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Abstract: This paper deals with the application of machine learning for active roll control of motor vehicles. For this 
purpose, a special learning method based on reinforcement learning with an actor-critic model is used. It 
discusses and elaborates the basic design of the neural controller and its optimization for a fast and stable 
training. The methods mentioned are then validated. Both the training and the validation data are simulatively 
generated with the software environments MATLAB / Simulink and IPG CarMaker, while the architecture 
and training of the artificial neural network used is realized with the framework TensorFlow. 

1 INTRODUCTION 

Investigations in the field of vehicle dynamics and the 
development of driver assistance systems have the 
goal of increasing vehicle safety and ride comfort. 
Active roll stabilization is an assistance system that 
enhances both vehicle safety and driving comfort. By 
means of actuators, components of the chassis can be 
arbitrarily influenced within their physical limits. 
These actuators are variably controlled via a control 
unit. The development and optimization of such 
regulations is one of the main tasks in the design of 
driver assistance systems. In addition to conventional 
PID controlling, other control algorithms such as a 
fuzzy control are possible (Sieberg et al., 2018). 

Due to the relevance of machine learning in 
neuroinformatic, artificial neural networks are 
increasingly being used in control engineering as 
well. These can either completely replace the 
conventional controllers or specify setpoint values for 
the regulation, which are forecasted from the process 
flow of the system to be controlled. This applicability 
to active roll stabilization is presented in this article. 
In comparison to supervised and unsupervised 
learning the application of reinforcement learning to 
control tasks of vehicle dynamics is rarely researched. 
Also, the presented specific method of the actor-critic 
is infrequently used for control tasks. Specially, the 
transfer to the application of vehicle dynamics is a 
comparative unexplored science. So, the developed 
model and method has a highly scientific relevance. 

The focus of this paper is not on the development 
of an optimized controller for perfect stabilization, 
but much more on the documentation that the 
developed model proves useful for controlling the roll 
angle of a motor vehicle and thus for other driving 
dynamics. In this case, the roll angle is to be reduced 
in comparison to a passive stabilization with common 
spring and damper elements. This work is aimed to 
investigate the utility of the actor-critic method for 
control tasks and particularly controlling vehicle 
dynamics. Nevertheless, the method can be applied to 
a broad spectrum of control tasks. 

This article will present the approach to develop a 
controller based on the actor-critic Reinforcement 
Learning method. The training and validation are 
accomplished within a simulation environment 
including MATLAB/Simulink, IPG CarMaker and 
TensorFlow. The results are validated in comparison 
to a passive roll stabilization. 

2 RELEVANT RESEARCH 

Boada et al., (2009) have made an approach on the 
active control of roll-stabilizers based on machine 
learning methods. Here, a simple ANN is trained on 
the simulation of a single unit heavy vehicle model 
with five degrees of freedom, using RL methods. The 
ANN-architecture consists of a dynamic input layer 
and an output layer. The few degrees of freedom of 
the model used and the very ideal training and testing 
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conditions leave room for the development of 
machine learning control for more realistic scenarios. 
In addition, the vast recent advances in the software 
and hardware for developing artificial neural 
networks, allow for more flexibility and potential in 
implementing and validating RL methods. 
Fu et al., (2017) apply RL for active suspension 
control on a quarter-vehicle model with two degrees 
of freedom. Due to the faster dynamics required for 
vibration control, the controller uses a single critic-
ANN rather than the computationally more expensive 
actor-critic dual ANN architecture, as it is sufficient 
for the roll stabilization task presented in this paper. 

In addition to the development in the automobile 
sector, comparable neural network control 
approaches in other fields are also considered since 
certain tasks here can have close resemblance to the 
intended approach in this proposal. Li et al., (2005), 
for instance, develop a neural network controller for 
a fin stabilizer for marine vessels utilizing an adaptive 
neural network controller. 

As part of the research presented in this article a 
model based on actor-only reinforcement learning 
was developed with less satisfactory results but with 
purposeful findings. 

