On the Evolutionary Relationship between Change Coupling and
Fix-Inducing Changes

Ali Zafar Sadiq, Md. Jubair Ibna Mostafa and Kazi Sakib
Institute of Information Technology, University of Dhaka, Bangladesh

Keywords:

Abstract:

Change Coupling, Software Bug, Fix-Inducing Change, Software Defect.

Change Coupling (CC) is the implicit relation formed between two or more changing software artifacts (e.g.

source code). These artifacts are found to have design issues and code smells. Existing research has revealed
the relationship between the change coupled relation of a class with the number of bugs in bug repositories.
However, this ignored their true relation at the creation time of bugs or erroneous changes known as Fix-
Inducing Changes (FIC). This paper tries to find the actual relationship between FIC and change coupled
relations with respect to considering recent and all commits. This is done by traversing the entire history of
a repository with a commit window of 100 commits and collecting data about FICs and metrics related to
change coupling and object oriented system. It is found from the analysis that recent CC relations at the time
of error are more correlated with new errors. Besides, it is found that explanatory power for predicting future
erroneous change is more in recent CC relation than the one formed by considering all commits starting from

the 15! commit.

1 INTRODUCTION

Software artifacts form change coupled relation by
frequently changing together. Continuous changes
in software artifacts indicate that previous changes
were not enough to make the software work cor-
rectly. This may be the result of design issues or
erroneous code changes. Changes, where any erro-
neous code is introduced in the software, are known
as Fix-Inducing Changes (FIC). These changes create
adverse effect and produces unexpected results (Sliw-
erski et al., 2005) (Antoniol et al., 2005). In order to
analyze these erroneous changes, various works fo-
cused on different properties of change like affected
files, time of day, developer experience and others that
would induce the bugs (Levin and Yehudai, 2017),
(Kim et al., 2008), (Menzies et al., 2007), (Fukushima
et al., 2014). However, the change coupled relation of
artifacts like files or classes (in Java) with the number
of erroneous changes is yet to be investigated.

CC relations depend on the number of changes
considered in the commit history of a software sys-
tem. This relation when considered with all commits
from the origin or 1% commit and that of a small
number of commits recent to FIC or an erroneous
change will differ. Besides, considering the same
object-oriented and change coupled metrics for bugs

494

Sadiq, A., Mostafa, M. and Sakib, K.
On the Evolutionary Relationship between Change Coupling and Fix-Inducing Changes.
DOI: 10.5220/0007758804940501

like (D’ Ambros et al., 2009), originated at a differ-
ent period, may provide wrong information. So, it is
important to investigate the real relationship between
change coupling and erroneous changes with those
metrics recent to FICs.

Different researches have been conducted in both
change coupling and software bugs. In case of change
coupling, works like predicting change (Zimmermann
et al., 2005), suggesting overlooked change and that
of identifying design issues or code smells are seen
(Palomba et al., 2013). However, all of these ig-
nore the fact that the frequently changing relation may
have a role in producing bugs or erroneous changes.
This fact is later on explored (D’ Ambros et al., 2009).
They have investigated this relationship by consid-
ering the software bugs with their proposed change
coupled metrics (like Linearly Weighted Sum of Cou-
pling or LWSOC, Sum of Coupling or SOC). This
considers the same object oriented and change cou-
pling metrics for all bugs but certainly does not repre-
sent at the time of creation of bugs or errors known as
FICs.

For conducting this work, firstly, Fixing Changes
(FCs) in the repository are obtained by searching
commit comment history using keywords and num-
ber indicating bug id. From fixing changes, edited
and deleted lines are detected by comparing a fixing

In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 494-501

ISBN: 978-989-758-375-9

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



On the Evolutionary Relationship between Change Coupling and Fix-Inducing Changes

change with its parent change. Since any change is
stored in the repository as commit, so fixing commit
contains the corrected change from erroneous one by
changing or deleting erroneous lines of codes. Then
those edited or deleted lines are tracked to their last
modification to find FICs. Then considering a com-
mit window of 100 commits the entire history of the
repository is traversed. The number of FICs of a
class and change coupled metrics (like LWSOC and
SOC) proposed by (D’ Ambros et al., 2009) and other
object-oriented metrics (like number of attributes) are
collected for finding their relationship.

