
Rule-based Security Monitoring of Containerized Workloads

Holger Gantikow1, Christoph Reich2, Martin Knahl3 and Nathan Clarke4

1Science+Computing ag, Atos, Tuebingen, Germany
2Institute for Cloud Computing and IT Security, Furtwangen University, Furtwangen, DE, Germany

3Faculty of Business Information Systems, Furtwangen University, Furtwangen, DE, Germany
4Center for Security, Communications and Network Research, Plymouth University, Plymouth, U.K.

Keywords: Container Virtualization, Docker, Security, Monitoring, Anomalous Behavior, System Call Tracing.

Abstract: In order to further support the secure operation of containerized environments and to extend already estab-
lished security measures, we propose a rule-based security monitoring, which can be used for the detection
of a variety of misuse and attacks. The capabilities of the open-source tools used to monitor containers are
closely examined and the possibility of detecting undesired behavior is evaluated on the basis of various sce-
narios. Further, the limits of the approach taken and the associated performance overhead will be discussed.
The results show that the proposed approach is effective in many scenarios and comes at a low performance
overhead cost.

1 INTRODUCTION

Over the last few years, Linux containers have led
to a strong trend towards lightweight virtualization,
where only the application and its dependencies rep-
resent the content of the virtualized unit, omitting a
virtual machine with an independent operating sys-
tem. Because the virtualization takes place at the op-
erating system level, all containers running on one
host share the very same Linux kernel, which in turn
handles the virtualization. This leads to reduced re-
source requirements (Felter et al., 2015), that are
particularly beneficial for scalable, distributed mi-
croservice architectures. For this purpose, contain-
ers are preferably used for underlying basic compo-
nents such as databases, message brokers, service dis-
covery services or web/application servers. In addi-
tion, container technologies play an important role
when it comes to managing software in DevOps en-
vironments. There they offer, integrated into corre-
sponding Continuous Integration, Delivery and De-
ployment (CI/CD) tools and pipelines, the possibility
to package applications and their dependencies auto-
matically in a standardized image format and to sub-
sequently deploy them independent of the underlying
Linux distribution. Containers have also established
themselves in the domain of High Performance Com-
puting (HPC) and Scientific Computing in general.
There they serve with low performance overhead as

appropriate means to improve the portability of ap-
plications across different systems and institutions, to
simplify the handling of user-provided applications
and to ensure the reproducibility of experiments.

According to current surveys (Sysdig, 2018), the
most widespread container runtime is still Docker
with a share of 83% of the investigated systems,
followed by rkt with 12%. However, there is also
a considerable number of runtime engines designed
for a specific purpose or domain. Especially in the
field of HPC, where Charliecloud (Priedhorsky et al.,
2017), Shifter (Jacobsen and Canon, 2015) and espe-
cially Singularity (Kurtzer et al., 2017) are far more
widespread than Docker, but in most cases use other
isolation mechanisms than the general purpose run-
times, which are in the focus of this paper. While
overall interest in utilizing containers due to their ben-
efits is still rising, container security, or the lack of
thereof (Combe et al., 2016), is still listed the most
frequent challenge to overcome when adopting con-
tainers (Portworx, 2018), even though the situation
has improved significantly in recent years as a result
of the integration of several security mechanisms.

In this paper, we propose the use of rule-based se-
curity monitoring to increase the security level in a
containerized environment. We explore the applica-
bility of the approach to detect several types of mis-
use and potential attacks and discuss the limitations
of the described approach, as well as the associated

Gantikow, H., Reich, C., Knahl, M. and Clarke, N.
Rule-based Security Monitoring of Containerized Workloads.
DOI: 10.5220/0007770005430550
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 543-550
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

543



monitoring-related performance overhead.
The rest of this paper is organized as follows.

Section 2 introduces the basic security mechanisms
that exist in the domain of container virtualization.
Section 3 details which special characteristics exist
regarding monitoring compared to hypervisor-based
virtualization. Section 4 discusses related work to
further secure containerized workloads. Section 5
presents the proposed rule-based security monitoring
approach that is evaluated in Section 6. Section 7 dis-
cusses the current limitations and future work, before
we conclude in Section 8.