3 MACHINE LEARNING 

Machine learning is a highly discussed field in 
modern science. Its goal is to generate numerical 
solutions for certain problems using empirical 
knowledge respectively data sets. The resulting 
algorithm is represented by an artificial neural 
network and worked out by various learning methods. 
These learning methods can be divided into three 
fundamental classifications, these being supervised, 
unsupervised and reinforcement learning. The latter’s 
use is investigated in this model and its vast majority 
of approaches can be classified with the actor-only or 
the critic-only methods (Konda and Tsitsiklis, 2003). 
Both have advantages and disadvantages regarding 
the way they operate. To bring these advantages 
together and compensate the disadvantages, the 
combined actor-critic model is used. 

This chapter will show the usage of an artificial 
neural network, the operation principle of 
reinforcement learning and the actor-critic method 
specifically. 

3.1 Artificial Neural Network 

The neural network is a term related to the 
neurosciences and describes the composition of a 

variety of neurons that resemble a function in a 
nervous system. The engineering sciences try to 
simulate the processes of a nervous system and 
transfer it to technical problems. In contrast to a 
biological construct, the term of an artificial neural 
network is used in this context. 

The origin and a simplification of artificial neural 
networks is the perceptron (Rosenblatt, 1958). A 
perceptron exclusively processes binary facts and can 
thus represent Boolean functions. If a certain 
threshold is exceeded by weighted inputs, the 
perceptron is activated and outputs a one (true). 
Otherwise it will respond with a zero (false). As a 
result, different logic gates and classifications can be 
performed, e. g. the XOR gate (Exclusive OR gate). 
An artificial neural network is a generalization of a 
perceptron and can also solve more complex 
problems. 

In general, artificial neural networks can be 
defined by three elements: the single neuron, the 
topology and the learning rule. 

3.1.1 Neuron 

A neuron can be mathematically described by its 
activation, which represents the output. This 
activation depends on the inputs of the neuron, the 
weights of the inputs and the activation function. 

 

 

Figure 1: Structure of a neuron. 

The inputs ܫ௜ are multiplied by their respective 
weights ݓ௜ and then summed up, so that the argument 
 :ሻ is calculated byݔሺݕ of the activation function ݔ
 

ݔ ൌ ෍ݓ௜ ∙ ௜ (1)ܫ
 

The weights ݓ are the parameters that are gradually 
adjusted and optimized during the training. They are 
randomly initialized at the beginning. 

Many different functions can be used for the 
activation function. Karlik and Olgac (2011) compare 
some common activation functions and analyse their 
impact in the training performance. The activation 
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function can be chosen separately for each layer or 
even each single neuron in the artificial neural 
network. The presented model in this article uses a 
combination of three different functions: the 
hyperbolic tangent shown in equation (2), a linear 
function shown in equation (3) and the Rectified 
Linear Unit shown in equation (4). 
 

ሻݔ௧௔௡௛ሺݕ ൌ tanh	ሺݔሻ (2)

ሻݔோ௘௅௎ሺݕ ൌ ,ሺ0ݔܽ݉ ሻ (3)ݔ

ሻݔ௟௜௡ሺݕ ൌ (4) ݔ
 

The function value of the activation function 
represents the output of the neuron and is used either 
as input to the neurons of the next network layer or as 
output of the network. 

3.1.2 Topology 

An artificial neural network consists of at least two 
layers: the input and the output layer. For simple 
learning problems, these two layers can be sufficient 
to find an adequate solution. For more complex 
systems, hidden layers are needed. If one or more 
hidden layers are present, the term of deep learning is 
applicable (Goodfellow et al., 2016). 

 

Figure 2: Exemplary architecture of an artificial neural 
network. 

The input layer with the neurons ܫ maintains the 
values of the data sets used and thus the input of the 
artificial neural network. The output layer with the 
neurons ܱ	maintains the output of the network. The 
number of hidden layers with the neurons ܪ is not 
limited but is recommended to be kept as small as 
possible to reduce its complexity.  

In addition to the outputs of the previous layer, 
every hidden layer and the output layer has a bias ܤ. 
The bias is a constant value and can be parameterized 
during training, since it is also multiplied with its 
weights. It is necessary to calculate a constant offset, 

which is independent of any inputs ܫ e.g. for 
compensating measuring noise. 