The main contribution of this paper is to propose
considering the relationship between FICs and change
coupling. Besides, it investigated whether recent CC
relations or total CC relations influences more in pro-
ducing bugs. For this correlation analysis is per-
formed and obtained result shows recent relation is
correlated more with recent errors. After that from
regression analysis to predict number of FICs within
the short window of 100 commiits, it is seen from the
obtained R?, the percentage of the response variable
variation that is explained by a linear model, is more
for recent CC relations.

2 METHODOLOGY

To analyze change coupled relations, historical in-
formation is collected from the Version Control Sys-
tem (VCS) git. All software changes in documents
or source code are stored in VCS as commits, which
contain information about a changed file, author, time
and comment for why the change is made. Among
those changes, Fixing Change (FC) correct errors
and bugs. Then changed and deleted lines in those
FCs lead to identifying the commit changes that in-
troduced errors in the system, also known as Fix-
Inducing Change (FIC). After that, the temporal anal-
ysis is performed to obtain the change coupled rela-
tions. All of these are elaborated in the following sub-
sections.

2.1 Identifying Fix-Inducing Changes
(FIC)

The entire process of finding FIC, also known as Bug
Introducing Change (BIC), is shown in Figure 1. To
find FIC, at first, all commit comments are searched
for FCs. FC commits contain comments with key-
words “Fix”, “Bug”, “Patch” or their past and gerund
form or those keywords with bug identification num-
ber represented as a number following hash-tags like
“#1234”. Any commit containing any one of those

traits is marked as FC commit without linking those
to bug repository. This is because linking with bug
repository has a problem when bug ids are not found
in commit messages. So it might not fairly represent
all bugs (Bird et al., 2009). In these FCs, codes are
either modified or deleted to correct errors. The line
number of these modified or deleted codes in the im-
mediate parent commit of FC contains the erroneous
code. Therefore, by using Diffj (Diffj, 2018), the dif-
ferences in file contents of an FC commit and its im-
mediate parent commit, erroneous codes and their line
numbers are found. Since Diffj compares Java files
based on their code and ignores formatting, organi-
zation, comments, or whitespace, it removes the pos-
sibility of finding false FICs (Kim et al., 2006). By

ErreriBug Fixing
last Commit
introduced Modified lines:
or modified 2223
in commit Deleted line: 24
[ "
) ¥
Fix-Inducing % Time
Changes a commit in VCS

Figure 1: Identifying Fix-Inducing Changes.

tracking the origin of those lines containing erroneous
code in the parent commit of FCs to their last modi-
fication by using the Git blame command ! (Fabdk,
2012), FICs are found.

2.2 Analyzing Relationship

The change coupled relation is analyzed by consid-
ering a commit window rather than a time frame of
month and year. This is because some software repos-
itories might not have any commit in a month or year.
Also, the first 20 commits of the repository are ig-
nored from analyzing FICs due to the assumption
that those are initial setups. So, analysis consists of
commit window having commits between [20..120),
[120..220) and so on. Figure 2 shows the entire pro-
cess.

For analyzing change coupled relationship, firstly
all java classes in the repository from 1% to the last
commit are listed. Then, all obtained FICs are sorted
according to the timeline. After that, the version his-
tory is traversed along with a commit window of 100

1git -c core.abbrev=40 blame -L(line number),+1
(FC_ParentHash)"— (filename)

495



ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

100 commits
«— >

Origin track N
1st i
r;:f;mmn FIC « is fixed at Fix
. ! e sl -
(%) [ ¥ \J U >
FIC-x Fix-y Time
-
Recent Track with A commit

commits between (r

-0.2541)) and r Collecting Software

IMetrics of the
repository

Figure 2: Analysis process of recency consideration in CC
relation.

commits, and for each FIC in that commit window,
CC relation is considered along 2-time tracks. CC re-
lation formed from the 1% commit up to the end of
considered commit window is considered as Origin
track as it considers time period from 1% commit. In
order to get the recently formed relations, which will
reflect recent relations, %th of origin distance previous
to the commit window’s last commit is considered as
Recent track. This is done from intuition to ensure the
importance of recency (Mori et al., 2015) which may
be related to the erroneous codes. Consideration of
%‘h of origin distance is done from following assump-
tions

e Recent month or year may have O commits.
Therefore rather than tracking through time, it is
best to use a suitable commit number.

e Related changes are mainly committed to to-
gether(Herzig and Zeller, 2013). So, any changes
related to error will be near to the erroneous com-
mit.

e As software evolves, different functionalities are
added and the number of commits to maint=in
them may increase. Therefore, as the distance
from origin increases, the recent track will con-
sider more commits.

