
Indirect Data Representation Via Offset Vectoring:
A Code-integrity-driven In-memory Data Regeneration Scheme

Erik Sonnleitner, Marc Kurz and Alexander Palmanshofer
Department for Mobility & Energy, University of Applied Sciences Upper Austria,

Campus Hagenberg, Austria

Keywords: Code Security, Credential Storage, Steganography, Information Hiding.

Abstract: A common problem in software development is how to handle sensitive information required for appropriate
process execution, especially when requesting user input like passwords or -phrases for proper encryption
is not applicable due to I/O, UI or UX limitations. This often leads to such information being either stored
directly in the source code of the application, or as plaintext in a separate file. We therefore propose an
experimental scheme for dynamically recovering arbitrary chunks of information based on the integrity of
the text-segment of a running process, without the information being easily extractible from either an on-
disk binary, memory dump or the memory map of a running process. Implementing an algorithm we call
offset vectoring, this method can help dealing with sensitive information and enhancing the resistance against
attacks which aim at extracting such data as well as attempts towards modifying an application, e.g. for the
purposes of cracking software.

1 INTRODUCTION

1.1 Handling Sensitive Data

In many cases, sensitive information (e.g. authentica-
tion credentials, cryptographic keys, etc.) is stored
directly in an application’s source code. Although
bad practice, this happens very often and even for
major brands Netgear (e.g. PSV-2018-0099), Cisco
(e.g. CVE-2018-0222, CVE-2018-0268, CVE-2018-
0271), Lenovo (e.g. CVE-2016-1491), HP (e.g.
CVE-2015-2903) and numerous others.

This may be the case either if an application needs
to authenticate to another service via a fixed key, or as
a way to validate a given key or secret.

This makes it easy for an attacker to extract such
information without even running the application,
simply by analyzing the corresponding binaries us-
ing most simple and fundamental tools provided by
most Unix-like operating systems like strings(1) or
objdump(1).

Moreover, tools like Gitrob (Henriksen, 2015)
were created, being specifically designed for crawl-
ing through source-code platforms in order to search
for sensitive information like hard-coded passwords
and cryptographic private keys.

1.2 Memory Forensics

However, even in cases where strong cryptography is
used to encrypt such information, there may be sit-
uations in which implementations will show security
defects under certain conditions.

In order to given an illustrative example, con-
sider a password manager as application. A security-
aware password management software will strongly
rely on using cryptography for securing password in-
formation, in most cases based on a user-provided
passphrase, representing the master password for de-
crypting the password database.

Most of the time, e.g. in current implementations
of major browsers like Mozilla Firefox, the master
password will be asked for either upon start of pro-
cess execution or the first time a stored password is
requested. If no additional precautions are met (e.g.
using browser extensions like Master password time-
out1), the master password will be stored in-memory
in plain-text upon decryption, and remain there until
the application is terminated (Naaktgeboren, 2015).

Subsequently, if an attacker manages to acquire
a snapshot of the current main memory process
space, it’s easily possible to extract the master pass-

1See https://addons.mozilla.org/en-us/firefox/addon/
master-password-timeout/

Sonnleitner, E., Kurz, M. and Palmanshofer, A.
Indirect Data Representation Via Offset Vectoring: A Code-integrity-driven In-memory Data Regeneration Scheme.
DOI: 10.5220/0007786703330340
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 333-340
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

333

word and hence all others using methods of mem-
ory forensics (Ligh et al., 2014). Acquiring mem-
ory snapshots has proven not to be too difficult af-
ter all, e.g. via accessing the main memory through
/proc/kcore, accessing the process memory space
through /proc/<pid>/mem, creating software plug-
ins, forcing the application to dump core for fur-
ther analisis, or via more exotic methods like side-
channel attacks (Samyde et al., 2002) or (Zhenghong
and Ruby, 2007).

1.3 Terminology

The terminology used throughout the entire document
is listed in Table 1. In addition, whenever a new sym-
bol is introduced, it is also explicitly outlined in the
text of the corresponding section.

Table 1: Terminology.