The numerical relationship between the input and 
output of the artificial neural network gives the 
following: 

௝ܪ ൌ ுݕ ቌ෍൫ܫ௜ ∙ ௜,௝൯ݓ

௡಺

௜ୀଵ

൅ ଵܤ ∙ ௡಺ାଵ,௝ቍ (5)ݓ

ܱ௞ ൌ ைݕ ቌ෍൫ܪ௝ ∙ ௝,௞൯ݓ ൅ ଶܤ ∙ ௡ಹାଵ,௞ݓ

௡ಹ

௝ୀଵ

ቍ (6)

 

With ݊ூ being the number of input neurons and ݊ு 
being the number of neurons of the hidden layer. 

If the inputs of a neuron consist only of the outputs 
of the previous layer and the bias, it is referred to as a 
feedforward network. If, on the other hand, the output 
of the neuron is fed back as an input with a time delay, 
a recurrent network is existent. This causes the output 
of a neuron to become dependent on an output from 
the previous time step. In this work, a fully connected 
feedforward neural network is used. 

3.1.3 Learning Rule 

The learning rule is used to find suitable values for 
the weights ݓ, with which the desired output is 
achieved with a tolerable error. Equations (5) and (6) 
show that the output is directly dependent on the 
weights and the activation functions. An influence 
during training only can be taken on the weights. The 
basis of the most commonly used learning rules is the 
Hebbian learning rule that says that a weight ݓ௜,௝ is 
adjusted when neuron ݅ and neuron ݆ are active at the 
same time (Hebb, 1949). The weight change ∆ݓ௜,௝ is 
dependent on the outputs of the respective neurons ݕ௜ 
and ݕ௝ and a fixed hyperparameter ߙ. It forms the 
product of these three components, so the 
mathematical expression for weight adjustment 
becomes: 
 

௜,௝ݓ∆ ൌ ߙ ∙ ௜ݕ ∙ ௝ (7)ݕ
 

The parameter ߙ is the learning rate and an 
elementary part of the training of an artificial neural 
network. It decisively determines with which step 
size the weights are adjusted. The learning rate can be 
changed during training to ensure continuous learning 
progress. However, an optimal learning rate cannot be 
determined analytically due to the dependence on 
randomness. 

In this article a method with a gradient descent, 
specifically backpropagation is presented. Therefore, 
the squared error, also called loss ܧ, between the 
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desired output ܱ௦௘௧ and the observed output ܱ௔௖௧, the 
latter resulting from the random weight initialisation, 
is calculated. 
 

ܧ ൌ
1
2
ሺܱ௦௘௧ െ ܱ௔௖௧ሻଶ (8)

 

The bisecting factor is used for simpler 
differentiation. The loss represents the deviation from 
the optimum the controller can achieve. So, the goal 
of the artificial neural network is to minimize it in a 
proper way. To use this error for the weight 
adjustment the partial derivatives and thus the 
gradient ܬ׏ is computed for every single weight. For 
example, the modification of the weights between the 
input and the first hidden layer is calculated as 
follows: 
 

௜,௝൯ݓ൫ܬ׏ ൌ
ܧ߲
௜,௝ݓ߲

ൌ
ܧ߲
௝ݕ߲

∙
௝ݕ߲
௝ݔ߲

∙
௝ݔ߲
௜,௝ݓ߲

 (9)

 

With ݔ being the summed-up inputs and ݕ the output 
of the respective neuron. Any connection between 
layers can be computed analogously and thereby 
every single weight can be adjusted separately. This 
enables the possibility to propagate the summarized 
error ܧ back to every single weight and to customize 
it accordingly. This gradient now is multiplied with 
the learning rate ߙ to get the weight change. 
 

௜,௝ݓ∆ ൌ ߙ ∙ ௜,௝൯ (10)ݓ൫ܬ׏
 

With advancing during the training, the loss 
diminishes and thus the weight changes do. So, the 
training always becomes more precise. 

Because the gradient descent requires a given 
output as a desired output ܱ௦௘௧ to calculate the loss, it 
is often used for supervised learning. This article 
however shows how to use it with reinforcement 
learning. 

