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Abstract: A manufacture of electronic components involves the quality management, but still characteristics of 

components from different batches may vary. For many highly precise and reliable applications, such as 

aerospace or military systems, it is necessary to identify and use components from the same batch. This 

problem is usually stated as a clustering problem or as a k-centroids allocation problem. The k-centroids 

problem is a generalization of the Fermat–Weber location problem, which is known to be NP-hard. Genetic 

algorithms have proved their efficiency in solving many hard optimization problems. Genetic algorithms are 

also used in clustering algorithms for defining initial points of centroids for location-allocation clustering 

algorithms. At the same time, standard genetic algorithms demonstrates low performance in solving real-

world clustering problems, and, as a result, different heuristic-based modifications have been proposed. In 

this study, we will synthesize a new selection heuristic for a genetic algorithm, which is used for solving the 

clustering problem of identifying batches of electronic components. We will use a genetic programming based 

hyperheuristic for creating a selection operator represented by a probability distribution. The results of solving 

two real-world batch identification problems of microchip manufactures for aerospace applications are 

presented and are compared with base-line approaches and some previously obtained results. 

1 INTRODUCTION 

Modern aerospace on-board equipment and control 

systems contain electronic components (ECs) of high 

accuracy and reliability requirements. A manufacture 

of such ECs involves the quality management. At the 

same time, an EC base may combine units from 

different suppliers or units produced in different 

periods of time. Such ECs from different production 

batches can be inhomogeneous because of different 

raw source materials or deviations in manufacturing 

processes. As result, some characteristics of ECs from 

different batches may vary, even the characteristics 

are in a feasible domain. Many manufactures perform 

incoming quality control, additional rejection tests 

and destructive physical analysis of ECs, and, finally, 

identify and use ECs from the same batch. 

The problem of identifying batches of ECs is an 

unsupervised learning problem and it can be stated as 

a clustering problem. For continues clustering 

problems, Minimum Sum of Squares Clustering 
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(MSSC) or k-means method is usually applied. The 

main feature of the problem of identifying batches of 

ECs is that variations in measured characteristics are 

too small and are limited by accuracy of 

measurements. Thus, we have to deal with discrete 

values, for which the discretization step is defined by 

the measuring device. For discrete clustering 

problems, k-median (k-medoids) method can be 

applied. K-means and k-medians are very similar 

methods and have the same advantages and 

disadvantages. Both methods are sensitive to initial 

positions of cluster centers. Random choosing of 

initial centers can converge to an incorrect grouping 

of objects, even for easy clustering problems. Many 

different techniques for initializing initial centers 

have been proposed. One of the most popular and 

efficient approaches is evolutionary (EAs) and 

genetic (GAs) algorithms for continuous and discrete 

problems respectively. 

The k-centroid problem is a generalization of the 

Fermat-Weber location problem, which is known to 
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be NP-hard. GAs have proved their efficiency in 

solving many hard optimization problems. They also 

can be applied in solving clustering problems. At the 

same time, standard GAs demonstrate low 

performance in solving real-world clustering 

problems. There have been proposed many heuristics 

for modifying GAs. In (Bandyopadhyay and Maulik, 

2002) a new general-purpose heuristic and in 

(Kazakovtsev and Antamoshkin, 2014) a greedy 

heuristic for improving the GA performance in 

solving EC batches identification problem have been 

proposed. 

The most recent studies in the field of EAs 

propose new approaches for automated designing and 

fine-tuning of search metaheuristics, which are called 

hyperheuristics (HHs). Genetic programming (GP) 

has been proposed as a method for automatically 

generating computer programs. Today GP is used in 

the field of machine learning for a wide range of 

applications. GP can be also applied as a 

hyperheuristic for generating search heuristics and 

metaheuristics (so-called GPHH) (Burke et al., 2013). 

A selection operator is an important component of 

any evolutionary or genetic algorithm. The selection 

operator is intended to improve the average fitness of 

a population by giving individuals with better fitness 

a higher probability to be copied into the next 

generation. The traditional selection operators are 

inspired by nature and use straightforward and simple 

ways for calculating the probability of being selected. 