Now, change coupling measures, as mentioned by
(D’Ambros et al., 2009), are collected from these
tracks for each class in FICs within the commit win-
dow. These are Number of Coupled Class (NOCC),
Sum of Coupling (SOC), Exponentially Weighted
Sum of Coupling (EWSOC) and Linearly Weighted
Sum of Coupling (LWSOC). These are briefly de-
scribed below. Here, NOCC measures the number of
co-change occurrences that exceeds threshold n. SOC
takes into account the total magnitude of occurrence
in change coupling relationship. EWSOC and LW-
SOC take into account how apart change coupled re-
lations are with respect to the considered time period.

496

Table 1: Repository Detail.

Repository | Total Analyzed | Lines of
Name Commits | Commits | Code
Google 4798 4520 768858
Guava

(Doe,

2009)

After that, software complexity metrics are col-
lected from repository states at the last commits by
moving commit window (e.g. 120, 220, 320 and so
on). These complexity metrics include (Chidamber
and Kemerer, 1994) Chidamber & Kemerer object-
oriented metrics. These are Weighted Method Count
(WMC), Depth of Inheritance Tree (DIT), Response
For Class (RFC), Number Of Children (NOC), Cou-
pling Between Objects (CBO) and Lack of Cohe-
sion in Methods (LCOM). Besides it also includes
some other object-oriented metrics which are Number
Of Attributes (NOA), Number Of Methods (NOM),
FANIN and FANOUT.

Change coupling and object-oriented metrics are
collected or each of 100 commits. After that correla-
tion and linear regression analysis are performed. Ob-
serving p and R square value, their relation and abil-
ity to predict and explain the number of actual fix-
inducing changes of a class within the commit win-
dow period are analyzed. From those data, the impor-
tance of recent data about changed coupled relation
can be understood.

3 EXPERIMENTATION

This experiment is carried out in Ubuntu 14.04 oper-
ating system with 8GB memory and Intel Core” i3-
4130 CPU @ 3.40GHz x 4 processor. For perform-
ing this experiment, firstly, some popular Java repos-
itories are searched and among them, 1 java reposi-
tory is currently analyzed. The details of the selected
repository are shown in Table 1.

In Guava repository, mostly Google develop-
ers maintain an open-source set of libraries. This
project provides extensions to existing Java collec-
tions frameworks and other features like hashing,
graph, range objects, and many others. This reposi-
tory contains commits from June 2009 to the last com-
mit found to be updated in August 2018.

In this repository, the experiment is carried out
methodologically. Firstly, the fixing changes are
found in the source repository by searching commit
comments with keywords. After that, Diffj (Diffj,
2018) is used to identify changes between FC and its
immediate parent commit while ignoring format and



On the Evolutionary Relationship between Change Coupling and Fix-Inducing Changes

white space changes. The modified and changed lines
are tracked to their last modification known as FICs
using Git blame command. The number of FCs and
FICs found in the repository are shown in table 2

Table 2: Total Fix-Inducing Commits and Fixing Commits
of each repository.

Repository Fixing Fix-Inducing
Name Commits Commits
Google 597 486

Guava

After finding FICs, these are sorted according to
their commit distance from the 1% commit of the
repository. Then with a sliding window of 100 com-
mits, commit history is traversed and coupling mea-
sures are collected from 2 track and object-oriented
metrics from repository state at the last commit in
sliding commit window. Then for each of these mea-
sures, the number of errors/FIC of a particular class
found within the commit window is analyzed.

4 RESULT ANALYSIS

The data collected from the experiment is used to per-
form correlation and linear regression analysis. To
find the relationship of change coupling measures
and object-oriented metrics with the number of fix-
inducing changes within the commit window, cor-
relation analysis is done. It is observed that re-
cent change coupling measures are more correlated
to errors where co-change occurrences are small but
poorly co-related where the number of co-change oc-
currences is large. Besides recent co-change metrics
are more explanatory in predicting the number of fu-
ture bugs rather than the co-change from the origin.

4.1 Correlation Analysis

Here, the correlation between coupling measures and
errors introduced into the system, i.e. FICs within the
commit range, is analyzed. From this analysis, fol-
lowing questions can be addressed.

1. Is there any correlation between FICs and change
coupling measures?

2. Is there any difference between considering
change coupling measures for the recent time pe-
riod to that from the 1% commit?