3.2 Reinforcement Learning 

Reinforcement learning pursues the goal of assigning 
inputs of the artificial neural network to certain 
outputs in order to achieve a maximum reward 
(Sutton and Barto, 2018). The artificial neural 
network and the learning method, in the following 
referred to as the agent, continuously interacts with 
the system environment rather than with stored 
training data sets as is the case in supervised or 
unsupervised learning. The inputs of the artificial 
neural network correspond to the states of the system 
e.g. the roll angle and the outputs to the actions 
carried out by the system e.g. the actuated torque. One 
of the agent's responsibilities is determining the 
desired nominal value ܱ௦௘௧. It does this without 

having any information about which action to take in 
which state or whether the last performed action was 
right or wrong. Instead, it must find out through 
appropriate training, which action leads to the highest 
reward. This is calculated by the system environment 
by a given reward function for the current state ܵ ௧, the 
associated executed action ܣ௧ and the resulting state 
ܵ௧ାଵ and is to be selected so that the agent in the case 
of the maximum value, performs the desired action. 
The reward function should therefore always be set 
up as a function of a desired reference state or action 
and is calculated by: 
 

ܴ ൌ 1 െ ൫ߜ െ ௥௘௙൯² (11)ߜ
 

With R being the reward and ߜ the state or action to 
be controlled with respect to the desired reference 
state or action ߜ௥௘௙.	This results in a maximum reward 
of one. Figure 3 shows the flow chart of 
reinforcement learning. 
 

 

Figure 3: Flow chart of reinforcement learning (Sutton and 
Barto, 2018). 

The agent receives the state ܵ  and a reward ܴ  from 
the system environment in each time step ݐ and 
calculates an action ܣ depending on the current level 
of training. The assignment of the actions to the 
respective states is summarized in the agent's 
policy ߨ. 
 

௧ܣ ൌ ሺܵ௧ሻ (12)ߨ
 

This policy will be adjusted during the training 
through two simultaneous processes called 
exploitation and exploration. In the case of 
exploitation, the agent prefers already known and 
executed actions that lead to a high reward. To be able 
to get to know these actions and the underlying states 
and thus incorporate them into its training data set, it 
must react to states differently during exploration 
than the previous training provides. This happens 
through random variations of the already known 
actions. The action selected by the agent may be 
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numerically set with a randomly generated deviation 
and thereby achieve a potentially higher reward. The 
agent would therefore adapt its policy. Exploration 
and time delayed reward are the two most important 
characteristics that differentiate reinforcement 
learning from other learning methods (Sutton and 
Barto, 2018). 

Due to this, it has the advantage that it can be 
applied to interactive disciplines and to unknown, 
dynamic environments and systems. While 
supervised and unsupervised learning are limited to 
learning data sets and extending to other data sets, 
reinforcement learning can train follow-up states that 
have been induced by the choice of the previous 
action, thus involving a wide range of state-space. 

3.2.1 Temporal Difference Learning 

Temporal difference learning is a variant of value 
approximation and is used by the Critic in the 
developed model. Here, the agent adapts its policy not 
only after a series of actions based on the return ܩ, 
which is simply the sum of successive rewards, but 
continuously in each iteration step based on the 
action-value function ܳగሺݏ, ܽሻ. This determines, 
comparable to the return, the sum of successive 
rewards. However, in this case it does not wait for the 
following iteration steps to be performed and instead 
uses the expected rewards from the current strategy. 
This means that ܳగሺݏ, ܽሻ is always determined as a 
function of the current policy and contains 
approximated rather than real values. As a result, no 
defined end of an episode is necessary, and the value 
can be estimated continuously. 
 

ܳగ,௧ሺݏ, ܽሻ ൌ ॱగሾܩ௧|	ܵ௧ ൌ ,ݏ ௧ܣ	 ൌ ܽሿ (13)
 

The agent sets up a new prediction of the action-value 
in each step. The basic idea of temporal difference 
learning is to minimize the deviation between ܳగ,௧ of 
the current step and ܳగ,௧ାଵ of the next step (Tesauro, 
1995). This is done by adjusting the weights of the 
artificial neural network by means of 
backpropagation. The loss ܧ to be minimized is then 
defined as follows: 
 

ܧ ൌ
1
2
൫ܴ௧ ൅ ோߛ ∙ ܳగ,௧ାଵ െ ܳగ,௧൯

ଶ
	. (14)

 

In temporal difference learning, the policy ߨ is 
therefore not optimized directly, but rather its 
evaluation in the form of the action-value ܳగ. 