2 CONTAINERS AND SECURITY

Container isolate workloads by using Linux features
like the Control Groups (cgroups) for metering and
limiting resources as CPU share, memory and IO,
as well as Kernel Namespaces. These provide pro-
cesses their own limited view of the shared host sys-
tem. Linux currently implements seven namespaces
and is able to provide isolated instances of cgroups,
IPC, Network, Mount, PID, User, UTS.

In addition to these fundamental isolation mecha-
nisms, support for additional already established se-
curity mechanisms has been integrated into the con-
tainer runtimes over time. These include, for in-
stance, support for components such as AppArmor
and SELinux that use the Linux Security Module in-
terface and are used for implementing Mandatory Ac-
cess Control (MAC). They can be applied to directly
control the access rights of individual processes and
thus reduce the risk of potentially harmful effects in
the event of an error or attack. The kernel feature Se-
cure Computing Mode (seccomp) allows to explicitly
deny certain system calls of the Linux kernel for a
container and to create a basic sandbox. For exam-
ple, by disallowing the chown system call it can be
prevented that inside a container the file ownership
can be changed. The use of these mechanisms require
in-depth knowledge of the requirements of a specific
container. To maintain high compatibility with the
widest range of containers the default profiles sup-
plied typically contain a less restrictive set of rules
and should be adjusted subsequently on a per con-
tainer basis.

Complementing these essential mechanisms, fur-
ther preventive security measures that can be applied
to secure containerized environments are described in
an overview paper (Gantikow et al., 2016). Among
the most important are CVE scanners for the static
analysis of vulnerabilities in container images, user
namespaces to remap the root user inside the con-

tainer to a less-privileged user on the host and ca-
pabilities, which allow superuser privileges to be
dropped in functional groups. Seccomp is more fine-
granular, as it is based on single system calls, whereas
the capability SYS ADMIN offers a very extensive
range of functions, which in principle can be ex-
ploited to deactivate other security measures (Walsh,
2016).

Although there are many ways to ensure the oper-
ational security of containerized environments and to
protect hosts and containers running in parallel from
malicious workloads in one container, the isolation
provided by containers is still considered to be weaker
compared to hypervisor-based virtualization.

However, better protection against Information
Leakage is still evolving, as the Linux kernel does not
yet provide a fully developed approach to partitioning
all available resources and subsystems that can be uti-
lized by containers. There are still a number of limita-
tions that make it possible to collect more information
about the host from inside the container than would be
possible from a VM. Especially the /proc file system
is problematic, because it exposes many information
leakage channels (Gao et al., 2017), allowing an op-
timized attack by the information retrieved. Another
potential area of threat is the risk of privilege esca-
lation, i.e. the obtaining of elevated access rights to
the system or even a container breakout. Even if the
greatest risk here is posed by improperly running con-
tainers with elevated privileges (Stoler, 2019), for ex-
ample by applying the –privileged flag at container
startup, leading to security settings so that the con-
tainer behaves practically like a process running out-
side the container, this risk should not be underesti-
mated.

We therefore propose to add a security mea-
sure, the adoption of a rule-based security monitor-
ing of containerized workloads with the aim of de-
tecting misuse and attempted common attacks. For
the scope of this paper, we focus on the detection
of some widespread scenarios and take advantage of
container-specific characteristics in monitoring. Use
cases include monitoring for unauthorized file access
as it can precede information leakage, launching un-
expected network connections and applications, at-
tempting privilege escalation, and monitoring a num-
ber of additional elements on the host system.

