution a good measure of its quality (Hooimeijer

and Weimer, 2007). The authors highlight how

writing a good bug report is complicated, and have to

deal with poorly written report increases the

resolution time. Knowing how the quality of an Issue

impacts the overall lifecycle encourages users to

submit better reports (Hooimeijer and Weimer,

2007).

Aranda and Venoila (Aranda and Venolia, 2009)

examined the communication between the developers

of bug reports in Microsoft and observed that many

bugs are discussed before they are reported and this

information is not stored within the Issue Tracker.

However, in open source projects, many bugs are

discussed in the bug tracking systems (or mailing list)

to ensure transparency and to encourage developers

who are geographically distant.

Different works in the literature use bug reports to

automatically assign a bug to the developers (Anvik

et al., 2006), identify duplicate bugs (Jalbert and

Weimer, 2008) while others define guidelines for

assessing the severity of a bug (Menzies and Marcus,

2008). Schroter et al. (Schroter et al., 2010) showed

the importance of the Stack Trace for developers

when they have to fix a bug.

Antoniol et al. (Antoniol et al., 2004) (Antoniol et

al., 2008) indicate the lack of integration between the

system of versioning and bug tracking system which

makes it difficult the location of the fault within the

system software, also in (Antoniol et al., 2008) it is

discussed that not all the bugs are software problems

but many indicate requests for improvements.

Ko et al. (Ko et al., 2006) in order to design new

systems for reporting bugs have conducted a

linguistic analysis on the securities of the bug report.

They observed numerous references to software

entities, physical devices or user actions, suggesting

that the future system of systems Bug Tracking will

be to collect data in a very structured way.

Not all bug reports are generated by humans,

many systems of auto-detection of the bugs can report

safety violations and annotate them with counter

examples. Weimer (Weimer, 2006) presents an

algorithm to build patches automatically as it shows

that the report accompanied by patches have three

times more likely to be localized within the code with

respect to a standard report. Users can also help

developers fix bugs without depositing the bug report,

for example, many products automatically report

information on the crash such as Apple

CrashReporter, Windows Error Reporting, Gnome

BugBuddy.

Hooimejer and Weimer (Hooimeijer and Weimer,

2007) proposed a descriptive model of quality bug

reports based on statistical analysis of over 27,000

reports related to the open source project Mozilla

Firefox. The model is designed to predict if a bug is

fixed within a time limits in order to reduce the cost

of bug triage. It leads the implications on the bug

tracking system highlighting the features to be added

when creating a bug report. The model proposed by

Hooimejer and Weimer (Hooimeijer and Weimer,

2007) classifies bug reports based on the

characteristics that can be extracted by the same bug

report excluding features that require to compare the

report with earlier reports, such as the similarity of the

text. The features of the model include the Severity,

the Readability Measures, and Submitter Reputation.

Finally, the authors consider the number of

comments made in response to the bug and the

number of attachment. The results presented show

that the bug with high number of comments are

resolved in less time. Furthermore, the measure of

readability indicated that the bugs fixed in a short

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

338

time are easy to understand and highly readable.

Finally, the results of Hooimejer Weimer and

(Hooimeijer and Weimer, 2007) show that some

characteristics, contrary to what is believed, have no

significant effect on the model, such as the severity of

the bug.

A significant contribution to the quality of bug

reports was provided by the work of Zimmermann et

al. (Zimmermann et al., 2010), where is defined a

quality model of a bug report.

Zimmermann et al. (Zimmermann et al., 2010)

propose a quality model for bug reports in order and

implemented a prototype that helps users to insert the

appropriate information while reporting a bug. The

work is based on a survey involving developers and

users. The survey carried out by the authors shows

clearly a mismatch between what the developers

believe important to fix a bug and what they consider

important reporters. On the other hand, the developers

point out that the real problem for the resolution of a

bug is not wrong information but rather the lack

thereof. Moreover, the difference in perspective

between developers and reporters leads to knowledge

of different quality.

The model adopted in this paper is even composed

of a number of attributes each associated to a score

that can be binary (for example the attachment is

present or not) or a scalar (such as readability):

itemization; Completeness.