3.2.2 Policy Gradient Method 

An alternative to the value approximation or temporal 

difference learning is the policy gradient method, 
which is used by the Actor in the developed model. 
The policy of the agent ߨ is parameterized with the 
weights ݓ and a gradient method is used. Thus, a 
policy ߨ is trained, which assigns the actions directly 
to the states by equation (12). Through selective 
weight adjustment, the desired relationship between 
states and actions can be achieved. 

The gradient ܬ׏ሺݓ௧ሻ	is approximated by the 
current policy and the return ܩ௧ and is used by 
equation (10). 
 

௧ሻݓሺܬ׏ ൌ ॱగ ቈܩ௧
,ሺܵ௧ߨ௪׏ ,௧ܣ ௧ሻݓ

,ሺܵ௧ߨ ,௧ܣ ௧ሻݓ
቉ (15)

 

For a detailed explanation and derivation of the 
method, the literature of Sutton et. al. is 
recommended (Sutton and Barto, 2018). 

Compared to temporal difference learning, a 
policy is generated directly which maximizes the 
approximated return ܩ௧ depending on the gradient 
instead of minimizing a deviation in the form of the 
loss. Backpropagation can also be used for this 
maximization of ܩ௧. 

3.3 Actor-critic 

A large majority of reinforcement learning methods 
can be categorized as actor-only and critic-only 
(Konda and Tsitsiklis, 2003). While the 
approximation of the action value function is used for 
the critic-only, the actor-only uses a policy gradient 
approximation (Sutton et al., 1999). 

A disadvantage of the policy gradient method is 
that the estimation of the gradient ܬ׏ሺݓ௧ሻ has a high 
variance and thus can lead to unwanted jumps in the 
weight adjustment. In addition, each policy 
adjustment creates a new gradient that is independent 
of the previous one, which in turn prevents the 
accumulation and consolidation of previous 
information (Konda and Tsitsiklis, 2003). In the case 
of a critic-only with a value approximation, on the 
other hand, the policy is not optimized directly but via 
ܳగሺݏ, ܽሻ. As a result, in principle good 
approximations can be achieved, but there is no 
guarantee that they will get close enough to their 
optimum and achieve a sufficiently tolerable result. 

The actor-critic model combines the advantages 
and largely compensates the disadvantages of actor-
only and critic-only. Two separate artificial neural 
networks are generated and trained, one each for the 
actor and the critic. Together they form the agent. 

The critic receives the state ܵ and the reward ܴ 
from the system environment and the action ܣ from 
the actor. From these quantities, the action value ܳ is 
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determined and the loss E optimized according to 
equation (14). Then the critic transfers the 
action-value to the actor, which maximizes it with the 
policy gradient method. Since two successive actions 
and states are required for temporal difference 
learning, the states and actions are buffered and 
transferred in the next step. This results in the model 
shown in figure 4. 

For the adjustment of the critic the tuple 
݌ ൌ ሺܵ௧, ,௧ܣ ܴ௧, ܵ௧ାଵ,  ௧ାଵሻ is necessary. The actorܣ
determines its policy ߨ using ܳ and after completing 
the training, it is the part of the model that represents 
the neural controller, as it sends an action back to the 
system environment depending on the state. 

 

Figure 4: Flow chart of the used actor-critic model 
(Szepesvári, 2009). 

4 VEHICLE DYNAMICS 

For the development of a neural controller, an 
understanding of the dynamical system to be mapped 
is not of great importance, since the neural controller 
is supposed to independently recognize and apply the 
respective structure. Nevertheless, the concepts of 
rolling and stabilizing are explained shortly. 

The term "roll" describes the rotation around the 
body-fixed longitudinal axis, which is quantified by 
the angle ߮. This movement largely depends on the 
lateral and vertical dynamics of the vehicle and is 
shown in figure 5. 

The stabilizer, which is the actuator of the active 
roll control, is rotatably mounted on the vehicle body 
and connected at both ends with the respective wheel 
suspensions. With different deflection of the two 

wheels, the levers experience differently large 
deflections, which result in a twisting of the torsion 
bar and thus in a corresponding torsional torque 
(Schramm et al., 2018). 