In this study will use GPHH to synthesize a new 

problem-specific selection operation for the GA 

applied in solving the problem of identifying batches 

of ECs. 

The rest of the paper is organized as follows. 

Section 2 describes related work. Section 3 describes 

the proposed approach. In Section 4, the results of 

numerical experiments are discussed. In the 

Conclusion the results and further research are 

discussed. 

2 RELATED WORK 

Cluster analysis (or clustering) is a main task of 

exploratory statistical data analysis and unsupervised 

machine learning applied for many real-world 

problems (Xu and Tian, 2015).  

Many applied clustering problems can be reduced 

to the problem stated in the location theory. In the 

location theory, an analyzed object is assigned to a 

cluster by assigning it to the closest center of clusters 

(centroid). If the distance is calculated using 

Euclidean or another metric, the problem is called the 

k-median problem. If the squared Euclidean distance 

is used, it is called the k-means problem. Finally, if 

centers of clusters are selected from the given objects, 

this is called the k-medoid problem (Mladenovic, 

2007; Brimberg, 2008).  

In the formal way, the k-centroid problem is a 

generalization of the Fermat-Weber location problem 

(Wesolowsky, 1993; Farahani, 2009), which is an 

NP-hard optimization problem stated as in (1) 

(Megiddo and Supowit, 1984). There have been 

proposed many search heuristics for solving the 

problem. Many recent approaches are based on GAs 

(Hruschka et al., 2009). 

∑ 𝑤𝑖𝑑(𝐶𝑗, 𝑋𝑖) → min
𝐶𝑗,𝑗=1,𝑘̅̅ ̅̅

𝑆

𝑖=1

 (1) 

where 𝑋 is a set of points, 𝐶 is a set of 𝑘 centroids, 𝑤 

is weight coefficients and 𝑑(∗) is a distance measure. 

 

The problem of identifying batches of ECs is the 

particular problem that arises in not general-purpose 

manufactures, such as manufacture of aerospace on-

board and control systems. Data collected for 

analyzing ECs are usually unique and they need a 

specific clustering algorithm that can deal with 

features of the data. At the same time, the data are 

complex for comprehensive analysis, thus applying 

GAs that can optimize “black-box” models is more 

preferable. 

EAs and GAs are metaheuristics based on a 

combination of simple basic heuristics, including 

selection, recombination, mutation, cloning and 

others. The performance of a EA depends on the 

correct choice of heuristics and on fine-tuning 

corresponding parameters (Eiben et al., 2007). In 

(Kazakovtsev et al., 2016) new GAs have been 

proposed for solving the given problem of identifying 

batches of ECs, which apply greedy heuristics for 

better convergence in the multimodal search space. 

Hyperheuristic approaches perform a search over 

the space of heuristics or metaheuristics when solving 

optimization problems. In a HH approach, different 

heuristics or heuristic components can be selected, 

generated or combined to solve a given problem in an 

efficient way. There exist many HHs for optimization 

problems, and the best results for today are achieved 

with HHs based on GP (Burke et al., 2009). The 

application of GP as a HH is a rather new direction in 

the field of automated algorithm design. GP builds 

candidate solutions to the problem from a set of 

primitives, which are represented by single operators, 

functions or whole heuristics and metaheuristics. One 

of the main advantages of GP is that it simultaneously 
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provides the structural synthesis of a solution and the 

tuning of its parameters. The solution can be a 

human-readable symbolic expression (a formula) or a 

computational algorithm (an executable computer 

program). 

A selection operator is an important component of 

any EA or GA (Blickle and Thiele, 1996). From the 

point of view of search optimization, selection 

focuses the search process on promising regions in 

the search space, while recombination performs a 

random search within previously explored regions, 

and mutation discovers new points in the search 

space. Any selection operator can be viewed as a 

probability distribution that assigns the chance of 

being chosen for further operations to every 

individual in a population. Thus, selection can be 

defined as a mapping (of a function) to the [0, 1] 

interval. The domain of the mapping function 

comprises ranks for the ranking, tournament and 

truncation selection schemes, and comprises fitness 

values for the proportional selection. In this study, we 

will focus on the automated design of a selection 

operator using a GP-based HH. 