3 PLAN OF THE STUDY

This section describes the process used to analyse the

Issues of different Enterprise and CRM systems. In

particular, provides an overview of the different

phases of the analysis, and outlines the tools and

techniques used for its achievement.

The general steps of the analysis are described in

the following.

3.1 Definition of the Objective

The goal of the study is to perform an analysis of the

Issue Reports of three Open Source enterprise

software systems, focusing on ERP Enterprise

Resource Planning systems as they are relevant

software systems which integrates all the relevant

business processes of a company (warehouse

management, sales, purchases, accounting, etc.), and

CRM Customer Relationship Management, as these

software systems manage the relationship with the

client, and support enterprises to offer the best

product, the best service and the best possible sales

assistance. In particular, the aim of the study is to

understand if different features of the systems lead to

different quality issue reports, and if, this entails a

different treatment of the issue. To this aim, the

analysis focused, for each issue report analysed, on

number of comments about the issue; presence of

screenshot, presence of item; waiting time.

3.2 System Selection

In this step the systems to consider for the analysis

have been selected. Among the numerous ERP and

CRM open source systems available, the following

ones have been considered for this analysis: Dolibarr,

ERPNext and SuiteCRM. In the following there is a

brief description of the three systems, while some

descriptive data are reported in Table 1.

 DOLIBARR: Dolibarr is an open source

software system for the management of

enterprise business processes. Dolibarr is both

an ERP and CRM (depending on the activated

modules). Dolibarr is mostly written in PHP

using the MySQL database.

 ERPNEXT: is an Open Source software

designed for small and medium enterprises.

This system is particularly used by people with

few skills in the field of business management

systems, as it is presented as a simple app, so

easy to use, configure and manage.

 SuiteCRM: SuiteCRM is an open source

Customer Relationship Management

application. It is often used as an alternative to

proprietary CRM software from major

corporations. It is a fork of SuiteCRM and

started when SuiteCRM decided to stop

development of its open source version.

3.3 Data Extraction

In this step the type of data source to obtain the

information required for the analysis has been

selected.

The analysis of the Issues was conducted starting

from GitHub, a hosting service for software projects,

based on the Git system distributed version control

software. GitHub provides an Issue tracking system,

pull request and comments that allows to improve the

code of the repository by solving bugs or adding

functionality. In this study Github has been used to

obtain the Issues of the analysed systems and the

source codes of the Java classes used to obtain

additional data.

The data have been extracted from the Issue

Tracking system. In particular, Issues can be in two

Issue Reports Analysis in Enterprise Open Source Systems

339

main different states, that are Open and Closed. Each

Issue consists of several parameters:

 Id: unique number that identifies an Issue;

 Title: description of the problem treated by the

Issue;

 Labels: labels used to organize problems and

retrieve requests in a repository in categories

based on priority, category or any other

information deemed useful;

 Assignee: username of the programmers

responsible for the resolution of the Issue;

 Milestone: they are containers of Issue able to

collect more Issues in based on a specific

characteristic;

 Comments: feedback entered by users

accessing a repository.

Table 1: Descriptive data of the selected software system

General Dolibarr ERPNext SuiteCRM

Homepage dolibarr.org erpnext.com Suitecrm.com

Project License GPL-3.0+ GPL-3.0+ GPL-3.0

All Time Statistics at September 2018

Contributors 335 1185 5

Commits 66539 92822 6

The download of issues data has been performed

through a Java tool for automatically downloading the

issue and preparing the data set for the analysis. The

data set contains some main attributes, among the

ones available:

 Id, title, assignee, milestone, labels: parameters

previously introduced;

 Creator: username of the author of the issue;

 State: state in which an issue may be found. It

can be both Closed and Open;

 Comments: number of comments written as

feedback to a report;

 Follower: number of users who follow the

author of the issue;

 Following: number of users who are followed

by the author of the issue;

 Creation date: the date on which the report was

created;

 Closing date: date on which the report was

closed (with a value different from NULL only

in case of issue Closed);

 Body text: description of the problem

encountered by the user during the use of the

software.

Moreover, additional attributes have been

computed and added to the dataset, including specific

attributes to investigate quality aspect of the issue

reports.