To answer those questions Spearman correlation
analysis is performed. In Figure 3, Spearman corre-
lation is indicated on the y-axis and x-axis represents
the threshold (i.e. n to get those n coupled classes

with respect to considered class) used for the compu-
tation of change couplings metrics. After that plotting
the points on the graph, these are connected to under-
stand their behavior.

In Figure 3a, Spearman correlation between
change coupling and object-oriented metrics of class
total FICs found in the commit window period are
shown. All metrics are represented with their name,
except recent track metrics are named with a prefix
’r_”. The correlation analysis of object-oriented met-
rics gives a vague idea whereas recent track shows
moderate relation during early phase or around 14-15
co-change occurrences of a class with other classes.

In Figure 3b, Spearman correlation between re-
cent and origin track coupling measures with total
FICs in the commit window period are shown. The
correlation analysis of origin track gives the idea
that change prone classes have more correlation with
FICs. Since, those classes co-changing in a huge
amount like 14-15 may not be present in recent track,
so recent track badly correlates with FICs after 14-
15 co-change occurrence of a class. However, in the
early phase of co-change occurrences of a class, i.e.
1-15 recent track shows that those have more relation
with errors.

Now, with respect to question 1, it can be said
there is a correlation between FIC of a period with
its change coupling measures. Although, it may ap-
pear moderate or weak for various reasons like Guava
being a library project, considering the number of er-
rors within commit window of 100 for prediction or
the analyzed history of guava is short (i.e 4520 com-
mits). So, it needs further analysis by changing the
number of commits and exploring different projects.
And for question 2, recent track coupling measures
show a moderate correlation in cases where a class
co-changed small number of times but weak correla-
tion with respect to change prone classes which co-
changed more than 15 changes in guava repository.
This means that change prone classes like those which
changed more than 15 times have been are very un-
likely to produce bugs due to its co-changing rela-
tions. This indicates that newly formed relations with
smaller co-change occurrences are mainly responsible
for bugs.

4.2 Linear Regression Analysis

After finding correlation between number of FICs
with change coupling metrics, here, two questions are
addressed. These are

1. Does use of change coupling increase explanatory
power for predicting FICs or erroneous changes
based on software metrics?

497



ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

variable
1_NOCC
~ 1.80C
1 EWSOC
r LWSOC
WMC
oI
RFC
NOC
CBO
LCOM
o\ NOA
L2000 NOM
00- FANIN
FANOUT

—
-—
i

o
[
h
1
T

Spearman's correlation
x"‘/’“
i3 It I

-
t ot

Number of Co-Changes

(a) Spearman correlation analysis between recent track
coupling measures and metrics

variable

02+ | -~ NOCC
S0C
EWSOC
LWsSoC

r NOCC
rS0C
r_EWSOC
r LWSOC

Spearman's correlation
t o7t

N \ /W

2 20
Number of Co-Changes

(b) Spearman correlation analysis between recent track and
origin coupling measures

Figure 3: Spearman Correlation analysis showing a correla-
tion between recent, origin track change coupling measures
and metrics with FIC.

2. Does use of recent track change coupling mea-
sures improve the model further?

For this, linear regression models are made. Here
the independent variables are change coupling mea-
sures in origin and recent track and the object-

498

0.15-
jabl
0.10- variable
- All
[}
5 - CC
>
3 - CCAR
o —— CCOR
0.05] Metrics

0.00- hage = =000aassssss = ST TR0
0 10 20 30
Number of Co-Changes

Figure 4: Linear Regression analysis for Guava Repository.

oriented software metrics as described in the method-
ology section. The dependent variable is the num-
ber of errors or FICs found within the commit win-
dow considered. In Figure 4, the obtained results
of regression analysis are described. Here, the x-
axis represents the threshold (i.e. n in Figure 4 to
get the change coupling measures as considered by in
D’ Ambros et al proposed change couple metrics ) and
the y-axis represents the R? found in regression anal-
ysis. After that plotted points are connected. In Fig-
ure 4, all means every metrics and change coupling
measures are considered. CC represents only change
coupled relations, CCAR means change coupled mea-
sures with recent and origin both track, CCOR means
only recent change coupled measures and Metrics
means the considered object-oriented metrics. In re-
gression analysis, p-values help to determine whether
the observed relationships also exist in the larger pop-
ulation. All p values for the regression models, for
predicting errors when the number of co-change oc-
currences is from 1 to 30, are found significant i.e. p
< 0.01. In case of independent variables, all 4 change
couple metrics proposed by (D’ Ambros et al., 2009)
are found significant in all cases p < 0.01. In case of
recent track, most of them are found significant in all
cases with an exception in a small number of cases.

