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Abstract: In this paper, we study the identification of two challenging benchmark problems using neural networks. Two 

different global optimization approaches are used to train a recurrent neural network to identify two 

challenging nonlinear models, the cascaded tanks and the Bouc-Wen system. The first approach, quotient 

gradient system (QGS), uses the trajectories of the nonlinear dynamical system to find the local minima of 

the optimization problem. The second approach, dynamical trajectory based methodology, uses two different 

nonlinear dynamical systems to find the connected components of the feasible region and then searches the 

regions for local minima of the optimization problem. Simulation results show that both approaches 

effectively identify the model of the cascade tanks and the Bouc-Wen model.

1 INTRODUCTION 

Although engineering applications often require an 

accurate explicit mathematical model of the system, 

in many cases such a model is not available. While 

system models can, in theory, be derived using 

physical and mathematical principles, deriving such 

models is difficult in practice (Gautam, 2016)0. 

System identification is an alternative approach to 

modeling. System identification uses the input and 

output measurements of the system to derive its 

model. The model can be white, grey or black box 

(Gautam, 2016; Verdult, 2002).  

Neural networks are a powerful tool for nonlinear 

system identification. Narendra and Parthasarathy 

showed that neural networks can identify and control 

nonlinear dynamical systems (Narendra et. al., 1990). 

Experimental results show that the neural network 

can effectively identify the forward and inverse 

transfer function (Yamada and Yabuta, 1993).  

Efe and Kaynak studied the identification of 

nonlinear systems using feedforwad neural networks, 

radial basis function networks, Runge-Kutta neural 

networks and adaptive neuro-fuzzy inference 

systems, with application to a robotic manipulator 

(Efe and Kaynak, 1999). Other neural networks that 
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have successfully identified nonlinear systems 

include Volterra polynomial basis function networks 

(Liu, 1998), wavelet networks and echo state 

networks (Khodabandehlou and Fadali, 2017), and 

partially recurrent neural networks (Pham and Liu, 

1992, and 1995).  

Coban proposed the Context Layered Recurrent 

Neural Network (CLRNN) for identification of linear 

and nonlinear dynamic systems (Coban, 2013). 

CLRNN is a multilayer recurrent neural network with 

a context layer. The context layer is a feedback from 

the first hidden layer to itself that improves the 

capability of the network to capture the linear 

behavior of the system.  

Fully Recurrent Neural Networks (FRNN) are 

recurrent neural networks whose hidden layer nodes 

are all connected. FRNN’s can effectively identify 

linear and nonlinear models. However, their 

complicated structure makes their training difficult 

and slow (Pearlmutter, 1995; Chren and Soo, 1996; 

Dongpo et. al., 2010). Backpropagation Through 

Time (BPTT) is an alternative to traditional error 

backpropagation for training recurrent neural 

networks. BPTT represents recurrent neural network 

as a multilayer feedforward network, then tunes its 

weights using backpropagation (Werbos, 1998; 
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Stroeve, 1998, Hermans et. a., 2010). BPTT is 

computationally expensive and its computational 

time increases drastically with the size of the training 

dataset. It also suffers from vanishing gradient 

problem (Pascanu et. al., 2013). Regularization of the 

neural network weights is an approach to cope with 

the vanishing gradient problem (Pascanu et. al., 

2013). Sutskever proposed Hessian free optimization 

to train recurrent neural networks and overcome the 

vanishing gradient issue (Sutskever et. al., 2011).  

Williams and Zipser proposed Real Time 

Recurrent Learning (RTRL) for training recurrent 

neural networks. It does not need a precisely defined 

training interval its computational load is huge in 

large applications (Williams and Zipper, 1989). 

Generalized Long Short Term Memory (LSTM) is 

another approach for training second order recurrent 

neural networks (Monner and Reggia, 2012). The 

method is applicable to a wide range of networks and 

performs better than traditional LSTM. 