The additional considered attributes are the

following:

 Itemization: Boolean attribute. It can take

TRUE or FALSE value based on the presence

or not, in the body of the issue, of the so-called

"step to" reproduce ", i.e. the description, step

by step, of the reproduction of the problem, to

better identify and correct problems;

 Screenshots: Boolean attribute. It can take the

value of TRUE or FALSE based on the

presence or not, in the body of the issue, of

images, gif or video.

 Current Waiting Time: waiting time for an

issue before being examined and resolved by a

developer, expressed in days. The formula used

to calculate this parameter is:

Current Waiting Time = Current Date () -

Creation Date ()

 Category: this parameter represents the

categories of a system. These are detected

based on the characteristic modules of that

system.

 Completeness: represents the completeness of

the issues.

3.4 Inspection of Feature Categories

To investigate on the topic of the issue reports they

have been associated to one of the feature categories

of the software system analysed. To this aim different

feature categories have been identified for each

system. The issues therefore have been related to

these features. The analysis was conducted manually,

looking for: the "key words" within the issue titles;

the description and on the basis of available online

documentation. Then a java tool has been used for

associating the issue reports to the identified

categories. This tool analyses the body of the issues

to obtain new attributes, such as Itemization,

Screenshots, and Feature Category.

4 RESULTS AND DISCUSSIONS

The analysis starts from the dataset created from the

issues of the considered case studies. Only the issues

in ‘Open’ state have been considered, in order to be

able to carry out an analysis of the waiting time of an

issue after its creation. The issues of the Dolibarr

taken into consideration amount to 636; those of the

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

340

ERPNext system are 1352; while 776 issues were

analysed for the SuiteCRM system.

Figure 1: Number of Issue Vs Feature Categories.

Figure 1 shows the number of open issue for each

feature category. It can be observed that for the

Dolibarr system the categories mainly affected by

issue are: Order and Payment while for the ERPNext

system the category mainly affected are: Account,

Payment and Order. The results are easy to

comprehend, indeed Dolibarr and ERPNext two ERP

systems, therefore aimed at business management.

On the other hand, in the case of the CRM systems

it is expected that the categories most impacted are

those relating to communication and customer

management. From the analysis conducted on the

SuiteCRM system issue reports it emerged that the

categories mainly impacted categories are:

Newsletter and Calendar.

Then, the analysis focused on distribution of issue

reports among the categories, evidencing for each

category the number of issue containing Itemization

element in the description. Indeed, as described in the

previous section, the presence of itemization is a

element for the quality of an issue report, as it indica-

tes the presence, or less, of the "Step to Reproduce".

The results of this analysis are shown in Figure 2.

Figure 2: Number of Issue with Itemization Vs Feature

Categories.

Use
rs

Sa
le

R
at

e
Ty

pe

Q
uo

ta
tio

n

Pur
ch

as
e

Pr
oje

ct

Pr
od

uc
t

Pa
ym

en
t

O
rd

er

N
ew

sle
tte

r

Acc
ou

nt

90

80

70

60

50

40

30

20

10

0

Category

C
o

u
n

t

ERPNext

Use
rs

Sa
le

Pr
oj
ect

Pr
od

uc
t

Pa
ym

en
t

O
rd

er

N
ew

sl
et

te
r

Dat
a

M
an

ag
em

en
t

C
on

ne
ct

iv
ity

Ca
le
nd

ar

Ba
la
nc

e

Ac
co

un
t

80

70

60

50

40

30

20

10

0

Category

C
o

u
n

t

Dolibarr

WorkflowUsersSecurityQuoteProjectProductOrderNewsletterMapCalendarAccount

140

120

100

80

60

40

20

0

Category

C
o

u
n

t

Chart of Category

0

50

100

ERPNext False True

0
10
20
30
40
50
60
70

Dolibarr
False True

0

50

100

SuiteCRM

False True

Issue Reports Analysis in Enterprise Open Source Systems

341

From the graphs it is possible to observe that the

large part of issues are without Itemization, which

does not guarantee a good evaluation of the issue

because, as already explained, the presence of the

steps to reproduce to detect and, later, solve the

problem, allows to improve the resolution time of an

issue and, moreover, allows greater clarity.

However, it is possible to highlight that in the case

of SuiteCRM the presence of issues with Itemization

is greater than those without. In this system, therefore,

the problems detected by users, are easily understood

by developers and the resolution time of an issue will

certainly be less than that of other systems.