3 PROPOSED APPROACH 

Any clustering problem can be solved using a 

Location-Allocation algorithm. One of the most 

popular and well-studied approaches is Alternating 

Location-Allocation (ALA) algorithm. The general 

ALA scheme is presented below. 

𝑋 = {𝑋1, … , 𝑋𝑆}  is a training set, where 𝑋𝑖 =
{𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑛}, 𝑖 = 1, 𝑆̅̅ ̅̅̅ is an object to be classified. 

𝐶𝑡 = {𝑐1
𝑡 , … , 𝑐𝑘

𝑡 }  is a set of initial positions for  

centers of clusters 𝑐𝑗
𝑡 = {𝑐𝑗1

𝑡 , … , 𝑐𝑗𝑛
𝑡 }, 𝑗 = 1, 𝑘̅̅ ̅̅̅  and 𝑘 

is the number of clusters. 

ALA-algorithm: 

1. For ∀𝑋𝑖 , 𝑖 = 1, 𝑆̅̅ ̅̅̅  find the closest center 

𝑐𝑖
𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = arg min

𝑗=1,𝑘̅̅ ̅̅
‖𝑋𝑖 − 𝑐𝑗

𝑡‖ 

2. Find new centers 𝐶𝑡+1  for all clusters 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1 = {𝑖 ∈ {1, 𝑁̅̅ ̅̅ ̅}|𝑐𝑖

𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑗}, 

𝑗 = 1, 𝑘̅̅ ̅̅̅. 

For the squared Euclidian metric ( 𝑙2
2 ), new 

centers are calculated using the following 

formula (2): 

𝑐𝑗𝑙
𝑡+1 =

∑ 𝑤𝑖𝑥𝑖𝑙𝑖∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1

∑ 𝑤𝑖𝑖∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1

, 

𝑙 = 1, 𝑛̅̅ ̅̅̅, 𝑗 = 1, 𝑘̅̅ ̅̅̅ 

(2) 

 

where 𝑤𝑖 = 1, ∀𝑖, if there is no preferences for 

classified objects. 

3. If ∃(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1 ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

𝑡), 𝑗 = 1, 𝑘̅̅ ̅̅̅ , then 

set t=t+1 and go to step 1, else go to step 4. 

4. 𝐶∗ = 𝐶𝑡+1, 𝐶∗ = {𝑐1
∗, … , 𝑐𝑘

∗}  are centres of 𝑘 

clusters. 

 

We will use the standard binary GA for searching 

initial positions for applying the ALA algorithm. We 

have chosen the binary GA because of predefined 

domains and discrete values of objective variables in 

the given clustering problem. 

The following general scheme for our GA is used: 

1. Setup GA’s parameters: population size, 
crossover type and probability, mutation 
probability. Selection operator is defined by 
the current solution from GPHH. 
𝑖𝑛𝑑𝑖

𝑔𝑎
, 𝑖 = 1, 𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the binary 

representation of a candidate-solution that 

contains initial positions of centers for applying 

the ALA algorithm. 

2. Randomly initialize a population. 

3. Evaluate fitness using formula (3): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴(𝑖𝑛𝑑𝑖
𝐺𝐴) = 

= ∑ min
𝐶∈𝐶∗

‖𝑋𝑖 − 𝐶‖

𝑆

𝑖=1

, 

 𝑖 = 1, 𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(3) 

where 𝐶∗  is the result of applying the ALA 

algorithm. The fitness value is minimized. 

4. Apply selection, crossover and mutation and 

create new population. 

5. If a stop condition is satisfied, then STOP, else 

go to step 3. 

 

In this study, we will use the following conception 

of applying GP for designing selection operators, 

proposed in (Sopov, 2017). We will use the GP 

algorithm as a meta-procedure for solving a symbolic 

regression problem, in which tree solutions represent 

probability distributions. A raw solution is 

normalized, and after that is executed as a selection 

operator in the GA.  