Lu et. al. used low rank factorization to inspect 

redundancies in recurrent neural networks (Lu et. Al., 

2016). They showed that using structured matrices 

and shared low-rank factors can effectively reduce the 

number of parameters of the standard LSTM without 

significantly increasing error. 

Although a wide variety of algorithms have been 

used to train feedforward and recurrent neural 

networks, there are promising optimization 

approaches that have not been used for training and 

that have the potential to provide better system 

identification results. This paper explores the use of 

two trajectory-based methodologies for nonlinear 

system identification: the quotient gradient method 

and the dynamical trajectory-based approach. The 

quotient gradient method is a trajectory-based 

methodology to find the possible feasible solutions of 

the constraint satisfaction problem (CSP). Quotient 

gradient uses the trajectories of a stable nonlinear 

dynamical system to find the solutions of a constraint 

satisfaction problem (Lee and Chiang, 2001). 

The Dynamical Trajectory Based approach (DTB) 

is another global optimization approach that is 

applicable to general constrained optimization 

problems. DTB uses the trajectories of two nonlinear 

dynamical systems, i.e. Projected Gradient System 

(PGS) and quotient Gradient System (QGS) to find 

disjoint components of the feasible region of the 

optimization problem and search those disjoint 

components for possible solutions of the optimization 

problem (Lee and Chiang, 2004). 

In this study, we use the quotient the gradient 

method and DTB to train recurrent neural network 

and evaluate the performance of the networks on two 

of the challenging nonlinear system identification 

benchmarks. The first is the cascaded tank model, 

which is difficult to identify due to saturation and 

overflow in the tanks. The second is the Bouc-Wen 

model.  The Bouc-Wen model is highly nonlinear 

model with hysteretic behaviour, which makes it 

challenging benchmark for system identification 

The remainder of this paper is organized as 

follows: Section 2 presents the neural network 

structure. Section 3 describes the quotient gradient 

method and section 4 describes the dynamical 

trajectory based optimization approach. Section 5 

describes the benchmark systems and Section 6 

presents simulation results 

2 NEURAL NETWORKS 

In this study, we use a fully recurrent neural network 

with one hidden layer. The structure of the neural 

network is shown in Figure 1. For a network with 𝑛 

inputs, 𝑚  hidden layer nodes, and 𝑡  outputs, the 

input, internal state and output vector of the network, 

respectively, are: 

𝒖(𝑘) = [𝑢1(𝑘) … 𝑢𝑛(𝑘)]𝑇  

𝒛(𝑘) = [𝑧1(𝑘) … 𝑧𝑚(𝑘)]𝑇 

�̂�(𝑘) = [�̂�1(𝑘) … �̂�𝑡(𝑘)]𝑇 

(1) 

The governing equation of the network is 

𝒛(𝑘) = 𝝍(𝑊𝒖(𝑘) + 𝑆𝒛(𝑘 − 1)) 

�̂�(𝑘) = 𝑉 𝒛(𝑘) 
(2) 

where 𝑊𝑚×𝑛, 𝑆𝑚×𝑚 and 𝑉𝑡×𝑚 are weight matrices. 

 

 

Figure 1: Internal structure of the neural network. 

𝜓  is the activation function of the internal layer 

neurons and is the tangent hyperbolic function 
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𝜓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (3) 

The network is trained to determine the optimal value 

of the weight matrices. The cost function for  

𝑆𝑆𝐸 = ∑ 𝑒(𝑘)𝑇𝑒(𝑘)

𝑁

𝑘=1

 

= ∑(�̂�(𝑘) − 𝑦(𝑘))
𝑇
(�̂�(𝑘) − 𝑦(𝑘))

𝑁

𝑘=1

 

(4) 

𝑁 is the number of training samples. 𝒚 is the output 

and �̂� is the output of neural network. 