Figure 3: Number of Issue with screenshot Vs Feature

Categories.

Similarly, Figures 3 show the results of the

analysis related to the presence of Screenshots in the

issue reports distributed respect to the different

categories. The presence of screenshots is considered

important in order to make the problem described in

the issue report clearer and more comprehensible.

Even in this case it is possible to notice that, for all

the considered systems, the number of issue without

screenshots is greater than those with. This result

compromises the quality of the issue report analysed.

To investigate more in details this aspect Figure 4

reports a scatter plots relating the number of

screenshots and the number of comments. This analy-

sis aims to understand if the presence (or the absence)

of screenshot lead to a higher number of comments.

In particular, the analysis has been conducted by

using a linear graph to represent the degree of correla-

tion (ie, linear dependence) between the two variables.

In the graph it is possible to notice that the

absence of the screenshots corresponds to a higher

number of comments.

Figure 4: Number of comments on the issues Vs presence

of screenshot in the Issue Report.

0

50

100

ERPNext False True

0

20

40

60

80

Dolibarr False True

0

50

100

SuiteCRM False True

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

342

This result is interesting as a high number of

comments could influence the time to resolution of

the issue.vIn particular, Figure 5 shows the

distribution of Comments about the submitted issues

respect to the features categories identified. It is

possible to observe that in Dolibarr and SuiteCRM

there are some important differences among the

categories, while in ERPNext the distribution of the

comments is mainly similar. For the SuiteCRM

system it is possible to note that Map is the category

with the greatest variability and comment while for

the ERPNext system there is a greatest variability and

Payment is the category with the highest number of

submitted comments.

(a) ERPPNext.

(b) Dolibarr

(c) SuiteCRM

Figure 5: Comments on issues Vs Feature Categories.

Then, the analysis focused on the waiting time. To

this aim, Interval plots have been used to understand

how the waiting time of the issues change respect to

the categories of the system.

(a) ERPNext.

(b) Dolibarr

(c) SuiteCRM

Figure 6: Waiting time of the issues Vs Feature Categories.

Figure 6 shows that in the SuiteCRM system, the

issues open with a higher waiting time are those

related to the Map and Security category. This can be

related to the fact that many issues of these categories

are without Item or Screenshot in the Issue Report,

Use
rs

Sa
le

Rat
e

Ty
pe

Q
uot

at
io

n

Pu
rc

ha
se

Pr
oj

ec
t

Pro
du

ct

Pa
ym

en
t

O
th

er
s

O
rd

er

N
ew

sle
tt
er

A
cc

ou
nt

3,0

2,5

2,0

1,5

1,0

0,5

Category

C
o

m
m

e
n

ts

Interval Plot of Comments
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

U
se

rs
Sa

le

Pr
oj
ec

t

Pr
od

uct

Pa
ym

en
t

O
th

er
s

O
rd

er

N
ew

sle
tt
er

D
at

a
M

an
ag

em
en

t

Con
nec

ti
vi
ty

Cal
end

ar

Ba
la
nce

Acc
ou

nt

75

50

25

0

-25

-50

Category

C
o

m
m

e
n

ts

Interval Plot of Comments
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

WorkflowUsersSecurityQuoteProjectProductOthersOrderNewsletterMapCalendarAccount

8

7

6

5

4

3

2

1

0

Category

C
o

m
m

e
n

ts

Interval Plot of Comments
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Use
rs

Sa
le

Rat
e

Ty
pe

Q
uo

ta
tio

n

Pu
rc

ha
se

Pr
oj
ec

t

Pr
od

uc
t

Pa
ym

en
t

O
th

er
s

O
rd

er

N
ew

sle
tt
er

A
cc

oun
t

6000

5000

4000

3000

2000

1000

0

Category

C
u

rr
e
n

t
W

a
it

in
g

 T
im

e

Interval Plot of Current Waiting Time
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