3 CONTAINERS AND
MONITORING

While containers improve the flexibility and portabil-
ity of workload execution, they make it difficult to

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

544



monitor these workloads when using traditional pro-
cess and performance monitoring tools. Among the
reasons for that is that it is considered best practice
to isolate containerized workloads by separating them
with a single process per container model. Adding a
monitoring agent to each container would both break
this model, thus the simplicity of containers, but also
require the modification of the containerized image.
The addition of such a third party application to user
provided images may represent an intolerable condi-
tion for scenarios where users want to ensure the in-
tegrity of their code. Therefore the establishment of a
monitoring process within a container is not suitable
in most cases. The limited suitability also applies to
the approach of a separate sidecar container, which
is placed alongside each container and takes over the
monitoring functionality in a dedicated manner. This
approach would need extended privileges and suffers
from high additional overhead.

Therefore, we suggest the use of one monitoring
agent per host for our approach. This offers the advan-
tages that the overhead caused by additional monitor-
ing containers is eliminated, that the one process per
container model can be preserved, that no monitoring
agent has to be introduced into the individual contain-
ers and thus a modification of user supplied images
can be omitted. By monitoring the system calls issued
by a container, the host is able to obtain a very accu-
rate picture of the operations running inside the con-
tainer. By supplementing traditional metrics (includ-
ing CPU load, memory usage, network and block I/O,
and number of running processes), which can also be
captured at host level, a comprehensive overall level
of information about the state of a container can be ag-
gregated. In addition, it should be mentioned that the
collected state information can be directly assigned
to the respective containerized workload, since there
are no possible concurrent activities caused by a guest
operating system that could distort the overall picture.
This type of monitoring allows a rule-based approach
for the detection of common security events and at-
tempted attacks of containerized workloads.

4 RELATED WORK

There are a number of methods for increasing the
protection of containerized environments which im-
prove the existing Linux security mechanisms that are
nowadays supported by container runtimes. These in-
clude SPEAKER (Lei et al., 2017), which uses dif-
ferent seccomp profiles for the start-up phase of the
container and its actual operational phase, or Lic-
Shield (Mattetti et al., 2015) which generates policies

for AppArmor with the help of a behavioral learning
phase.

Although approaches (Nikolai, 2014) exist in
hypervisor-based environments that only use per-
formance metrics to detect malicious behavior and
would be transferable to containerized environments,
system calls are still the preferred data source when
it comes to detecting malicious behavior. This goes
back to the seminal work of Forrest (Forrest et al.,
1996), who proposed sequences of system calls as
an appropriate differentiator between normal and
anomalous behavior. However, the accuracy of this
approach suffered from concurrency on the host caus-
ing distortions of results, such as parallel services.
Containerized workloads reduce this risk, since only
one application typically runs in one container which
avoids concurrency noticeable.

Abed et al. (Abed et al., 2015) applies the ap-
proach of using strace to containers and found it
suited to be used for anomaly detection without re-
quiring any prior knowledge of the container. Unfor-
tunately, the utilized bag of system calls approach is
generally vulnerable to mimicry attacks (Kang et al.,
2005).

Another paper dealing with the practicability of
Falco is provided by Borhani (Alex Borhani, 2017),
although it focuses on Incidence Response rather than
the limitations of the approach.

The use of machine learning approaches to mon-
itor workloads based on system calls is also inves-
tigated by a number of authors, including Maggi et
al. (Maggi et al., 2010) using Markov models for
anomaly detection based on system calls and their ar-
guments. This approach was extended by (Koucham
et al., 2015) by the incorporation of domain knowl-
edge and system call specific context information.
Kolosnjaji et al. (Kolosnjaji et al., 2016) described
an approach with neural networks based on convo-
lutional and recurrent network layers which allows
them to improve the performance of detecting mal-
ware. The approach of Dymshits et al. (Dymshits
et al., 2017), which focuses on distributed collection
and processing of large volumes of data, investigates
sequences of system call count vectors and uses a
LSTM-based architecture.

5 OVERVIEW OF PROPOSED
SYSTEM

Our approach is based on the Open Source tools Sys-
dig (Sysdig, 2019b) and Falco (Sysdig, 2019a). They
both distinguish from other approaches such as using
strace and eBPF (Fleming, 2017) by a native support

Rule-based Security Monitoring of Containerized Workloads

545



for containers (Docker, rkt, LXC). Their ability to ac-
tivate filters to restrict the collection of data, primarily
system calls, to single containers significantly helps
to reduce the effort associated with container-specific
monitoring and also offers the potential to reduce the
amount of data that has to be collected and processed.