3 QUOTIENT GRADIENT 

METHOD 

Neural network training is a nonlinear optimization 

problem. QGS is a nonlinear dynamical system to 

find local possible feasible solutions of the constraint 

satisfaction problem. Quotient gradient method 

transforms the constraint satisfaction problem into an 

unconstrained minimization problem, then uses QGS 

to find its local minima, which are the feasible 

solutions of the constraint satisfaction problem. 

Consider the following CSP: 

𝐶𝐼(𝑦) < 0 

𝐶𝐸(𝑦) = 0, 𝑦 ∈ 𝑅𝑛−𝑙 
(5) 

where 𝐶𝐼  are inequality constraints and 𝐶𝐸  are 

equality constraints. All constraints are assumed 

smooth to guarantee the existence of the solution. 

This CSP can be transformed to the unconstrained 

minimization problem 

min
𝑥

𝑓(𝑥) =
1

2
‖𝐻(𝑥)‖2, 𝑥 = (𝑦, 𝑠) ∈ 𝑅𝑛       (6) 

𝐻(𝑥) = [
𝐶𝐼(𝑦) + �̂�2

𝐶𝐸(𝑦)
] ∈ 𝑅𝑚,

�̂�2 = (𝑠1
2, … , 𝑠𝑙

2)𝑇 

(7) 

where �̂�  is a set of slack variables to transform 

inequality constraints to equality constraints. Lee and 

Chiang showed that local minima of the 

unconstrained optimization problem are feasible 

solutions of the original CSP (Lee and Chiang, 2001). 

They introduced the QGS and showed that its 

equilibrium points are local minima of the 

unconstrained minimization problem, which are 

possible feasible solutions of the CSP. QGS for the 

unconstrained optimization problem is defined as 

�̇� = 𝐹(𝑥) = −𝛻𝑓(𝑥) ≔ −𝐷𝑥𝐻(𝑥)𝑇𝐻(𝑥) (8) 

Because QGS is a stable (Lee and Chiang, 2001), 

integrating it from any arbitrary point leads to an 

equilibrium point, which is local minimum of (5), and 

a feasible solution of (4). After finding the first 

equilibrium point, QGS must escape from its basin of 

attraction and enter the basin of attraction of another 

equilibrium point. This is done by backward 

integration of QGS in time until it reaches an unstable 

point. Thus, finding local minima of (5) reduces to a 

series of forward and backward integrations of QGS. 

To train a neural network, we optimize the cost 

function (SSE) to find the optimal values of the 

weight matrices. To optimize SSE using the quotient 

gradient method, the weight matrices are partitioned 

as 

𝑉 = [
𝒗𝟏

𝑻

⋮
𝒗𝒎

𝑻
]

𝑡×𝑚

𝑊 = [
𝒘𝟏

𝑻

⋮
𝒘𝒎

𝑻
]

𝑚×𝑛

𝑆 = [
𝒔𝟏

𝑻

⋮
𝒔𝒎

𝑻
]

𝑚×𝑚

    (9) 

The vector of network parameters 𝒙 is defined as 

𝒙 = [𝑥𝑖]𝑛𝑝×1

= [𝒗𝟏, . . , 𝒗𝒎, 𝒘𝟏, … ,𝒘𝒎, 𝒔𝟏, … , 𝒔𝒎]𝑻  
𝑛𝑝 = 𝑚2 + 𝑚 × (𝑛 + 𝑡) 

(10)         

Using the vector 𝒙, the training set can be rewritten 

as 

𝒉(𝒙) = [ℎ𝑖(𝒙)], 𝑖 = 1,2, … , 𝑁 

ℎ𝑖(𝒙) = 𝑉𝝍(𝑊𝒖(𝑖) + 𝑆𝒛(𝑖 − 1)) − 𝑦(𝑖) 
(11) 

The QGS for training neural network can be 

constructed as 

�̇� = −𝒇(𝑥) = −𝐷𝑥𝒉(𝒙)𝑇𝒉(𝒙) (12) 

where 

𝐷𝑥𝒉(𝑥) =

[
 
 
 
 
𝜕ℎ1(𝒙)

𝜕𝒙
⋮

𝜕ℎ𝑁(𝒙)

𝜕𝒙 ]
 
 
 
 

𝑁×𝑛𝑝

 (13) 

Finding optimal values of weight matrices becomes:  

(1) Use training data and the vector of network 

parameters to construct the QGS system (12) 

(2) Integrate the QGS forward in time until it reaches 

an equilibrium point. 