U
se

rs
Sa

le

Pro
je

ct

Pr
od

uc
t

Pa
ym

en
t

O
th

er
s

O
rd

er

N
ew

sle
tt
er

D
at

a
M

an
ag

em
en

t

Conn
ec

ti
vi
ty

Ca
le
nd

ar

Bal
an

ce

Acc
ou

nt

25000

20000

15000

10000

5000

0

-5000

-10000

Category

C
u

rr
e
n

t
W

a
it

in
g

 T
im

e
Interval Plot of Current Waiting Time

95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

WorkflowUsersSecurityQuoteProjectProductOthersOrderNewsletterMapCalendarAccount

2000

1500

1000

500

0

Category

C
u

rr
e
n

t
W

a
it

in
g

 T
im

e

Interval Plot of Current Waiting Time
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Issue Reports Analysis in Enterprise Open Source Systems

343

and therefore, the resolution time is greater respect to

the one of categories in which, these parameters are

satisfied. In the Dolibarr system, it emerged that the

categories with the longest waiting time are:

Newsletter and Project, even if the same waiting time

exhibit few change among the different categories.

Finally, in the ERPNext system the categories

with higher waiting time are: Account and Users.

5 CONCLUSIONS

ERP systems are relevant support for business

processes performances. They are subject to

continuous change requests submitted by the users by

using Issue reports. Therefore, Issue reports have a

significant role in the evolution of software systems.

They should be able to provide, if accurately, the

precise steps to reproduce the problem encountered.

The objective of this paper consists in the analysis of

Open Issue Report, that is, still under resolution, of

some Enterprise software including: Dolibarr,

ERPNext, and SuiteCRM. In summary, for each

system different categories have been identified,

through which the issues were grouped. The analyses

were carried out using data collected and organized

from issue tracker.

From the analysis, it was possible to note that only

SuiteCRM presents "Complete" Issue Reports,

including images related to the part of the code /

program in which the error occurred and the

description of the steps to reproduce the problem.

REFERENCES

Anvik J., Hiew L., Murphy G. C., 2006, Who Should Fix

This Bug?, IEEE Proceedings. 28th Int'l Conf. Software

Eng., pp. 361-370.

Antoniol G., Gall H., Di Penta M., Pinzger M., 2004

Mozilla Closing the Circle, Technical Report TUV-

1841-2004-05 Technical Univ. of Vienna.

Antoniol G., Di Penta M., Ayari K., Khomh F., Guéhéneuc

Y.G., 2008, Is It a Bug or An Enhancement? A Text-

Based Approach to Classify Change Requests.,

Proceedings of Conference for Advanced Studies on

Collaborative Research, pp. 304-318.

Aranda J., Venolia G., 2009, The secret life of Bugs: Going

Past the Errors and Omissions in Software Repositories,

Proceedings of the 31st International Conference on

Software Engineering.

Breu S., Premraj R., Sillito J., and Zimmerman T., 2010,

Information Needs in Bug Reports: Improving

Cooperation between Developers and Users, ACM

Proceedings Conf. Computer Supported Cooperative

Work, pp. 301-310.

Goldmerg E, 2010, Bug writing guidelines,

https://issues.apache.org/bugwritinghelp.html.

Hooimeijer P. and Weimer W., 2007, Modeling Bug Report

Quality, IEEE/ACM Proceedings of the International

Conference Automated Software Eng, pp. 34-43.

Jalbert N., and Weimer W., 2008, Automated Duplicate

Detection for Bug Tracking System, Proceedings.

Conference Dependable System and Networks, pp. 52-

61.

Menzies T., Marcus A., 2008, Automated Severity

Assessment of Software Defect Reports, IEEE

Proceedings of 24th International Conference Software

Maintenance, pp. 346-355.

Schroter A., Bettenburg N., Premraj R., 2010, Do Stack

Trace Help Developpers Fix Bugs?, IEEE Proceedings

of International Working Conference Mining Software

Repositories.

Ko A., Myers B. A., Chau D. H., 2006, A Linguistic

Analysis of How People Desribe Software Problems,

IEEE Proceedings Symposium Visual Languag and

Human-Centric Computing, pp. 127-134.

Weimer W., 2006, Patches as Better Bug Reports,

Proceedings Fifth International Conference Generative

Programming and Component Eng., pp. 181-190.

Zimmermann T., Premraj R., Bettenburg N., Just S.,

Schroter A., Weiss C., 2010, What Makes a Good Bug

Report?, IEEE Transactions on Software Engineering.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

344