Symbol Definition

πts,πte
Start/end pointer in .text
segment of the process

πc
Pointer to current byte in segment
iteration loop

[πc] Dereferencing the πc pointer
β Byte for XORing πc contents

ν, |ν| Offset byte-vector & its size
σ Key byte-vector
ω Offset calculation for πc in σ

θ Initial offset added to πts

Θ
Optional array of initialization
bytes (initialization vector)

2 RELATED RESEARCH

A related technique which tries to resemble certain
information is used in the area of application ex-
ploitation, and is called return-oriented programming
(Prandini and Ramilli, 2012) (ROP). The ROP ap-
proach was introduced after all major operating sys-
tems and CPU manufacturers started to enforce the
well known WˆX approach, shortly outlined in sec-
tion 3.1. Hereby, memory pages are either writable
or executable, but never both. In early days, when
stack and heap were both writable and executable, the
primary approach to acquire malicious code execu-
tion was to store shell code on the respective memory
areas, and redirect function return addresses to some-
where near the shell code. Even if that address isn’t
known exactly, techniques like NOP sleds can dimin-
ish such shortcomings.

As a result of WˆX, this isn’t possible anymore.
The ROP approach on the other hand, searches the

.text section of a binary to find gadgets, short blocks
of machine code with the last assembly operation be-
ing a ret statement. Using this technique, an attacker
can search for multiple gadgets he or she needs for
executing whatever needed, e.g. to prepare registers
for a system() or execve() function call.

Regarding the use of credential information in ap-
plications, the CERN Computer Security Team has
published guidelines how to deal with such situations
(CERN Computer Security Team, 2015). In short,
the best way is always to encrypt such information,
in cases where a key is already present or can be ac-
quired. However, if this is not possible, useful alter-
natives are sparse. Hereby, CERN recommends to ex-
ternalize credentials to a separate file or a database.
Both options might not fit well for certain situations,
especially if the credentials are needed prior to con-
necting to a database, or if the credentials should not
be stored in a plain-text file on the device. Even then,
these strategies would not hinder an attacker to an-
alyze externally stored information, often with even
less effort.

The offset vectoring scheme presented in this pa-
per uses the essential concept of the well-known ROP
technique and utilizes it in order to recreate sensitive
data based on such gadgets.

3 PREREQUISITES

In order to explain our proposed concept, some of
the fundamental core concepts of how Linux handles
process memory and how common modern memory
protection techniques interfere with or modify these
concepts need to be outlined, since they have a great
impact on the implementation and inner workings of
our proposal. Therefore, the following sections 3.1
to 3.3 discuss relevant prerequisites concerning (i)
process memory layout, (ii) addressing memory pro-
tection schemes, and (iii) determining .text section
start and end addresses.

3.1 Process Memory Layout

The memory layout of a running process under Linux
consists of multiple sections or segments. Most no-
tably, these sections are .text for actual machine
code, .data for initialized global or static vari-
ables, .bss for non-initialized global or static data,
.heap for dynamically run-time allocated memory,
and .stack for local variables (Erickson, 2007).

Only heap and stack are dynamic in size. More-
over, most modern operating systems enforce the

SECRYPT 2019 - 16th International Conference on Security and Cryptography

334

WˆX approach: Any section is either writable or ex-
ecutable, but never both. Depending on the operat-
ing system, this technique may also be called Data
Execution Prevention (DEP) or Stack NX/Heap NX,
and was introduced for memory protection in order to
prevent exploits from executing previously introduced
shell code on either stack or heap.

3.2 Addressing Memory Protection
Schemes

During the last decade, numerous memory protec-
tion schemes have been developed and integrated into
Linux, in order to make exploitation harder. Most
importantly for our purposes, Address Space Layout
Randomization (ASLR) was integrated (though, in a
weak form) in kernel 2.6.12 in 2005 (Gisbert and
Ripoll, 2014).

On most Linux systems nowadays, ASLR
is enabled by default. This feature can be
switched on or off at runtime, using the /proc
kernel interface. Specifically, the pseudo-file
/proc/sys/kernel/randomize va space may be
set to three possible values (Oracle Corp., 2014) to
either (i) completely disable ASLR, (ii) to randomize
the position of the stack, the virtual dynamic shared
object page (VDSO) and shared memory regions, or
to use (iii) Full-ASLR which additionally randomizes
the position of the data segment.