(3) Integrate the QGS backward in time until it 

reaches an unstable equilibrium point. 

(4) Integrate the QGS from the unstable point until it 

reaches another stable equilibrium point. 

The process continues until it finds all equilibrium 

points of the QGS. The global optimum is the 

equilibrium with the lowest cost. The eigenvalues of 

the Jacobian matrix are a measure of equilibrium 
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instability during backward integration (Lee and 

Chiang, 2001; Khodabandehlou and Fadali, 2017). 

4 DYNAMICAL TRAJECTORY 

BASED APPROACH 

The quotient gradient method is a systematic 

approach to find the local minima of an optimization 

problem. The feasible region 𝑀 in many optimization 

problems is the union of disjoint connected regions 

𝑀 = ⋃𝑀𝑖

𝑖

  (14) 

Dynamical trajectory based optimization is a 

systematic method to find the connected components 

of the feasible region and search those components 

for local minima. The approach has two phases: the 

quotient gradient system (QGS) to find connected 

components of the feasible region, and the projected 

gradient system (PGS) to search the feasible 

components for local minima 0(Lee and Chiang, 

2001). Consider the following constrained 

minimization problem 

min 𝑓(𝒙) 

s. t.  𝒉(𝒙) = 𝟎 
 (15) 

Assume that 𝑓(𝑥) ∈ 𝐶2(𝑅𝑛 , 𝑅𝑚)  and 𝒉(𝒙)  are 

smooth to guarantee the existence of the solution. The 

inequality constraints can be incorporated in the 

optimization problem using slack variables. The 

feasible region of the optimization problem is  

𝑀 ∶= {𝑥 ∈ 𝑅𝑛: 𝒉(𝒙) = 0}  (16) 

4.1 PGS Phase 

Searching connected components of the feasible 

region for local minima is an essential part of the DTB 

approach. DTB uses PGS to find multiple local 

minima in connected components of the feasible 

region. PGS is a stable nonlinear dynamical system 

whose equilibrium points are local minima of the 

optimization problem. After finding one local 

optimum, the trajectories of PGS can be used to move 

away from current local minimum and move toward 

another local minimum in the current component of 

the feasible region. The PGS is defined as 

�̇� = 𝐹(𝒙) = −∇𝑓proj(𝒙) , 𝒙 ∈ 𝑀  (17) 

where ∇𝑓proj(𝒙)  is orthogonal projection of ∇𝑓(𝒙) 

on the tangent space of the feasible region. It can be 

shown than when 𝐷𝒉(𝒙) = 𝜕𝒉(𝒙)/𝜕𝒙  is non-

singular, ∇𝑓proj(𝒙) is defined as 

∇𝑓proj(𝒙) = [𝐼 − 

𝐷𝒉(𝒙)𝑇(𝐷𝒉(𝒙)𝐷𝒉(𝒙)𝑇)−1𝐷𝒉(𝒙)]∇𝑓(𝒙) 
(18) 

Every PGS trajectory converges to one of its 

stable equilibrium points, which is also a local 

optimum of (14). After finding one local minimum, 

PGS needs to escape from stability region of that local 

minimum and enter the stability region of another 

local minimum in the current component of the 

feasible region. This is achieved by backward 

integration of PGS until reaching a saddle point. Then 

by forward integration of PGS moves it towards 

another local optimal solution. By repeating this 

process, PGS finds all the local optimal solutions in 

the current component of the feasible region. The next 

step is moving toward another component of the 

feasible region, which is done in the QGS phase. 

