
Towards a Uniform Model Transformation Process for Abstract User

Interfaces Generation

Lassaad Ben Ammar a
Prince Sattam Bin Abdul-Aziz University, Kharj, Riyadh, Saudi Arabia

University of Sfax, Sfax, Tunisia

Keywords: Unified Model Transformation, Model-based User Interface Development, Software Engineering.

Abstract: The Model-Driven Development (MDD) paradigm is currently being taken interest in the field of Software

Engineering (SE). It allows simplification and automation of the development process by defining models

and transformations of those models. Model-Based User Interface Development (MBUID) is a variant of the

MDD paradigm in the domain of UI development. It aims to reduce the efforts needed to develop UIs. It has

had a significant research by the SE community leading to the definition of the Cameleon Reference

Framework (CRF) as a unifying framework which structures the UI development process. In the last few

years, several research works have been conducted with the aim of proposing a Cameleon-compliant UI

development process. This situation leads to a series of important shortcomings; among them we quote in

particular the lack of consensus (standard) about the information the different models have to contain and how

to transform these models. With the aim of solving this issue of giving a uniformed UI development process,

this paper presents an initiative towards uniformed task model and its transformation to an abstract user

interface.

1 INTRODUCTION

The development of user interfaces (UIs) has become

one of the most important elements to consider when

developing software applications (Molina et al.,

2012). Model-based User Interface Development

(MBUID) is widely recognized as a promising

approach which permits the simplification and

automation of the UI development process while

reducing the developer’s needed efforts (Meixner et

al., 2011). It aims to identify high-level models that

will undergo a series of transformations in order to

(semi-) automatically generate the final UI.

In the last few years, the increase adoption of

MBUID has led to an ever-increasing number of user

interfaces development methods and techniques. A

renowned work in this context is the Cameleon

Reference Framework (CRF) (Calvary et al., 2003).

It structures the UI development process into four

levels of abstraction:

 Task & Concepts (T&C): describe the various

user tasks to be carried out and the domain-

a https://orcid.org/0000-0002-4698-3693

oriented concepts as they are required by these

tasks to be performed.

 Abstract UI (AUI): expresses the UI in terms of

Abstract Interaction Units (AIU) or Abstract

Interaction Objects (AIOs) (Vanderdonckt and

Bodart, 1993) as well as the relationships among

them.

 Concrete UI (CUI): concretizes an abstract UI for

a given context of use into Concrete Interaction

Objects (CIOs) (Vanderdonckt and Bodart, 1993)

so as to define widgets layout and interface

navigation. These CIUs are modality-dependent,

but implementation technology independent.

 Final UI (FUI): expresses the UI in terms of

implementation technology dependent source

code. A FUI can be represented in any UI

programming language (e.g., Java UI toolkit) or

mark-up language (e.g., HTML).

Several different methods and models for UI

development are proposed within the Cameleon

framework (e.g. (Akiki et al., 2016) and (Molina et

al., 2014)). This variety raises a particular problem for

developing user interfaces via model-based

approaches as different models and transformation

Ben Ammar, L.
Towards a Uniform Model Transformation Process for Abstract User Interfaces Generation.
DOI: 10.5220/0007763905330538
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 533-538
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

533

processes are exploited: they are not well integrated

into a single consolidated conceptual framework that

facilitates their usage by software developers. This

paper attempts to solve this problem by introducing

uniform process for generating abstract user

interfaces. Note that the ultimate goal of the research

project to which this paper belongs is to introduce a

unified Cameleon-Compliant process for user

interface generation. In this paper, the interest is

focused on the first part of the development process

aiming to generate an abstract user interface from a

Task&Concept model.

In the remainder of the paper, we present an

overview of the most significant (referenced) model-

based approaches serving as a basis to provide our

proposal for unifying the abstract user interface

development process. Following this, a case study

and a tool supporting the meta-model are presented.

The paper is wrapped up by summarizing our work,

deriving conclusions and addressing future work and

challenges.

2 RELATED WORK

The aim of this section is to summarize the state of

the art and the effort made in the field of user interface

generation via model based approach. The focus is

placed on some proposals that are considered relevant

due to their wide citation in related works.

In (Tran et al., 2012), an algorithm is presented to

generate systematically all potential abstract user

interfaces from task and domain models. The

engineering process entails 9 steps using different

resources (models and documents) which are defined

within the UsiXML framework. This makes the

proposed approach closely related to that framework

and prohibits its adoption by other researchers.

Furthermore, the cost and performance of such an

approach is the main weakness since the analyst must

specify the transformation rules for all potential

abstract user interfaces.