Randomization of memory section offsets is used
to make it harder for exploits to work, since impor-
tant memory addresses (like a function’s return ad-
dress on the stack) cannot be easily calculated in ad-
vance. However, the .text segment on which the
offset-vector technique proposed in section 4 relies,
is not affected by ASLR.

.text segment randomization cannot be gener-
ally enforced on Linux. The reason for this lies in the
creation process of ELF binaries. In order to support
ASLR with .text randomization, a program has to be
compiled as Position independent executable (PIE),
which must therefore be done at compile time. How-
ever, PIE is not used on the majority of binaries on
the most widely used Linux distributions for a variety
of reasons, explained in detail in (Gisbert and Ripoll,
2014) and does therefore not interfere with the pro-
posed technique in the first place.

If, however, an operating system is configured to
enable full-ASLR while the final executable is PIE-
enabled, it is possible to randomize the .text section
of running processes. Even in such a situation, we can
make use of run-time methods in order to acquire the
starting address of the .text section, using dynamic
code-offset calculation (as done in the proof of con-

cept prototype), outlined in the next section.

3.3 Determining .text Section
Start- and End-Addresses

Without further protective measures, the starting ad-
dress of the .text section is static, since it always
resides in the lowest addresses of the virtual memory
space, using a fixed offset (e.g. 0x4000).

With ASLR and PIE enabled, this offset is ran-
domized. On Linux systems, we can take advantage
from the almost exclusively used GNU binutils.
Therein, the GNU linker ld takes care of exporting
a global variable executable start, which deter-
mines the very beginning of the .text section (The
GNU Project, 2015).

The downside of using this approach, how-
ever, is limited portability and probably will not
work with other compilers and linkers, since
executable start does not comply to POSIX or

ANSI. It is still possible to acquire the start of the
.text section manually, e.g. by using C inline as-
sembly to get the EIP value at the start of the main()
function. Note, that in most executables the main()
function does not mark the actual start of .text, since
other code often precedes main(), like the .init sec-
tion or the Procedure Linking Table (PLT). However,
as long as the reference point in the code remains the
same (points to the same instruction), it is valid for
our purposes.

4 PROPOSED METHODOLOGY

4.1 A Word of Caution

We would like to propose a method suitable for situa-
tions as described in Section 1, specifically for situa-
tions where either

• user-input for using strong cryptography is not
practical for any reason, or

• developers want to make it considerably harder
for attackers to extract sensitive information, ei-
ther via analyzing process memory dumps or per-
forming reverse engineering of application bina-
ries, or

• developers want to make it harder for attackers to
modify software, e.g. in order to bypass serial
number verification routines.

Note: The proposed mechanism is far from cryp-
tographically secure, and we are well aware that it

Indirect Data Representation Via Offset Vectoring: A Code-integrity-driven In-memory Data Regeneration Scheme

335

still can be exploited. However, the process of mem-
ory exploitation should become considerably harder.
The very same applies for many advancements in
computer security in general and memory protec-
tion schemes in particular: For instance, the intro-
duction of memory protections like ASLR, DEP/NX,
ASCII-Armoring and Memory Cookies during the
last decade have complicated things for attackers,
but do by no means provide unconditional security
and exploit prevention. Such schemes simply further
complicate attempts towards successful exploitation,
and require more specialized, complex and, in parts,
error-prone techniques (due to the use of methods like
address brute-forcing or heap-spraying to overcome
randomization).

4.2 Offset Vectoring

The proposed scheme is built upon the idea of model-
ing portions of sensitive data, or information required
for successful process execution (e.g. credentials,
passwords, keys, etc.), by referencing existing ma-
chine code byte values already present in the .text
section of a process, rather than storing it in a regu-
lar variable or memory space in the .data or .bss
sections.

For example, many software projects contain in-
formation like credentials, database passwords, API
keys, etc. Very often, these elements are hard-coded
in or directly referenced from the source-code for a
variety of reasons. Although this is considered bad
programming style, there may be cases where appli-
cable and usable alternatives are sparse. Using off-
set vectoring, a developer could get rid of plain-text
passwords in the source code, by not using a string or
character array which holds the password bytes, but
by referencing bytes already present in memory upon
process execution. The most simple approach to do
so, would be to crawl through the process-readable
memory and create a list of memory references, point-
ing to the respective byte representations of the pass-
word characters.