For an active influence by the stabilizer this is 
mechanically separated in the middle and the 
resulting free ends coupled via an actuator. This 
actuator is performed in this work by an electric 
motor. Instead of the passive torque generated by 
torsion, the electro-mechanical actuator imprints a 
torque which ensures a controlled influence on the 
roll angle. 
 

 

Figure 5: Roll angle of a motor vehicle (Schramm et al., 
2018). 

5 SIMULATION ENVIRONMENT 

The training and validation of the controller is carried 
out in simulation. The simulation environment 
contains three software packages, each fulfilling 
special requirements for the development process and 
interacting in a master/slave communication shown in 
figure 6. MATLAB is used as master. It guarantees 
the communication and synchronization between the 
different environments and can further be used for 
any kind of signal processing. The training data is 
generated by the software IPG CarMaker. It is used 
for the task of a whole vehicle simulation in a virtual 
environment. CarMaker offers an environment for 
simulation and testing of whole vehicle systems under 
realistic conditions. It provides driving conditions 
dependent on different selection options such as the 
used car or road. For the presented elaboration the 
available Lexus RX400h, which is a Sport Utility 
Vehicle (SUV) with one stabilizer per vehicle axle. A 
detailed mathematical modeling is done within the 
licensed software and is not directly visible to the 
user. 
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The track used is flat and has no slopes. The 
vehicle can be controlled by providing physical 
parameters via the interface in MATLAB/Simulink. 
In this case the roll stabilization forces acting on the 
car are manipulated. 

 

Figure 6: Master/slave communication of the simulation 
environment. 

The driving conditions are transmitted to the 
software MATLAB/Simulink in which the active roll 
stabilization is realized. The results of this 
stabilization are the mentioned stabilization forces in 
dependence of the counter-torque ܯ௖௢. The 
counter-torque required for roll stabilization 
corresponds to the output of the artificial neural 
network, which is constructed and trained with the 
frame work and the open source libraries from 
TensorFlow. The counter-torque ܯ௖௢ሺܵሻ is calculated 
by the neural network with respect to the states ܵ. In 
this work the states are the the roll angle ߮, the roll 
velocity ሶ߮ , the roll acceleration ሷ߮  and the lateral 
acceleration ܽ௬. TensorFlow is included in the loop 
during training since it offers the developer high 
agility in building and altering the structure of 
artificial neural networks. The driving states are 

therefore sent via MATLAB/Simulink to the agent 
formed by TensorFlow before the active roll 
stabilization. After the agent has determined an 
output in the form of the counter-roll torque ܯ௖௢ሺܵሻ 
as a function of the states, it sends this to 
MATLAB/Simulink, where subsequently the 
resulting roll stabilization forces acting on the vehicle 
are transferred to IPG CarMaker. This feedback 
message closes the simulation cycle. The data 
exchange between MATLAB/Simulink and the 
python based TensorFlow occurs through TCP/IP-
communication. The sample time of the simulation is 
௦ݐ ൌ 1 ms. 

6 TRAINING 

The training maneuvers represent the data available 
during training and can be compared to the training 
data set for supervised and unsupervised learning. 
Depending on the learning problem, the methodology 
of machine learning does not necessarily cover the 
entire state space during training. Rather, the artificial 
neural network is designed to develop and represent 
an algorithm that provides satisfactory results in the 
training data and is extra- and interpolatable over the 
entire or most of the state space. The goal is to control 
the roll angle ߮. The desired reference angle in this 
approach is ߮௥௘௙ ൌ 0 which results in the reward 
function with respect to equation (11): 
 

ܴ ൌ 1 െ ߮² (16)
 

When choosing the training maneuvers, however, 
care must be taken to provide the agent with data that 
can be used for extrapolation and interpolation. For 
suitable  roll  stabilization,  accelerations  and  roll an-

 

 