(Molina et al., 2012) proposed an interesting tool

namely CIAT-GUI that allows to (semi-)

automatically obtain the final graphical user interface

of an information system from declarative models (a

task model in Concur Task Trees CTT2 notation and

domain model in UML notation). This proposed work

2 CTT: supports a hierarchical description of task models

with the possibility of specifying a number of temporal

relations among them
3 MDE: Model-Driven Engineering is a recent software

engineering approach aiming at the development of

offers visual-design tools for the various levels of

abstraction. Indeed, it presents a very interesting basic

idea about the automatic process for user interface

generation. However, several gaps and limitations

still need to be addressed in this proposition. For

example, the task model is analyzed several times in

the development process even during the generation

of the concrete user interface. This contradicts the

principles of an MDE3 development process which

only consider the task model at the beginning of the

development process (for generating the abstract user

interface model). There are also gaps and limitations

that pertain to the implementation details. This

includes the analysis of the task tree in a bottom-up

process starting from the leaf to the root instead of the

reverse process (top-down). This can raise several

questions about the cost/effectiveness of the

implementation.

In (Limbourg et al., 2001), a series of

representative task models are analysed and their

meta-model are merged in a unified task meta-model.

Several semantic mapping rules between individual

task meta-models and the uniformed task meta-model

are established in order to read and understand any

potential task model towards its exploitation in a

model-based approach. Gaps and limitations of this

proposal are closely related to two main issues. The

first one concerns the effort needed to consolidate a

new meta-model by modelling their characteristics

which are not presented in the unified meta-model.

The second one pertains to the expressiveness of the

unified meta-model since it considers only task

models leaving aside relevant concepts from other

models (e.g. domain model).

The MBUI incubator group of the W3C (MBUI,

2014) published two initiatives to uniform task model

and abstract user interface model. These initiatives

are interesting as for the concepts to be considered in

each model. However, they are proposed with

theoretical troubles disregarding the development

perspectives, which may cause overhead to the

application developers while implementing the

transformation process.

Based on the aforementioned proposals, it has

become clear that although there were multiple

attempts to generate user interface within a model-

based approach, several shortcomings still persist.

Among them we mention:

software system by considering model as primary

artifact and their transformation from the conceptual

level until the code level.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

534

 There is a lack of standard that unify the basic

concepts, vocabularies and transformation

details.

 Most of proposals are concept-oriented and do not

pay attention to the development perspectives,

which play a key role in their adoption.

 There is duplication (reproduction) of research

and development efforts instead of benefiting

from existing approaches.

To address the above shortcomings, we assigned

ourselves the next goals:

 To provide a single consolidated meta-model for

each abstraction level presented in the Cameleon

framework. These meta-models should strongly

rely on existing proposals which presents

common relevant concepts.

 To establish mapping between these meta-models

leading to automatically generate the final user

interface.

As is mentioned before, this paper presents a

partial solution which only focuses on the first part

that generates the abstract user interface from a task

model. The next section describes our proposal to

deal with such goal.

3 A UNIFORM PROCESS TO

DEVELOP ABSTRACT USER

INTERFACES

In this section, we present the steps followed to build

a uniformed abstract user interface generation

process. Our proposal consists of three major steps:

consolidation of relevant common concepts and

vocabularies required to design a task model into one

single meta-model called uniformed task meta-

model, consolidation of relevant common concepts

and vocabularies required to design an abstract user

interface model into one single meta-model called

uniformed abstract user interface meta-model,

proposing transformation rules enabling the

generation of an abstract user interface from a task

model.

Note that while proposing our meta-models some

crucial concepts are implicitly taken into

consideration, especially:

 Redundant information/concepts with different

definitions/terminologies are omitted via a

syntactical uniform process associating a

uniformed label (usually a terminology which is

the largely used/the most known in that context).

 Building the meta-models with a development-

oriented perspective and thus facilitating their

implementation and consequently their adoption

in an industrial environment.

3.1 Uniformed Task Model

Task models are shown to be useful for designing

interactive software applications. They describe how

activities can be performed to reach the users goals

when interacting with the application considered.

After analyzing several related works, we opted for

the adaption of the ConcurTaskTree (CTT) to

represent user’s tasks along with their logical and

temporal ordering. Some issues are kept in mind

during the adaptation process as we consider them

crucial for a task meta-model and may increase its

adoption whether in the academic or industrial

environment. These issues pertain especially to:

 Task hierarchy/decomposition; usually

represented as a tree allowing the distinction

between abstract tasks and concrete/elementary

tasks and shows constraint for grouping related

tasks in the interface.

 Relationship among tasks showing constraint for

placing interaction objects.

 Domain-oriented concepts as they are required by

tasks to be performed. Domain concepts are

encapsulated in the task model for development

reasons. We argue that reducing inputs and steps

during the development process is likely to reduce

complexity of the process.