However, this approach has major defects. Firstly,
memory should be considered to be volatile. Writable
memory regions cannot be assumed to remain con-
stant during execution. Moreover, established tech-
niques for memory protection like ASLR will of-
ten place certain data on different memory addresses,
which renders referencing them for sensitive data un-
usable. Also, it can not be assured that all byte values
required for deconstructing a password (or, even more
problematic, a binary bitstring of a key) are actually
found in the current process memory space.

We therefore restrict memory referencing to the

.text segment of a running process only. The .text
segment is in most cases not affected by ASLR and
will remain static, even when a process is stopped and
restarted (Oracle Corp., 2014).

Beginning and end addresses of the .text section
are known either at compile time (without ASLR) or
at execution time (with full-ASLR and PIE). For fu-
ture reference, we will use the letter π for any kind
of pointer variables, while πts is referred to as the
start of the text segment, and πte as the end of the
text segment. During generation/encoding and regen-
eration/decoding phases, this segment is iterated byte-
wise from πts to πte, and started over once the end has
been reached. A pointer πc refers to the currently ad-
dressed byte during .text segment iteration, and a
variable β is used to temporarily store its content.

While πc is iterating every byte in the .text seg-
ment in a circular manner starting with πts, its value is
XOR-ed with the contents of β. Moreover, β may or
may not be initialized with one or multiple XOR-ed
values from an initialization vector to start from (both
variants are discussed in subsection 5.3).

On every iteration, the value of β is XOR-ed with
the byte πc is referencing during the current iteration.
The key σ we want to encode (e.g. a cryptographic
key, a password or any other byte vector) is split into
bytes which are processed in strict sequential order.
Once a particular byte σi from the key vector has
been found (is equal to β after the XOR operation),
the search continues for σi+1.

The number of iterations and XOR operations
needed to calculate the current σi is temporarily
stored as unsigned integer in ω and added to the off-
set vector ν once found. When all elements in σ

have been processed, |σ| = |ν| and ν is returned to
the caller.

The process of creating the offset vector ν is given
in pseudo-code in Algorithm 1, the corresponding key
regeneration code is found in Algorithm 2.

The code listings of Algorithm 1 and 2 represent
the most basic form of the offset-vector technique.
More advanced features discussed in Section 5 - like
the introduction of dynamically adapted initialization
vectors - are omitted for readability, but have been
included in the proof of concept implementation pre-
sented in Section 6.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

336

Algorithm 1: Calculation of the offset vector ν.

Data: key vector σ, start offset θ

Result: offset vector ν

πts← start of .text section;
πte← end of .text section;
πc← πts +θ;
β← 0, ω← 0;
ν← (0);
while σ.length > 0 do

β← β⊕ [πc];
πc← πc +1;
if πc = πte then

πc← πts +θ;
end
if β 6= σ.cur then

ω← ω+1;
next;

end
ν.push ω;
σ.pop;
ω← 0;

end

Algorithm 2: Regeneration of the key vector σ.

Data: offset vector ν,
start offset θ

Result: key vector σ

πts← start of .text section;
πte← end of .text section;
πc← πts +θ;
β← 0;
while ν.length > 0 do

for i← 0 to ν.pop do
β← β⊕ [πc];
πc← πc +1;
if πc = πte then

πc← πts +θ;
end

end
σ.push β;

end

5 DISCUSSION & RESULTS

5.1 Limitations

The proposed schemes are neither intended to replace
proper handling of key or credentials, nor should they
be seen as encouragement to actually store such data
in source-code or anywhere else without proper uti-
lization of cryptographic operations.

It is intended solely for scenarios where this is not
easily possible, e.g. when requesting decryption keys
from the user is no option, or when I/O is generally
limited. Without introducing further enhancements
(as suggested in the upcoming subsection), the tech-
nique can, nonwithstandingly but with considerably
higher effort, be reverse engineered.

Also, it increases complexity in deployment and
maintenance strategies, as outlined below. Solid inte-
gration in the build process is highly recommended.
However, once integrated, the entire process can be
easily automated with no further human intervention
whatsoever.