Figure 7: Flow chart of simulation environment. 
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gles in both directions of the transverse axis must 
therefore be available as input during training, so that 
the neural controller can react differently to both 
eventualities after completed training. For this reason, 
the training maneuvers consist of stationary circular 
drives according to ISO 4138 in both directions and a 
slalom around pylons with a constant distance. 
Stationary circular drives ensure that the agent 
receives corresponding input variables over several 
consecutive iteration steps, which require control and 
contain lateral accelerations in one direction. This 
allows the agent to train positive and negative 
counter-torque separately in terms of time. Due to the 
slalom ride, in which the lateral acceleration changes 
periodically, the agent can train the steering angle 
regarding variable driving dynamics. Straight 
sections are inserted between the mentioned 
maneuvers because the agent also has to learn to 
deliver a torque of ܯ௖௢ ൌ 0 Nm (or an absolute small 
torque) facing no (or relatively small) lateral 
acceleration despite its randomly distributed start 
weights. All training maneuvers are carried out with 
the vehicle speed ݒ ൌ 70 km/h. The radius of 
curvature of the circle runs is ݎ ൌ 100 m and the 
pylon distance of the slalom ride ݀௉ ൌ 36 m. 
 

 

Figure 8: Lateral acceleration of the training maneuvers. 

It should be noted here that the roll angle to be 
controlled and the lateral acceleration have a dynamic 
interaction, which causes the lateral acceleration to 
change as a function of the set actuator torque during 
the training. In addition, the three individual 
maneuvers are repeated as often as desired and in 
random order. The time-based arrangement of figure 
8 thus only serves the compactness of the 
representation and does not represent the training 
course. 

The preparation for training an artificial neural 
network includes choosing several hyperparameters. 
Calculation of optimal parameters is not readily 

possible due to the highly interactive coupling and the 
influence of the randomness that the agent requires 
for its exploration in training. Training an artificial 
neural network also means to adjust these parameters. 
The finally used values for the most important 
hyperparameters are shown in table 1.  

Table 1: Most important used Hyperparameters. 

Learning rate 0.0001
Number of neurons in first hidden layer 100

Number of neurons in second hidden layer 20
Variation standard deviation 2

Variation standard deviation decay 0.9999
Minimal variation 0.1

Reward decay 0.9
 

The importance of the learning rate ߙ is 
mentioned in chapter 3.1.3. The architecture contains 
of two hidden layers with different number of 
neurons. The variation ensures the exploration of the 
agent needed for Reinforcement Learning and is 
carried out by a Gaussian distribution with the 
standard deviation of 2. The resulting value is then 
added to the calculated output of the network to get 
different responses than expected. Moreover, the 
standard deviation of the variation is decreased over 
the subsequent iteration steps of the training by its 
decay. By doing this the agent is guaranteed to follow 
his policy getting better throughout training period. 
The standard deviation is multiplied with the decay in 
every iteration step until getting to its minimum. The 
Reward decay ߛோ is used in equation (14) to lower the 
influence of subsequent iteration steps compared to 
the current iteration step. 

The following presented results required 173 
different training sessions while adjusting the 
hyperparameters, the structure of the artificial neural 
network and optimization algorithm. The session 
leading to the final neural controller took about 20 
million iteration steps and about 37 hours of 
simulation time. 

7 VALIDATION 

Five different driving maneuvers are used to validate 
the results. These consist of the training maneuvers 
with varied radii, pylon distances and speeds and are 
extended by the double lane change (ISO 3888-1). By 
adding further driving maneuvers and varying the 
traditional maneuvers, the interpolation and 
extrapolability of the developed controller can be 
evaluated. As a comparison, the passive roll stabilizer 
is used. To assess the roll behaviour, the roll angle 
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curve is compared in each case. For each maneuver 
one case is selected to show its effect. 

To validate the straight-ahead driving, this is 
carried out at a speed of ݒ ൌ 50 km/h. 

 

Figure 9: Straight-ahead driving at ݒ ൌ 50 km/h. 

Figure 9 shows the roll angle for both the passive 
stabilizer and the developed neural controller. Since 
the vehicle has no lateral acceleration in a 
straight-ahead drive without environmental 
influences, the roll angle is constant ߮ ൌ 0 ° in the 
case of a passive stabilizer. The deviance at the 
beginning is neglectable and results from the 
initialization of the vehicle with the simulation 
environment. The developed neural controller shows 
a similar behaviour. 

For the stationary circuit (ISO 4138) the case with 
ݒ ൌ 50 km/h and ݎ ൌ 40 m is used. 