Based on R? from Figure 4, which explains the
variability of the response data around the mean of
regression line, it can be said that recent change cou-
pling measures improve the explanatory power of
existing models with object-oriented metrics. This
answers question 1. Question 2 is also answered
from the analysis it is clear that recent information
of change coupled relations can further improve the
explanatory power of prediction model for predicting
future FICs. It is also noticed here that R? is very
small, this may be either due to the project’s nature or



On the Evolutionary Relationship between Change Coupling and Fix-Inducing Changes

that of considered FICs within commit window of 100
commits. This requires further analysis by changing
the size of the commit window and investigating other
projects.

S THREATS TO VALIDITY

The construct validity of the work is threatened by
the following facts. Firstly, only commit messages
are searched for fix-inducing changes without linking
it with the bug repository. Linking with bug repos-
itory has a problem when bug ids are not found in
commit messages. Therefore it might not fairly rep-
resent all bugs (Bird et al., 2009). Besides, the main
objective of this study is to analyze, in the evolution
of software, the relation between CC classes with er-
rors at FIC. Secondly, varying commit behavior like
changing multiple classes not related to fix in an FC
might lead to wrong FICs. This is mitigated by con-
sidering a large dataset. This will be done in the fu-
ture with repositories containing more FIC commits.
Thirdly, all fixes are taken into account but these all
may not represent corrective maintenance (Antoniol
et al., 2008). However, in the considered project, only
bug fixes are found by going through 10 random FCs.
It is found that those FCs are indeed intended for cor-
rective maintenance.

Although this study considered only Java classes.
The main reason behind this limitation is Diffj which
finds the modified and deleted lines between two ver-
sions of a file. In order to make it language inde-
pendent, ANTLR grammars may be used but those
are not as efficient as abstract syntax tree made for
each language. So, the future extension may contain
an elaborate analysis of different types of files and
projects. Further, evolution will be analyzed with re-
spect to different confidence level will be considered
to get more insight.

6 RELATED WORKS

Although a considerable number of works are visible
in both the fields of CC and Bug/Error, works com-
bining those two are rare. All of those tried to address
different issues with problems of a particular field.
Among these works, some of the worth mentioning
works are mentioned below.

To analyze the importance of change coupling, it
is found that structural dependencies are not enough
to explain the evolvability of Java software (Geipel
and Schweitzer, 2012). In the evolution of the
software system, historical data about co-changing

classes can be used like ROSE (Zimmermann et al.,
2005) prototype to predict further changes. Further,
the Bayesian network can be used for change predic-
tion(Zhou et al., 2008). Based on how changes are
done in the source code....., these can be classified
according to tree edit operations in AST (Fluri and
Gall, ). By taking into account inheritance, polymor-
phism, and dynamic binding, there is an operational
definition of dynamic coupling measures (Arisholm
et al.,, 2004). Continuous co-changes may indicate
flawed design or rigid coding. To validate this claim,
it is found that frequently changing software parts or
change couplings may be candidates for refactoring
(Ratzinger et al., 2005).

By using commit comments in the source repos-
itories, fixing changes and fix-inducing changes are
identified by (Sliwerski et al., 2005). However, due
to considering format change and comments, it in-
creases the number of false fix-inducing changes
which is later on addressed by (Kim et al., 2006).
Information from fixing change and fix introduc-
ing changes in version control commits and changed
codes can be used for bug prediction (Nucci et al.,
2018) (Shivaji et al., 2013), localization (Wen et al.,
2016) as well as to to identify affected parts (Misirli
et al, 2016). Further, to analyze whether any
change can be predicted to introduce a bug, (Aver-
sano et al., 2007) used software changes as elements
of n-dimensional space. Similar work is done by
(Shivaji et al., 2013) by reducing the number of fea-
tures. Besides, fixing any erroneous change may not
fix the bug, to address this issue, research of (Yin
et al., 2011) provided useful guidelines. To investi-
gate the characteristics of change types in bug fixing
code, (Zhao et al., 2017) classified the change types
into 5 categories.