5.2 On Effectiveness and Purpose

The main advantage of the proposed concept is, that
any chunk of information can be represented by work-
ing with data already present in the code section
mapped into memory. It is therefore not necessary
to store the corresponding offset vector in the source-
code of the executable and can alternatively be stored
or shipped externally, e.g. in text files, key stores or
in a database.

Using this technique ensures, that no modifica-
tions have been made to the original on-disk binary
executable. In such a case, an attempt to decode and
reconstruct the informational chunk will almost cer-
tainly result in the data being scrambled and therefore
unusable.

Modifying an executable can be considered com-
mon practice among cracker scenes, aiming at remov-
ing, destroying or carefully modifying copy protec-
tion measures introduced by the original developers
and companies of the applications in question. In
its most careful and code-integrity-preserving form,
such a copy protection bypassing mechanism can be
accomplished by locating the machine code instruc-
tions responsible for checking the software’s validity
(e.g. a serial number), further locating the exact con-
ditional taking care thereof, and replacing this very
je assembly instruction to a jne or vice versa. Many
techniques exist accomplishing this goal, but most of
them conclude in changing the actual machine op-
codes present in the executable.

Changing one single byte will inevitably destroy
the integrity of the to-be reconstructed information,
since even small changes in a single byte value will
result in an avalanche effect for all succeeding bytes,
similar to the concept of Cipher block chaining (Bel-
lare et al., 1994) or hashing algorithms in cryptogra-
phy.

The nature of this concept also implies, that ev-
ery particular version of an executable (e.g. a build,

Indirect Data Representation Via Offset Vectoring: A Code-integrity-driven In-memory Data Regeneration Scheme

337

patch-level, etc.) must coercively use a dedicated off-
set vector in order to work purposefully. This strongly
suggests, that when using offset vectoring, it should
be integrated directly into the software build process
to automatically perform vector calculation.

5.3 Security & Usage

The offset-vector technique can be used for any kind
of data, and stored at any place, just like any other
data handled during software development. Examples
for storing the offset-vector would be in-source, in an
external text file or in a database tuple. The best lo-
cation strongly depends on the specific purpose, the
security precautions necessary, and the type of infor-
mation the technique is applied onto.

For credential keys, it is still not recommended to
store the offset-vector directly in the source-code of
the application. It will, however, significantly exac-
erbate the effort necessary to extract the obfuscated
information. For example, deobfuscation does require
actual reverse engineering of the executable assembly,
and is not possible anymore with basic approaches
for credential and/or key extraction (e.g. string ex-
traction, determining and reading variable locations,
etc.).

In cases where user-input is applicable, it is also
possible to make use of an initialization vector for
the β variable. Although β is only of C data type
unsigned char and therefore 8 bits long on almost
all architectures and platforms, an initialization vector
may hold multiple bytes which will be XOR-ed se-
quentially before starting the actual regeneration pro-
cess by reading bytes from πts+θ. Hereby, the initial-
ization vector can represent a user- or authentication-
server-provided key necessary for successful regener-
ation.

Moreover, in order to enhance resistance to mem-
ory forensics, the regeneration function (shown in Al-
gorithm 2) should be called immediately before the
resulting, regenerated portion of information is re-
quired during process execution. It is also of high-
est importance, to securely wipe the memory space
where the deobfuscated information has been placed
temporarily – otherwise, the key vector may still re-
side somewhere in memory.

Even in cases where sensitive information is al-
ready externalized to an on-disk file and subsequently
encrypted with a user-provided passphrase, offset
vectoring can still be used with code-integrity protec-
tion in mind, as outlined above.

Moreover, the technique allows choosing an ar-
bitrary starting offset θ, which will be added to
& executable start. Depending on the size of the

.text section, θ can therefore be used as additional
(possibly secret) value necessary for successful com-
puation.