5.1 Sysdig

Sysdig consists of a Linux kernel module (sys-
dig probe) and a daemon. Through the kernel mod-
ule, all system calls coming from applications and
containers are captured and sent to the daemon for
further processing. The daemon can either be exe-
cuted on the host system or within a privileged con-
tainer. The functionality of Sysdig extends over sev-
eral well-known analysis and monitoring tools, in-
cluding strace and tcpdump and also includes transac-
tion tracing. This allows capturing not only the state
of the system (CPU load, running processes), but also
actions as accessing files or establishing network con-
nections. To limit the amount of data, it is possible to
define filters for incoming events. These can be based
on specific system calls, the source of an event, such
as specific containers or processes, or attributes of the
respective event.

5.2 Falco

Falco complements the system call capture function-
ality of Sysdig with the ability to detect abnormal ac-
tivities. It is based on the same kernel module as
Sysdig and implements a behavioral activity moni-
tor whose policies can be defined based around the
Sysdig filter options as condition. It can be used to
identify, using an appropriate set of rules, whether
a container deviates in its behavior from the desired
state and shows signs of anomalous behavior. Such
anomalous activities inside a container could repre-
sent starting unauthorized applications in a container,
browsing unusual file system paths, or attempting to
write to paths containing system files and binaries.
Falco, however, only detects violations, so that mit-
igation of the detected anomalous behavior must take
place subsequently. Another limitation of Falco is that
it is only suitable for detecting point anomalies, such
as the occurrence of a certain event, as starting of a
certain application, or the use of a unauthorized sys-
tem call. Currently there is no possibility to map con-
textual anomalies or collective anomalies through the
available rules set. This limits the detection possi-
bilities to some extent, as the following investigation
shows.

5.3 Architecture

Figure 1: Proposed Rule-based Security Monitoring Archi-
tecture.

Figure 1 shows the corresponding architecture. As
already described, both Sysdig and Falco use the (sys-
dig probe) kernel module which utilizes the Linux
kernel facility tracepoints to capture system calls.
System calls are of high value when it comes to trac-
ing the behavior of a (possibly containerized) applica-
tion, since already every file access leaves a meaning-
ful trace at the transition from the process-to-kernel
boundary, also known as the system call interface.
This way, besides the call names, also the arguments
and the return values can be obtained and evaluated.
While Sysdig is mostly used for displaying and pro-
cessing captured events, Falco provides the possibility
to decide on the basis of predefined rule sets (Figure
1, Rules) if there is anomalous behavior and to per-
form a corresponding notification (Figure 1, Incident
Notification) using logging frameworks, messengers
or plain e-mail. We are currently thinking about ex-
panding this functionally and introducing mitigation
measures based on the severity of the event.

6 EVALUATION

For our evaluation we have chosen a two-phase ap-
proach: in the first phase we manually examine
whether and how certain behavior can be recognized
with Sysdig and, if possible, transfer the condition
that is needed to recognize the undesired activity into
a Falco rule set. In the second phase the created Falco
rule set was tested for the possibility of automatic
recognition.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

546



6.1 Test Environment

The evaluation was carried out in a virtualized test en-
vironment. This means, referring to Figure 1, that the
host system is actually a virtual machine in our case.
However, this has no influence on the functionality of
the described approach. We used the following com-
ponents in a VM with 1 Core and 4GB of memory and
did not impose additional container resource limits:

OS: Debian GNU/Linux 9.5 (stretch)

Kernel: 4.9.0-8-amd64

Docker: Docker version 18.06.1-ce, build e68fc7a

Sysdig: 0.24.1

Falco: 0.13.0

Unless otherwise specified we used Debian
GNU/Linux 9.5 (stretch) as container image.