The relationship between change coupling and
software defect is first brought up by (D’Ambros
et al., 2009). It showed that frequently changing
software artifacts has a strong correlation with soft-
ware bugs. For finding the relationship, this consid-
ered total bugs of a class in bug repository with col-
lected metrics from repositories considering all trans-
actions. Recently, similar work is performed and it
is found that there is a positive correlation between
change coupling and defect measures (Kirbas et al.,
2017). However all of these considered bugs from
bug repositories. All of these motivated this work to
look at the evolutionary relationship between change
coupling and FICs and to find their relationship.

499



ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

7 CONCLUSIONS

This paper tries to find out whether or not change
coupling has a relationship with the origin of bugs
known as fix-inducing changes from source reposi-
tories rather than considering bugs from bug reposi-
tories like (D’ Ambros et al., 2009). For this, change
coupling measures and FICs are collected from the
source repository of Google Guava. This is done by
considering a commit window of 100 commits and
traversing the history using the version control sys-
tem git. To analyze their relationship, both correlation
and regression analysis is performed. It is seen from
the obtained results that recent change coupling mea-
sures are more correlated with errors rather than con-
sidering total relation. By considering the explana-
tory power for predicting erroneous changes within
the commit window, the use of recent change cou-
pling measures seemed to improve the model as it rep-
resents the recent interactions.

The main achievement of this work is to consider
the relationship between FICs a software defect with
change coupling measures. This analysis is based
on Google Guava repository and by considering FICs
within 100 commits of the commit window, so the
obtained results seem to show moderate and weaker
relation. To address this issue more repositories will
be explored and commit window of different size will
be taken in the future to strengthen the claim. Re-
cently, from analysis, it is observed that total fix-
inducing changes obtained from all commits under
observation correlates strongly with the change cou-
pling measures used in this study.

Various works are possible from the relationship
between change coupling and fix-inducing changes.
These may include prediction, automatic bug fixing,
analyzing change impact and others. However, in fu-
ture works focus will be given on finding how this re-
lationship is influenced by considering different confi-
dence level and size of commits. Besides, this work is
based on java projects and in future projects of other
programming languages will be analyzed to find the
actual difference.

ACKNOWLEDGMENT

This research is supported by the fellowship from
ICT Division, Ministry of Posts, Telecommunica-
tions and Information Technology, Bangladesh. No-
56.00.0000.028.33.002.19.3; Dated 09.01.2019.

500

REFERENCES

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., and
Guéhéneuc, Y.-G. (2008). Is it a bug or an enhance-
ment?: a text-based approach to classify change re-
quests. In Proceedings of the 2008 conference of the
center for advanced studies on collaborative research:
meeting of minds, page 23. ACM.

Antoniol, G., Rollo, V. E,, and Venturi, G. (2005). Detect-
ing groups of co-changing files in CVS repositories.
In 8th International Workshop on Principles of Soft-
ware Evolution (IWPSE 2005), 5-7 September 2005,
Lisbon, Portugal, pages 23-32.

Arisholm, E., Briand, L. C., and Foyen, A. (2004). Dy-
namic coupling measurement for object-oriented soft-
ware. [EEE Transactions on software engineering,
30(8):491-506.

Aversano, L., Cerulo, L., and Del Grosso, C. (2007). Learn-
ing from bug-introducing changes to prevent fault
prone code. In Ninth international workshop on Prin-
ciples of software evolution: in conjunction with the
6th ESEC/FSE joint meeting, pages 19-26. ACM.

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein,
A., Filkov, V., and Devanbu, P. (2009). Fair and bal-
anced?: bias in bug-fix datasets. In Proceedings of
the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT sym-
posium on The foundations of software engineering,
pages 121-130. ACM.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on software engineering, 20(6):476-493.

D’Ambros, M., Lanza, M., and Robbes, R. (2009). On
the relationship between change coupling and soft-
ware defects. In 16th Working Conference on Reverse
Engineering, WCRE 2009, 13-16 October 2009, Lille,
France, pages 135-144.

Diffj (2018). https://github.com/jpace/diff].

Doe, R. (2009). Guava repository from github. https:
//github.com/google/guava.

Fabok, Z. (2012). Learn more about the history of a line
with git blame. https://zsoltfabok.com/blog/2012/02/
git-blame-line- history/.

Fluri, B. and Gall, H. C. Classifying change types for quali-
fying change couplings. In /4th International Confer-
ence on Program Comprehension (ICPC 2006), pages
= 35-45, year = 2006, bibsource = dblp computer sci-
ence bibliography, https://dblp.org.