4.2 QGS Phase 

To explore all the components of the feasible region, 

DTB approach needs to escape from current 

component and move to another component of the 

feasible region. DTB uses the trajectories of a 

nonlinear dynamical system to do this. The nonlinear 

dynamical system to explore the components of the 

feasible region, the QGS, is 

�̇� = −𝐷𝒉(𝒙)𝑇𝐷𝒉(𝒙)  (19) 

where 𝐷𝒉(𝒙) is the Jacobian of 𝒉 at 𝒙. Every QGS 

trajectory converges to one of its stable equilibrium 

manifolds and every stable QGS equilibrium 

manifold corresponds to a connected component of 

the feasible region. Therefore, to approach a 

connected component of the feasible region, the QGS 

is integrated until it reaches an equilibrium point. To 

escape from the current component of the feasible 

region and move toward another feasible component, 

the QGS is integrated backward in time until it 

reaches an unstable point, then integrated forward in 

time until it reaches another component of the 

feasible region. By invoking PGS and QGS phases 

repeatedly, the DTB approach finds multiple 

components of the feasible region and locates local 

optimal solutions. The local optimal solution with the 

lowest cost is the global optimal solution of the 

optimization problem. 

Although training neural networks is an 

unconstrained optimization problem, constraints are 

needed for defining QGS. We define the constraints 

of the optimization problem as upper and lower 

bounds on the neural network weights. The 
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constraints are written in terms of the network 

parameters of (9) as 

|𝑥𝑖| ≤ 𝑙𝑖 , 𝑖 = 1, … , 𝑛𝑝 (20) 

Adding slack variables, 𝒔𝑇 = [𝑠1, … , 𝑠𝑛𝑝
], inequality 

constraints can be written as equality constraints 

ℎ𝑖(𝒙) = 𝑥𝑖
2 − 𝑙𝑖

2 + 𝑠𝑖
2 = 0, 𝑖 = 1,… , 𝑛𝑝  (21) 

The augmented vector of parameters is defined as 

𝒐 = [𝒙 𝒔]𝑇(2×𝑛𝑝)×1  (22) 

Equation (14) can be rewritten in terms of 𝒐 as  

min 𝑓(𝒐) 

s. t.  𝒉(𝒐) = 𝟎 
(23) 

The constraint set 𝐷𝒉(𝒐) = [𝜕ℎ𝑖(𝒐)/𝜕𝒐]
(𝑛𝑝)×(2×𝑛𝑝)
𝑇  

is always nonsingular and the PGS and QGS for 

training neural network are 

PGS: 

�̇� = −(𝐼 − 𝐷𝒉(𝒐)𝑇(𝐷𝒉(𝒐)𝐷𝒉(𝒐)𝑇)−1 

× 𝐷𝒉(𝒐))𝛻𝑓(𝒐) 
(24) 

QGS:  

�̇� = −𝐷𝒉(𝒐)𝑇𝒉(𝒐) (25) 

The steps to train a neural network using DTB are: 

(5) Formulate the optimization problem of (23) using 

the cost function and the constraint set .  

(6) Construct the PGS and QGS systems of (24), (25). 

(7) Integrate QGS forward in time to reach an 

equilibrium point 

(8) Integrate the PGS from equilibrium point of QGS 

until reaching an equilibrium point. This 

equilibrium point is a local optimal solution of the 

optimization problem. 

(9) Integrate PGS backward in time until reaching a 

saddle point. Then integrate PGS forward in time 

to all other local optimal solution in current 

component of the feasible region 

(10) Integrate QGS from last local optimal solution 

backward in time to reach an unstable point, then 

integrate it forward in time until reaching another 

stable point 

(11) Go to step 4  

This reduces training neural networks to 

repeatedly invoking PGS and QGS until a stopping 

criterion is satisfied. If the bounds on the network 

parameter are large, they do not pose a limitation on 

the solution (Lee and Chang, 2001, 2004).  