 

Figure 10: Stationary circuit at ݒ ൌ 50 km/h and 
ݎ  ൌ 40m. 

The roll angle curve of the neural controller in 
figure 10 works differently for negative and positive 
lateral accelerations. Negative lateral accelerations 
and roll angles are reduced more. A possible 
explanation for this may be the random distribution 
of the training maneuvers. In the test manager of IPG 

CarMaker, driving maneuvers can be inserted, 
duplicated as often as desired and then mixed. There 
was a significantly higher number of the training 
maneuvers for the training than was possible during 
the training period. As a result, there is a possibility 
that the mixture during training has significantly more 
right-handed than left-handed curves, which can lead 
to the observed differential behaviour. With the 
neural controller, the roll angle in the left-handed 
curve can be reduced from ߮௣௔௦௦௜௩௘ ൌ 4 ° to ߮௡௖ ൌ
1.47 °, resulting in a 63.25% reduction. In the 
right-handed curve, a roll angle of ߮௡௖ ൌ 0.28 ° and 
thus a 93% reduction is achieved. 

The validation is shown exemplary at ݒ ൌ
50 km/h and a pylon distance of ݀௉ ൌ 18 m. 
 

 

Figure 11: Slalom at ݒ ൌ 50 km/h and ݀௉ ൌ 18 m. 

The result of the slalom ride reflects the previous 
findings. The different control behaviour for negative 
and positive lateral accelerations can be seen. Since 
there are no irregularities in the six different slalom 
runs with different speeds and pylon distances, it can 
be concluded that the control behaviour of the neural 
controller for slalom driving is extra- and 
interpolatable. 

 

 

Figure 12: Double lane change at ݒ ൌ 60 km/h. 
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The double lane change (ISO 3888-1) is a pure 
validation maneuver and thus evokes a driving 
dynamic that was not explicitly trained by the agent. 
However, this driving dynamic is comparable to that 
of a slalom, so that similar results can be expected. It 
is validated exemplary at ݒ ൌ 60 km/h. 

As expected, the control behaviour of the neural 
controller is very similar to that of slalom driving. It 
shows that the control behaviour can also be 
extrapolated to other maneuvers and driving 
situations. 

8 CONCLUSIONS 

In the context of this work an active roll control with 
an artificial neural network based on an actor-critic 
reinforcement learning method has been successfully 
realized. The neural controller was realized with the 
TensorFlow libraries in a Python script and combined 
with the simulation model of the entire vehicle and 
the active roll stabilization contained therein via a 
TCP/IP interface. 

A guaranteed calculation of the torque to be set in 
a fixed time interval and a time limit of the waiting 
time of the TCP/IP interface created a real-time 
control. If, in the defined waiting time, the actuator 
does not receive any action from the neural network, 
the torque is set from the previous time step. The 
developed neural controller is able, at any time, to 
stably reduce the roll angle caused by the centrifugal 
force of the vehicle body by means of an actuator. The 
functionality of the controller is thus given. 

The results show that the developed controller 
produces a rather uneven roll behaviour for both 
directions of the steering angle in comparison to 
established, conventional controllers. However, it has 
been proven that roll stabilization by artificial neural 
networks is possible and that the developed model is 
able to replace conventional controllers. If the 
knowledge gained in this work continues to be 
applied to the model and extended with small and 
precise optimizations, a neural controller with 
symmetric behaviour can be trained for lateral 
acceleration in both directions. Since the field of 
machine learning works with very complex contexts 
and is strongly randomized, this is a matter of time. 
Basically, in 100 training runs with identical 
hyperparameters, 100 different results can be 
achieved, the extent of which is far from expedient. 
Nonetheless, it has been shown that the neural 
network used can provide a controller with tolerable 
results. A fixed reproducibility of this result is not 
given by the immense influence of randomness, but 

due to the stochastics also better results are possible. 
Due to its structure, the agent is able to adjust its 
weights so that, for positive lateral accelerations, an 
at least equal reduction of the roll angle is achieved, 
as for negative transverse accelerations. 

Further works will investigate the influence and 
possible improvements by applying a regularization 
on the weight adjustment to ensure the minimal 
optimal weights and symmetric behaviour for 
positive and negative lateral accelerations. 
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