Fukushima, T., Kamei, Y., Mclntosh, S., Yamashita, K., and
Ubayashi, N. (2014). An empirical study of just-in-
time defect prediction using cross-project models. In
11th Working Conference on Mining Software Repos-
itories, MSR 2014, Proceedings, May 31 - June 1,
2014, Hyderabad, India, pages 172—-181.

Geipel, M. M. and Schweitzer, F. (2012). The link between
dependency and cochange: Empirical evidence. I[EEE
Transactions on Software Engineering, 38(6):1432—
1444.

Herzig, K. and Zeller, A. (2013). The impact of tangled
code changes. In Proceedings of the 10th Working



On the Evolutionary Relationship between Change Coupling and Fix-Inducing Changes

Conference on Mining Software Repositories, pages
121-130. IEEE Press.

Kim, S., Jr, E. J. W,, and Zhang, Y. (2008). Classifying
software changes: Clean or buggy? IEEE Trans. Soft-
ware Eng., 34(2):181-196.

Kim, S., Zimmermann, T., Pan, K., and Jr., E. J. W.
(2006). Automatic identification of bug-introducing
changes. In 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006), 18-
22 September 2006, Tokyo, Japan, pages 81-90.

Kirbas, S., Caglayan, B., Hall, T., Counsell, S., Bowes, D.,
Sen, A., and Bener, A. (2017). The relationship be-
tween evolutionary coupling and defects in large in-
dustrial software. Journal of Software: Evolution and
Process, 29(4):e1842.

Levin, S. and Yehudai, A. (2017). Boosting automatic com-
mit classification into maintenance activities by utiliz-
ing source code changes. In Proceedings of the 13th
International Conference on Predictive Models and
Data Analytics in Software Engineering, PROMISE
2017, Toronto, Canada, November 8, 2017, pages 97—
106.

Menzies, T., Greenwald, J., and Frank, A. (2007). Data
mining static code attributes to learn defect predictors.
IEEFE Trans. Software Eng., 33(1):2-13.

Misirli, A. T., Shihab, E., and Kamei, Y. (2016). Studying
high impact fix-inducing changes. Empirical Software
Engineering, 21(2):605-641.

Mori, T., Hagward, A., and Kobayashi, T. (2015). Effects
of recency and commits aggregation on change guide
method based on change history analysis. In Proceed-
ings of the Tenth International Conference on Soft-
ware Engineering Advances, pages 96—101.

Nucci, D. D., Palomba, E., Rosa, G. D., Bavota, G., Oliveto,
R., and Lucia, A. D. (2018). A developer centered
bug prediction model. [EEE Trans. Software Eng.,
44(1):5-24.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lu-
cia, A., and Poshyvanyk, D. (2013). Detecting bad
smells in source code using change history informa-
tion. In Proceedings of the 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 268-278. IEEE Press.

Ratzinger, J., Fischer, M., and Gall, H. C. (2005). Improv-
ing evolvability through refactoring. ACM SIGSOFT
Software Engineering Notes, 30(4):1-5.

Shivaji, S., Jr., E. J. W, Akella, R., and Kim, S. (2013).
Reducing features to improve code change-based bug
prediction. IEEE Trans. Software Eng., 39(4):552—
569.

Sliwerski, J., Zimmermann, T., and Zeller, A. (2005). When
do changes induce fixes? ACM SIGSOFT Software
Engineering Notes, 30(4):1-5.

Wen, M., Wu, R, and Cheung, S. (2016). Locus: locat-
ing bugs from software changes. In Proceedings of
the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, pages 262-273.

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasun-
daram, L. (2011). How do fixes become bugs? In

Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, pages 26-36. ACM.

Zhao, Y., Leung, H., Yang, Y., Zhou, Y., and Xu, B. (2017).
Towards an understanding of change types in bug
fixing code. Information and software technology,
86:37-53.

Zhou, Y., Wiirsch, M., Giger, E., Gall, H. C., and Lu,
J. (2008). A bayesian network based approach for
change coupling prediction. In WCRE 2008, Proceed-
ings of the 15th Working Conference on Reverse En-
gineering, Antwerp, Belgium, October 15-18, 2008,
pages 27-36.

Zimmermann, T., Weilligerber, P., Diehl, S., and Zeller, A.
(2005). Mining version histories to guide software
changes. IEEE Trans. Software Eng., 31(6):429-445.

501