6.2 Studied Misuse and Attacks

Unauthorized File Access. For the test setup of the
Unauthorized File Access we used the deliberately in-
secure web application WebGoat (OWASP, 2018). We
used the already-available webgoat image on Docker-
hub and evaluated the detectability of the task Bypass
a Path Based Access Control Scheme. This represents
a directory traversal attack where the successful at-
tacker can access files outside the root directory of
the web server. Such an attack is often used to gain
access to configuration files with passwords.

The following code represents the Sysdig condi-
tion, which also serves as the basis for a Falco rule
set.
container.name=webgoat
and evt.type=open
and evt.dir="<"
and fd.type=file
and not (fd.directory contains "/webapp")

The condition is true if the container name 1 is web-
goat and the system call open accesses a file outside
a path containing the string /webapp.

The example shows that it can be easily gener-
alized and can be used, in addition to restricting a
service to its corresponding root directory, to moni-
tor activity to access to non-namespaced resources or
other resources that could lead to information leak-
age. An attempted write access, for example to direc-
tories containing system binaries, can also be detected
in this way. Furthermore, the condition itself can be

1The container name refers to the name of the running
container instance as returned by docker ps and not to the
image name in general. The respective container ID (con-
tainer.id) could also be used as an alternative to the name.

extended by further event parameters that have to be
fulfilled, so that it is possible to detect when a process
not approved for this purpose tries to access a specific
device.
Start of Unauthorized Application. A similarly
well generalizable test case is the detection of the
Start of Unauthorized Applications inside a container.

list: authorized_processes
items: [ps, hostname]
condition:
container.name=debian-test
and evt.type=execve
and evt.dir="<"
and not (proc.name in (authorized_processes))

The condition thus recognizes the execution of pro-
grams that are not ps or hostname. This can be used to
allow a container to start only its corresponding ser-
vice and to log, for example, if a crypto miner or a
(remote) shell is started, as might be the case in a suc-
cessful remote attack. The list authorized processes
serves as a white list here.
Container Breakout (using nsenter). Another test
case examined was the detection of certain processes
that are related to specific threats, i.e. are maintained
on a black list if necessary. In this example the com-
mand nsenter was used to run a process within the
name spaces of another process, which is detectable
by filtering for the system call setns. Although this
mechanism is typically blocked from within a con-
tainer by other measures, there is still a risk of mis-
configuration. In addition, it can be useful to be able
to log the access from the host into a container by this
procedure by adapting the container identifier to con-
tainer.id = host.
Unexpected Network Connection. In order to detect
if a container establishes undesired connections to the
internet, for example to download malicious code for
an exploit or to open a remote shell, the detectability
of Unexpected Network Connections was also exam-
ined. This can be implemented by creating a white list
with approved targets or limiting it to specific TCP
ports.
Loading of Kernel Module. Although it is not pos-
sible in the default configuration to load kernel mod-
ules on the host from the container, the recent break-
out from a Docker evaluation environment Play with
Docker (Stoler, 2019) inspired us to consider this
case. As described in the referenced case, this can
lead to a privilege escalation with full administrative
privileges on the host and thus control over additional
containers.
Denial of Service (DoS). Even though (if applied)
cgroups can prevent a resource starvation of the host
and other containers in terms of CPU shares and
memory, there is the possibility, depending on the

Rule-based Security Monitoring of Containerized Workloads

547



configuration, to fill up shared file systems, which is
why this test case had to be investigated.
Buffer Overflow. The last test case examined was
whether it is in principle possible to detect buffer
overflows using our rule-based approach. Abusing a
buffer overflow is a common security exploit, so that
memory areas with executable code are overwritten
with malicious code, which can be the basis for an
attack.

6.3 Results

Table 1 shows the summary of the findings and also
lists what can be used as a characteristic when creat-
ing the condition used for detection.

It should be noted that in almost all cases it is pos-
sible to create a rule set for Falco if a Sysdig condi-
tion allows detection of the event. As already implied
upon presenting the test cases, it is straightforward to
detect access to non-authorized files, the start of non-
authorized applications and cases derived from those
scenarios, either via the violation of a white list or ex-
plicitly via a black list.