To enhance secrecy of the information obfus-
cated using the offset-vector technique, using it in
combination with Shamir’s Secret Sharing Scheme
(SSSS) (Shamir, 1979) technique could be benefi-
cial, where the offset-vector obfuscated information
is only one share needed to reconstruct the secret in-
formation. Other shares could be, among others, a
BIOS/UEFI or peripheral serial number, MAC ad-
dress, or a share provided by a remote server. Since
BIOS/UEFI and other hardware serial numbers en-
code vendors and usually also target market a de-
ployment package could target, e.g., a specific com-
bination of HW and group of users. A remote server
could also generate a secret share based on the request
origin, e.g., using its IP address, making such exe-
cutable valid only for certain locations. A potential
attacker would need to invest much more effort to re-
construct a matching environment in order to retrieve
the secret. We are planning to explore this direction
further in our future work, where a secret rest-share
is computed given a secret and a set of pre-existing
shares. Only the pre-existing shares together with the
rest-share should be able to reconstruct the secret in
the same way as SSSS describes. This would sig-
nificantly improve the secrecy and difficulty of unau-
thorized access and use of such package and actually
provide some cryptographic properties, even though
the secret-shares would be publicly reconstructible at
some point.

6 PROOF OF CONCEPT

The proposed offset-vector technique has been fully
implemented in the C programming language, ac-
cording to the specifications given during the previ-
ous sections. It has been tested on 32- and 64-bit
Linux systems, with and without memory protections
schemes which may interfere with the correct regen-
eration of the offset vector.

The source-code for the proof of concept imple-
mentation has been licensed under the General Public
License version 2, and is planned for public release
shortly. The code contains representative functions
for both, creating an offset vector for a particular, ar-
bitrarily sized, given chunk of information on the one
hand, and recreating that very information based on
a given offset vector θ and an optional initialization
vector.

Considering production environments, it is recom-
mended not to include both, the obfuscation and the

SECRYPT 2019 - 16th International Conference on Security and Cryptography

338

regeneration algorithm into one executable. The most
direct way would be to generally include the regener-
ation function into the software using it, and use the
obfuscation mechanism only during the build process
in order to create the offset vector. It’s in the responsi-
bility of the developers to decide, how the offset vec-
tor itself, once created, is handled and stored.

The implementation uses dynamic code-offset
calculation as described above, providing support for
full-ASLR and PIE.

Experiments have been made with multiple dif-
ferent binaries, ranging from very small .text sec-
tions (almost exclusively containing the regeneration
code, about 2200 bytes of machine code) to rather
large .text sections (e.g. the Evince PDF viewer
with about half a million bytes of machine code in
memory) with no significant impact on runtime. The
average value of ω (πc increments per byte in σ) was
272.89, just above the maximum number of values a
byte can represent. This difference is due to certain
bytes occurring in machine code very often, while
other bytes are potentially sparse.

./text -offset -xor create "MYSECRET"
[INFO] PIE: 1, DEP: 1, ASLR: 2 (full)
[INFO] .text starts at 0x55f862e776b0
[INFO] .text ends at 0x55f862e789c5
[DEBUG] [#0001 = 0x4d @ 2612]
[DEBUG] [#0002 = 0x59 @ 223]
[...]
[DEBUG] [#0007 = 0x45 @ 120]
[DEBUG] [#0008 = 0x54 @ 1060]
[INFO] Offset map: 8, 2612, 223, 98,

168, 143, 66, 120, 1060.

Listing 1: The calculation of an offset vector from an exe-
cutable.

Listing 1 provides the calculation of the correct
offset vector for a given binary and a given secret to
embed. The secret is given directly via the command
line is not necessarily restricted to be an ASCII string.

After generating the offset vector, it can either be
embedded into the binary in order to be able to recre-
ate the secret by itself (implicit vector inclusion), or
stored somewhere else and provided only after certain
conditions are met.

./text -offset -xor regen
[INFO] PIE: 1, DEP: 1, ASLR: 2 (full)
[DEBUG] Recovered byte: 4d
[DEBUG] Recovered byte: 59
[...]
[DEBUG] Recovered byte: 54
Reconstructed ASCII key: <MYSECRET >

Listing 2: Reregenating a previously embedded secret with
implicit offset vector inclusion.

Listing 2 regenerates the secret using the previ-
ously embedded offset vector directly from the exe-
cutable itself. In this prototype, the offset vector is
created based on the offset vector calculation binary
itself. It can, of course, be also caculated for any other
executable.