5 BENCHMARK SYSTEMS 

5.1 Cascade Tank Model 

The cascade tank system is a challenging nonlinear 

benchmark for system identification. The system 

consist two tanks with a pump. Figure 2 shows the 

structure of the cascade tank model. 

The pump feeds water into the upper tank and the 

lower tank has a free outlet. The system is not highly 

nonlinear during normal operation. However, with 

large water flow into the upper tank, overflow can 

occur in the upper tank. This overflow acts as an 

input-dependent process noise. Without overflow, the 

cascade tank is governed by 

�̇�1(𝑡) = −𝑘1√𝑥1(𝑡) + 𝑘4𝑢(𝑡) + 𝑤1(𝑡) 

�̇�2(𝑡) = 𝑘2√𝑥1(𝑡) − 𝑘3√𝑥2(𝑡) + 𝑤2(𝑡)𝑦(𝑡) 

𝑦(𝑡) = 𝑥2(𝑡) + 𝑒(𝑡) 

(26) 

where 𝑢(𝑡) is the pump voltage, 𝑥1(𝑡) and 𝑥2(𝑡) are 

the states of the cascade tank system, 𝑤1(𝑡), 𝑤2(𝑡) 

and 𝑒(𝑡) are noise and 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are system 

constants. 𝑦(𝑡) is the system output, i.e., the water 

level in the second tank. 

The input is a multisine signal with frequencies 

from 0  to 0.0144  Hertz. Lower frequency inputs 

have larger amplitude than higher frequency inputs. 

The sampling period is 𝑇𝑠 = 4𝑠. A capacitive water 

level sensor is used to measure the water level and is 

a part of the system (Schoukens et al. 2015). 

 

 

Figure 2: Cascade tank model structure (Schoukens et al. 

2015). 
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5.2 Bouc-Wen Model 

The Bouc-Wen model is a widely studied hysteresis 

model in mechanical and civil engineering (Ismail et. 

al., 2009, Khodabandehlou et. al., 2017). A hysteretic 

system has multiple stable equilibrium points; 

therefore its output can change based on the input 

history. This complicates the analysis and design of 

the system (Noël and Schoukens, 2006). The Bouc-

Wen oscillator is governed by 

𝑚𝐿�̈�(𝑡) + 𝑟(𝑦, �̇�) + 𝑧(𝑦, �̇�) = 𝑠(𝑡) (27) 

where 𝑠(𝑡) is the input, i.e. the external force, 𝑦(𝑡) is 

the displacement and 𝑚𝐿 is the mass constant. 𝑟(𝑦, �̇�) 

is the total restoring force and 𝑧(𝑦, �̇�) is a history- 

dependent nonlinear term that determines the 

hysteretic property of the system. The static restoring 

force is 

𝑟(𝑦, �̇�) = 𝑘𝐿𝑦 + 𝑐𝐿�̇� (28) 

where 𝑘𝐿  is the linear stiffness coefficient and 𝑐𝐿  is 

the viscous damping coefficient. 𝑧(𝑦, �̇�) is 

�̇�(𝑦, �̇�) = 𝛼|�̇�| − 𝛽(𝛾|�̇�||𝑧|𝑣−1 + 𝛿�̇�|𝑧|𝑣) (29) 

𝛼 , 𝛽 , 𝛾 , 𝑣  and 𝛿  are Bouc-Wen parameters that 

determine the shape and smoothness of the hysteresis 

loop. Table 1 shows the system parameters. 

Table1: System parameters. 

Parameter Value 

𝑚𝐿 2 

𝑐𝐿 2 

𝑘𝐿 5 × 104 

𝛼 5 × 104 

𝛽 103 

𝛾 0.8 

𝛿 −1.1 

𝑣 1 

6 SIMULATION RESULTS 

We use the quotient gradient and the DTB me to train 

a neural network for identification of benchmark 

problems and compare the results. 