The detection of a DoS attack can in principle be
detected with Sysdig, but requires that it is combined
with a different behavioral monitor than Falco, since it
is not possible with Falco to detect, for example, high
frequent occurrence of write access or network con-
nections. There is no support for an event frequency
as of writing.

Also the detection of a Buffer Overflow is not pos-
sible in the desired way, as it is typically also not de-
tectable by static analysis. The execution of an exploit
would generate multiple system calls. However, Falco
can only detect anomalies from a single system call.
In this scenario, the order and combination are also
of importance and the approach to detect one specific
exploit could not be generalized. As a workaround it
would be possible to detect the startup of an exploit by
process name. Yet this requires knowledge of the spe-
cific exploit to be able to detect its execution through a
blacklist - and is not very promising either, as it could
be bypassed by simply renaming the exploit.

7 DISCUSSION

According to our understanding, there are a number
of restrictions on the tools examined which should
not go unmentioned. This includes the restriction that
there is no possibility to detect attacks that show up by
an increased number of accesses, for example a DoS
against a service or if a high volume of data is trans-
ferred automatically. Falco’s current rule set does not

provide the possibility to consider frequencies or load
conditions, even if they could be determined in prin-
ciple.

In addition, the rule creation procedure shows that
precise knowledge of the services running in the con-
tainers must be available in order to enable effective
security monitoring. This includes communication
endpoints, required file paths and program names. In
an environment where hundreds of similar containers
are started fully automated, this can be irrelevant, but
the necessary effort should not be neglected in smaller
more individual environments. Especially when using
containers for interactive work - which is not recom-
mended. A further limitation concerns the white list
approach, which does not protect against malicious
code being disguised as a program on the white list
when knowledge of the rules is involved.

On a positive note, the tools utilized can also be
applied to other container environments, even though
we have only examined the use with Docker here. The
kernel module provides a generic interface, so that ex-
isting rule sets can be reused when changing container
runtimes. Furthermore, from a security point of view,
it may be worthwhile to monitor not only the individ-
ual containers running on a host, but at least container
life cycle operations performed on the host itself, such
as starting/stopping a container, to get a complete pic-
ture of the environment.

7.1 Performance Evaluation

To determine the performance overhead caused by se-
curity monitoring, we made use of a traditional bench-
mark tool: Sysbench (Kopytov, 2019), of which we
created a containerized version. To exclude buffering
effects when using the filesystem-level benchmark
fileio included with Sysbench, we used it with a test
file four times the amount of the available memory.
During each 5min run of the benchmark a correspond-
ing capture file was created with Sysdig and after-
wards several performance indicators of the sysbench-
fileio run were evaluated.

In order to be able to rate how high the benefit of
using filters is a) a full capture and b) a capture with
an active filter was created, which limited the record-
ing to the open() system call, as one would use if one
only wanted to log file accesses of a container. As
baseline served measurements of the sysbench-fileio
without activated Sysdig capturing and all benchmark
runs (deactivated Sysdig, Sysdig with full capture,
Sysdig with filter) were averaged over three runs each.
All runs were performed in the same virtual test envi-
ronment described in Section 6.1.

It was observed that over several measurements

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

548



Table 1: Summary of the detectability of various misuse and attack scenarios using Sysdig and Falco.

Scenario Sysdig Falco Characteristic

Unauthorized File Access Yes Yes Violation of white list
Start of Unauthorized Applications Yes Yes Violation of white list
Container Breakout Yes Yes Black list - nsenter called - or violation of white list
Unexpected Network Connection Yes Yes Violation of white list
Loading of Kernel Module Yes Yes Black list - insmod called - or violation of white list
Denial of Service Yes No Frequency of occurrences
Buffer Overflow No No Not applicable

Table 2: Sysdig overhead for various statistics of sysbench-fileio benchmark in comparison to baseline run without Sysdig.