7 CONCLUSION AND FUTURE
WORK

We have presented a scheme for generating pre-
defined chunks of arbitrary information of variable
length via the actual machine code of a running pro-
cess using an offset vector. While offset vectoring is
no silver bullet for the common key-storage problem
of applications, it can be used under certain situations
to improve exploitability resistance, hide the informa-
tion in question from appearing in an executable and,
if applied correctly, the process memory map.

It does not interfere with modern memory pro-
tection techniques, can be easily automated and in-
tegrated in an existing build process, and can help to
ensure the integrity of shipped binaries. This can also
enhance the resistance against attempts to crack soft-
ware, or extract valuable information thereof.

Augmenting the existing prototype with an imple-
mentation of Shamir’s secret sharing scheme (Shamir,
1979) could enable a multi-part architecture where
the recoverable secret is only one of several different
parts needed.

Moreover, the offset vector itself does not nece-
sarrily need to be included in the executable directly.
It can also be utilized as an authentication vector only
given to the client once certaion conditions are met
(e.g. payment has been successfully done).

Another approach would be to scatter multiple off-
set vectors across different binaries (executables and
software libraries) of a given software product in or-
der to generate the final secret whereas the integrity of
all different files must therefore be intact. Once again,
considering this approach, the Shamir secret sharing
scheme would be suitable in such a way that a certain
number of binaries must be present and unaltered in
order to regenerate a secret.

The given implementation has only been devel-
oped to work on x86 systems using the Linux oper-
ating system. Other than that, future work may in-
clude an implementation for several other architec-
tures, whereas especially ARM and MIPS seem of in-
terest due to the high number of devices being built
on these architectures on the one hand, and the fact
that many of them show limits regarding user interac-
tion (e.g. home routers and WiFi access points). Fur-

Indirect Data Representation Via Offset Vectoring: A Code-integrity-driven In-memory Data Regeneration Scheme

339

ther development regarding other operating systems
is also considered to be a favorable goal in the near
future.

Considering multiple binaries running simula-
neously and communicating with each other over a
network connection, a valid offset vector and rere-
genated secret could be used as starting point for mu-
tual trust without user interaction.

ACKNOWLEDGEMENTS

This research paper and all corresponding source code
developments are a result of the Research Group for
Secure and Intelligent Mobile Systems (SIMS).

REFERENCES

Bellare, M., Kilian, J., and Rogaway, P. (1994). The secu-
rity of cipher block chaining. In Annual International
Cryptology Conference, pages 341–358. Springer.

CERN Computer Security Team (2015). How to keep
secrets secret. alternatives to hardcoding passwords.
CERN.

Erickson, J. (2007). Hacking - the art of exploitation 2nd
ed. No Starch Press.

Gisbert, H. and Ripoll, I. (2014). On the effectiveness of
full-aslr on 64-bit linux. International In-Depth Secu-
rity Conference Europe (DeepSeC), Vienna.

Henriksen, M. (2015). Gitrob: Putting the Open Source in
OSINT. xx.

Ligh, M., Case, A., Levy, L., and Walters, A. (2014). The art
of memory forensics: Detecting malware and threats
in Windows, Linux, and Mac memory. John Wiley &
Sons.

Naaktgeboren, A. (2015). Change the expiration of mas-
ter password probes to never expire. Mozilla Firefox
Source Code, changeset edd395471638.

Oracle Corp. (2014). Oracle linux security guide for release
6 – configuring and using kernel security mechanisms.
Oracle.

Prandini, M. and Ramilli, M. (2012). Return-oriented pro-
gramming. IEEE Computing Society, Journal for Se-
curity & Privacy, Vol. 10, No. 6.

Samyde, D., Skorobogatov, S., Anderson, R., and J., Q.
(2002). On a new way to read data from memory. First
International IEEE Security in Storage Workshop.

Shamir, A. (1979). How to share a secret. Commun. ACM,
Vol. 22, No. 11, pp. 612–613.

The GNU Project (2015). Gnu linker ld documentation (gnu
binutils) version 2.25. GNU.

Zhenghong, W. and Ruby, B. (2007). New cache designs for
thwarting software cache-based side channel attacks.
Proceedings of the 34th Annual International Sympo-
sium on Computer Architecture, New York.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

340