6.1 Cascaded Tank Modelling 

For a fair comparison between QGS and DTB, the 

neural networks structure, including training data, 

input vector, hidden layer activation function and 

number of hidden layer nodes, is the same in all the 

simulations. All network parameters were initialized 

with random values from a zero-mean normal 

distribution with standard deviation 𝜎2 = 0.1 . The 

optimal number of hidden layer nodes was found to 

be 𝑚 = 9 and the network input is  

𝒖(𝑘) = [1, 𝑠(𝑘), … , 𝑠(𝑘 − 9), 
𝑦(𝑘 − 1), … , 𝑦(𝑘 − 9)]𝑇 

(30) 

The target value for network output is 𝑦(𝑘) . 

Figure 3 shows the validation data and the output of 

the trained networks. Figure 4 shows the validation 

error of the networks. Although both networks have 

excellent performance in the identification of the 

nonlinear model, the dynamical trajectory based 

method has a lower mean squared error than the QGS 

trained network for validation data. The mean 

squared error of the DTB trained network is 𝑀𝑆𝐸 =
0.0264 while the mean squared error of QGS trained 

network is 𝑀𝑆𝐸 = 0.0312 . Although both 

approaches successfully identify the model of 

cascaded tanks, the dynamical trajectory based 

approach gives slightly better results. This is because 

it more accurately determines the local minima of the 

optimization problem. 

 

 

Figure 3: Validation outputs for the networks trained with 

DTB and QGS. 

 

Figure 4: Validation error for the networks trained with 

DTB and QGS. 
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6.2 Bouc-Wen Model  

For a fair comparison, all the parameters for QGS and 

DTB approach are assumed the same. The network 

parameters were initialized with random values from 

zero-mean normal distribution with standard 

deviation of 𝜎2 = 0.1. The optimal number of hidden 

layer nodes was found to be 𝑚 = 7 and the neural 

network’s input vector is assumed to be 

𝒖(𝑘) 

= [ 𝑠(𝑘), … , 𝑠(𝑘 − 5), 𝑦(𝑘 − 1), … , 𝑦(𝑘
− 5)]𝑇 

(31) 

The target value for network output is 𝑦(𝑘) . 

Figure 5 shows the validation output and the output 

of the trained networks. Figure 6 shows the validation 

error of the networks and shows that the dynamical 

trajectory based trained network has better 

performance than the QGS trained network. The 

mean squared error of the DTB trained network is 

𝑀𝑆𝐸 = 2.3 × 10−8. While the mean squared error of 

the QGS trained network is 𝑀𝑆𝐸 = 6.1 × 10−8. 

In our simulations, multiple runs of both 

algorithms with different initial values yields the 

same results, therefore it can be concluded that both 

methods are robust with respect to initial values. This 

is because both methods escape from stability region 

of the current equilibrium point and enter into 

stability region of another equilibrium point, 

therefore, they don’t get trapped in local minima of 

the optimization problem. In both simulations, there 

is a steady state identification error. The error can be 

for coloured noise of the experimental data or 

suboptimal neural network structure and may be 

reduced by using different neural network.  

 

 

Figure 5: Test outputs for the networks trained with DTB 

and QGS. 

 

Figure 6: Test error of the networks trained with DTB and 

QGS. 

7 CONCLUSION 

In this study, we used two trajectory-based 

optimization approaches to train artificial neural 

networks for the identification of two nonlinear 

system identification benchmark problems: cascaded 

tanks and the Bouc-Wen model. Both approaches use 

trajectories of nonlinear dynamical systems to find 

optimal value of the neural network weights and were 

able to train neural network and efficiently identify 

nonlinear system models. Both approaches turn the 

neural network training problem into routine of 

forward and backward integration of nonlinear 

dynamical systems, therefore the training process is 

simple and straightforward. Although both 

approaches successfully identify the nonlinear 

models, the dynamical trajectory based approach has 

better performance at the expense of longer training 

time. Future work will include designing a neural 

network based controller for nonlinear systems. 
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