A task model is therefore composed of tasks and

relationships (Fig. 1). Tasks are described with a

name, a description and a category. Task description

represents domain-oriented concepts required by the

task to be performed. Task category may be: users,

interactive, system or abstract. User tasks are notably

useful to describe tasks which are entirely performed

by the user requiring only an internal cognitive

activity without interaction with the system (e.g.

selecting a strategy to solve a problem). An

interactive task involves an active interaction of the

user with the system (e.g., selecting a value, browsing

a collection of items). A system task is an action that

is performed by the application itself (e.g., check a

credit card number). An abstract task is a task which

requires complex actions, and their performance does

not completely fall into one of the three previous

cases.

To refine the expression of the nature of leaf tasks,

two main attributes are considered: UserAction and

TaskItem. Note that this expression is relied on the

taxonomy introduced by (Constantine, 2003) to

qualify a UI in terms of abstract actions it supports.

The UserAction indicates a user action required for

Towards a Uniform Model Transformation Process for Abstract User Interfaces Generation

535

performing the task and the TaskItem refers to the

type of object on which the action is operated. The

derivation of interaction objects supposed to support

a task is usually carried out by combining these two

dimensions.

Task relationships allow specifying a temporal

relationship between sibling tasks of a task tree.

LOTOS operators are used here as they have been

applied to task modelling in (Paterno et al., 1997).

Note that, the hierarchical structure of the task model

is supported using the SubTask composition. In

addition, composition is used sometimes for some

development reasons even the relationship can be

simply modelled using an association (e.g. source and

target of a relationship).

Figure 1: Task Meta-model.

3.2 Uniformed Abstract User Interface
Model

An Abstract User Interface (AUI) model represents a

canonical expression of the renderings and

manipulation of the domain concepts and functions in

a way that is as independent as possible from

modalities and computing platform specificities. It is

populated by abstract interaction objects (AIO) and

abstract relationship (Fig. 2). AIO represents an

abstraction of widgets found in most of the popular

toolkit (e.g. windows, buttons, panels, etc.). It can be

classified into two main types: abstract containers

(AC) and abstract individual components (AIC).

AC (sometimes called presentation unit) is an

entity allowing a logical grouping of other abstract

containers or abstract individual components. It is

said to support the representation of a set of

logically/semantically connected tasks. It may be

transformed, at the concrete level, into graphical

container like windows, dialog boxes, etc.

AIC is an abstraction of an interaction object

populating an abstract container independently of the

modality in which it will be rendered in the concrete

level. An AIC assumes at least one basic system

interaction function described as facet in the UI.

According to (Limbourg et al., 2001), four main

facets can be identified: Input, Output, Control and

Navigation.

The UserAction attribute of an AIC enables the

specification of the type of action an AIC allows to

perform. The TaskItem attribute characterizes the

item manipulated by the AIC. The values of

UserAction and TaskItem can be inherited from the

UserAction and TaskItem attributes defined in the

Task Model, respectively.

Abstract relationships are relationships that can

be established between abstract interaction objects of

all kinds. They are couples of Source and Target.

Abstract Adjacency and Spatio-temporal are among

the most common type of abstract relationships

presented in the literature. Adjacency specifies an

adjacency constraint between two AIOs. As for

Spatiotemporal relation, two basic relations are

considered in this paper: sequential and simultaneous.

Figure 2: Abstract User Interface Meta-model.

3.3 Defining Transformation Rules

This section presents the process for automatic

obtaining the Abstract UI from the task model. It is a

recursive process which analyze the task tree in a top-

down way. We opted for the Depth-first search (DFS)

algorithm to implement this derivation process. This

later may involve the following steps:

 Creation of Abstract Container: consists of the

definition of the abstract UI structure via the

definition of abstract container. This step will be

applied for each parent node in the task tree (task

which is split into several sub-tasks). The

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

536

transformation rule to be executed is the

following:

o Rule 1: for each parent note, create an abstract

container. If the parent node is also a child of

another parent node, link them with a

containment relationship.

 Creation of Abstract Individual Component:

consists of finding the adequate abstract

individual component type to support one or

several user’s task. UserAction and TaskItem are

notably important information to perform such

adequate selection (see Algorithm 1). Rule 2 and

3 are examples of transformation rules that can be

applied to enable the creation of an abstract

individual component.

o Rule 2: for each leaf task from the System

type with a View UserAction, create an

abstract individual component from the

Output type. Link the abstract individual

component and the abstract container

corresponding to its parent node in the task

tree by a containment relationship.

o Rule 3: for each leaf task from the Interactive

type with a Select UserAction, create an

abstract individual component from the Input

type. Link the abstract individual component

and the abstract container corresponding to its

parent node in the task tree by a containment

relationship.

 Identification of spatio-temporal relationship: the

spatiotemporal relationship defined between tasks

can be respected in the abstract UI specification.