sysbench-fileio statistic Sysdig with full capture Sysdig with filter

Operations performed (total) 1,81% 0,00%
Requests/sec executed 4,72% 2,97%
Total number of events 4,72% 2,97%
Total time taken by event execution 5,48% 0,67%
Per-request statistics: “avg” in ms 10,53% 3,51%

Average Overhead 5,45% 2,02%

the average overhead in case a) (full capture) was
5,45%, whereas the use of the filter reduced the
overhead in case b) to 2,02%. The use of the fil-
ter also affected the size of the capture file. In b)
only 270 events needed to be recorded, resulting in
a 1,2MB trace file, whereas the unfiltered case a)
logged 3.270.522 events in a 270MB file on average.
This implies, that if possible, filters should be acti-
vated for data and overhead reduction. The overhead,
broken down by individual sysbench-fileio statistic, is
shown in Table 2.

8 CONCLUSIONS

The explored approach shows a general applicability
of rule-based security monitoring for containerized
workloads with low performance overhead. It allows
a large number of undesired behavior to be detected
with relatively low effort. Especially if containers
are used as automatically orchestrated infrastructure
components and are not used for interactive work, it
is useful to create a rule for each container, which in-
forms about the start of a program in the container
other than the expected service. This can also be ap-
plied to file accesses.

In addition, logging mechanisms for container ac-
cess should be established at host level (via monitor-
ing the use of the commands docker exec or nsenter
or the related system call setns) and the tools be inte-
grated into appropriate incident response processes in
order to timely initiate appropriate mitigation. In ad-

dition, for debugging and auditing purposes, it offers
the possibility to log the complete run of a container
to trace it afterwards. However, this should primarily
be used for short-lived containers or additional filters
should be applied, as the performance overhead anal-
ysis showed, that without filters almost 1MB trace file
was generated per second.

In cases where it is not possible to create a sim-
ple set of rules, ideally by automatisms, further safe-
guarding mechanisms which monitor the behavior of
a container at runtime and compare it with a reference
model should be considered, as the investigated ap-
proach requires prior knowledge about the workload.

Future work is planed to investigate distributed se-
curity monitoring, especially of workloads that inter-
act with each other in a distributed way. For this pur-
pose Sysdig already offers interfaces for monitoring
the container schedulers Kubernetes and Swarm, fur-
thermore a commercial product. We also want to in-
vestigate how the generation of rule sets can be auto-
mated, as well as how additional misuses and attacks
can be integrated.

REFERENCES

Abed, A. S., Clancy, T. C., and Levy, D. S. (2015). Ap-
plying bag of system calls for anomalous behavior de-
tection of applications in linux containers. 2015 IEEE
Globecom Workshops, GC Wkshps 2015 - Proceed-
ings.

Rule-based Security Monitoring of Containerized Workloads

549



Alex Borhani (2017). Anomaly Detection, Alerting, and
Incident Response for Containers. SANS Institute In-
foSec Reading Room, (GIAC GCIH Gold Certifica-
tion).

Combe, T., Martin, A., and Di Pietro, R. (2016). To Docker
or Not to Docker: A Security Perspective. IEEE Cloud
Computing, 3(5):54–62.

Dymshits, M., Myara, B., and Tolpin, D. (2017). Process
monitoring on sequences of system call count vectors.
Proceedings - International Carnahan Conference on
Security Technology, 2017-October:1–5.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015).
An updated performance comparison of virtual ma-
chines and linux containers. In 2015 IEEE Interna-
tional Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 171–172.

Fleming, M. (2017). A thorough introduction to ebpf. [ON-
LINE] Available at: https://lwn.net/Articles/740157/.
[Accessed 14 January 2019].

Forrest, S., Hofmeyr, S., Somayaji, A., and Longstaff, T.
(1996). A sense of self for Unix processes. In Pro-
ceedings 1996 IEEE Symposium on Security and Pri-
vacy, pages 120–128.

Gantikow, H., Reich, C., Knahl, M., and Clarke, N. (2016).
Providing security in container-based HPC runtime
environments. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 9945
LNCS:685–695.

Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., and Wang, H.
(2017). ContainerLeaks: Emerging Security Threats
of Information Leakages in Container Clouds. Pro-
ceedings - 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN
2017, pages 237–248.

Jacobsen, D. M. and Canon, R. S. (2015). Contain This,
Unleashing Docker for HPC. Cray User Group 2015,
page 14.

Kang, D.-k., Fuller, D., and Honavar, V. (2005). Learning
Classifiers for Misuse Detection Using a Bag of Sys-
tem Calls Representation. Proceedings of the 2005
IEEE Workshop on Information Assurance and Secu-
rity United States Military Academy, West Point, NY,
pages 511–516.

Kolosnjaji, B., Zarras, A., Webster, G., and Eckert, C.
(2016). Deep learning for classification of malware
system call sequences. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
volume 9992 LNAI, pages 137–149.

Kopytov, A. (2019). Sysbench: Scriptable database and sys-
tem performance benchmark. [ONLINE] Available at:
https://github.com/akopytov/sysbench. [Accessed 14
January 2019].

Koucham, O., Rachidi, T., and Assem, N. (2015). Host
intrusion detection using system call argument-based
clustering combined with Bayesian classification. In-
telliSys 2015 - Proceedings of 2015 SAI Intelligent
Systems Conference, pages 1010–1016.

Kurtzer, G. M., Sochat, V., Bauer, M. W., Favre, T., Capota,
M., and Chakravarty, M. (2017). Singularity: Scien-

tific containers for mobility of compute. Plos One,
12(5):e0177459.

Lei, L., Sun, J., Sun, K., Shenefiel, C., Ma, R., Wang, Y.,
and Li, Q. (2017). SPEAKER: Split-phase execution
of application containers. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 10327 LNCS, pages 230–251.

Maggi, F., Matteucci, M., and Zanero, S. (2010). Detecting
intrusions through system call sequence and argument
analysis. IEEE Transactions on Dependable and Se-
cure Computing, 7(4):381–395.

Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi,
A., Dolev, S., and Foschini, L. (2015). Securing the
infrastructure and the workloads of linux containers.
2015 IEEE Conference on Communications and Net-
workSecurity, CNS 2015, (Spc):559–567.

Nikolai, J. (2014). Hypervisor-based cloud intrusion detec-
tion system. 2014 International Conference on Com-
puting, Networking and Communications (ICNC).

OWASP (2018). Owasp webgoat project. [ONLINE]
Available at: https://www.owasp.org/index.php/
Category:OWASP WebGoat Project. [Accessed 14
January 2019].

Portworx (2018). 2018 Container Adoption Survey. Tech-
nical report.

Priedhorsky, R., Randles, T. C., and Randles, T. (2017).
Charliecloud: Unprivileged containers for user-
defined software stacks in HPC. SC17: International
Conference for High Performance Computing, Net-
working, Storage and Analysis, 17:p1–10.

Stoler, N. (2019). How i hacked play-with-docker and re-
motely ran code on the host. [ONLINE] Available at:
https://www.cyberark.com/threat-research-blog/how-
i-hacked-play-with-docker-and-remotely-ran-code-
on-the-host/. [Accessed 14 January 2019].

Sysdig (2018). Docker Usage Report 2018 - An inside look
at shifting container usage trends.

Sysdig (2019a). Sysdig falco: Behavioral activity moni-
toring with container support. [ONLINE] Available
at: https://github.com/draios/oss-falco. [Accessed 14
January 2019].

Sysdig (2019b). Sysdig: Linux system exploration
and troubleshooting tool with first class sup-
port for containers. [ONLINE] Available at:
https://github.com/draios/sysdig. [Accessed 14 Jan-
uary 2019].

Walsh, D. (2016). Container tidbits: Adding ca-
pabilities to a container. [ONLINE] Available
at: https://rhelblog.redhat.com/2016/11/30/container-
tidbits-adding-capabilities-to-a-container/. [Accessed
10 January 2019].

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

550