This step consists of defining the spatio-temporal

arrangement between elements of the abstract UI.

Note that two level of arrangement are identified:

1) intra-container level concerns the arrangement

of abstract individual component within the same

abstract container, and 2) inter-container level

concerns the definition of navigational structure

among abstract container. The interest is focused

in this paper on the second one. Rule 4 shows an

example of a” Sequential” spatio-temporal

arrangement between two abstract containers.

o Rule 4: for each couple of abstract container

connected by a relationship from the

Sequential type, create a relationship

between them “Sequential”.

Algorithm 1: Task Tree Traversing.

for each task in task tree do

if task has sub tasks then

Create an AbstractContainer

else

if task is System then

if UserAction is View then

Create Abstract component

from the Output type

end if

if UserAction is StartGoTo

or StopEndComplete or

PerformReturn then

if TaskItem is Operation

then

Create Abstract

component from the

Control type

end if

if TaskItem is Container

then

Create Abstract

component from the

Navigation type

end if

end if

end if

if task is Interactive then

if UserAction in Select, Create,

Delete, Modify, Move, Duplicate

then

Create Abstract component from the

Input type

end if

end if

if task is User then do nothing

end if

end if

end for

4 CONCLUSIONS

MBUID approach can contribute to the automatic

generation of software process. One of the reasons

that disallow the MBUID to have the expected

success is the lack of standards and norms about

concepts and terminologies used to design user

interfaces. The objective of this paper is to elaborate

a design framework aiming to unify concepts and

terminologies required for user interfaces design. In

this respect, a part of the intended proposition is

presented allowing the generation of an abstract user

interface from a task model. A uniform meta-model

is presented for each level of abstraction allowing the

design of the user interface. In addition, a set of

transformation rules are presented showing the

mapping process between the task model and abstract

UI model. In the expected framework, a user interface

undergoes three transformations starting from a task

to automatically obtain the final user interface. Future

works includes the full implementation of this step

from the development process (T&C to Abstract UI)

and the consideration of the other levels of abstraction

Towards a Uniform Model Transformation Process for Abstract User Interfaces Generation

537

(CUI) with regard to the unifying of concepts and

terminologies.

REFERENCES

Molina, A. I., Giraldo, W. J., Gallardo, J., Redondo, M. A.,

Ortega, M., and Garcia, G. “Ciat-gui: A mde-compliant

environment for developing graphical user interfaces of

information systems,” Adv. Eng. Softw., vol. 52, pp. 10–

29, Oct. 2012.

Meixner, G., Patern, F., and Vanderdonckt, J. “Past,

present, and future of model-based user interface

development.” icom, vol. 10, no. 3, pp. 2–11, 2011.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. “A unifying

reference framework for multi-target user interfaces,”

Interacting with Computers, vol. 15, no. 3, pp. 289–

308, jun 2003.

Vanderdonckt, J. and Bodart, F. “Encapsulating knowledge

for intelligent automatic interaction objects selection,”

in Proceedings of the INTERACT ’93 and CHI ’93

Conference on Human Factors in Computing Systems,

ser. CHI ’93. New York, NY, USA: ACM, 1993, pp.

424–429.

Akiki, P. A., Bandara, A. K., and Yu, Y. “Engineering

adaptive model driven user interfaces,” IEEE

Transactions on Software Engineering, vol. 42, no. 12,

pp. 1118–1147, Dec 2016.

Molina, A. I., Giraldo, W. J., Ortega, M., Redondo, M. A.,

and Collazos, C. A. “Model-driven development of

interactive groupware systems: Integration into the

software development process,” Sci. Comput.

Program., vol. 89, pp. 320–349, 2014.

Tran, V.., Vanderdonckt, J., Tesoriero, R., and Beuvens, F.

“Systematic generation of abstract user interfaces,” in

Proceedings of the 4th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, ser. EICS

’12. New York, NY, USA: ACM, 2012, pp. 101–110.

Limbourg, Q., Pribeanu, C., and Vanderdonckt, J.

“Towards uniformed task models in a model-based

approach,” in Interactive Systems: Design,

Specification, and Verification, C. Johnson, Ed. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2001, pp. 164–

182.

MBUI. Model-based user interfaces (mbui) working group.

[Online]. Available: https://www.w3.org/TR/

Constantine, L. L. “Canonical abstract prototypes for

abstract visual and interaction design,” in Interactive

Systems. Design, Specification, and Verification, J. A.

Jorge, N. Jardim Nunes, and J. Falc˜ao e Cunha, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,

pp. 1–15.

Paterno, F., Mancini, S. and Meniconi, C.,

ConcurTaskTrees: A Diagrammatic Notation for

Specifying Task Models. Boston, MA: Springer US,

1997, pp. 362–369.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

538