Each tree solution in the GP is a function with 

arbitrary codomain (denoted as 𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖), where 

𝑟𝑎𝑛𝑘𝑖  is a rank of the 𝑖-th individual after ranking). 

We need to provide some transformation of the 

function for applying it as a selection operator 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) (4)-(5). We will bound the domain 

with rank values and will apply normalization.  
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𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) = 

=
𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖)−𝑓𝑢𝑛𝑐𝑚𝑖𝑛+∆

∑ (𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖)−𝑓𝑢𝑛𝑐𝑚𝑖𝑛+∆))
𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒
𝑖=1

, (4) 

𝑓𝑢𝑛𝑐𝑚𝑖𝑛 = 
= min

𝑟𝑎𝑛𝑘𝑖∈[1,𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒]
𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖),  

∆∈ 𝑅1|𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) > 0,  

∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) = 1

𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒

𝑟𝑎𝑛𝑘𝑖=1

 (5) 

A GA is a stochastic search procedure, thus it is 

necessary to evaluate the average results of solving an 

optimization problem for estimating the performance 

of the GA. The GA performance is used for assigning 

the fitness value to the GP solution that represents a 

selection operator applied in the GA. We will use the 

following formula (6): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝑃(𝑖𝑛𝑑𝑖
𝐺𝑃) = 

=
1

𝑅
∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴(𝑖𝑛𝑑𝑏𝑒𝑠𝑡_𝑓𝑜𝑢𝑛𝑑,𝑟

𝐺𝐴 )

𝑅

𝑟=1

 
(6) 

where 𝑅 is the number of independent runs of the GA 

that uses the selection operator represented by 𝑖𝑛𝑑𝑖
𝐺𝑃, 

𝑖𝑛𝑑𝑏𝑒𝑠𝑡_𝑓𝑜𝑢𝑛𝑑,𝑟
𝐺𝐴  is the best found solution in the 𝑟-th 

run. 

4 EXPERIMENTAL SETUPS AND 

RESULTS 

4.1 EC Batches Identification Problem 

We will apply the proposed approach for solving two 

real-world problems of batch identification for 

140UD25AS1V and 1526IE10 integrated circuits 

(ICs) applied in Russian aerospace manufactures. 

In the general case, for weakly investigated data, 

there is no information about the number of clusters. 

In our study, the problems are stated as clustering 

problems with the known number of clusters. 

The 140UD25AS1V dataset contains 56 EC units 

from 3 batches. Each unit is described by 42 

measured parameters.  

The dendrogram using the centroid metric for the 

140UD25AS1V dataset is presented in Figure 1, 

where the bottom axis contains objects from the 

dataset and the vertical axis corresponds to the 

linkage distance. As we can see, the data have a 

structure and can be divided into several groups.  

 

Figure 1: Hierarchical clustering for 140UD25AS1V. 

The 1526IE10 dataset contains 3987 EC units 

from 7 batches. Each unit is described by 202 

parameters. The dendrogram for the data is presented 

in Figure 2. 

 

Figure 2: Hierarchical clustering for 1526IE10. 

The given datasets also contain information on 

batches, and we can solve the problem of identifying 

batches of ECs using a classification approach. 

Unfortunately, such information on batches is not 

always presented, thus the problem becomes 

unsupervised. In the study, we will remove any 

information on batches when solving the clustering 

problem, but we will use this information for 

calculating error of grouping ECs. 

4.2 Experimental Setups 

All algorithms have been implemented using Python 

language in the Spyder IDE. GP and GA realizations 

are based on DEAP framework (Fortin et al., 2012). 

The ALA algorithm is realized using Sklearn.cluster 

framework (Pedregosa et al., 2011.). 

The numerical experiments have been performed 

on Intel i7-4790 3.60GHz CPU using parallel 

computations. 

Settings for algorithms used in the experiments 

are presented in Table 1 and 2. 
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4.3 Experimental Results 

The experimental results of 40 independent runs of 

the GP are presented in Table 3. Figures 3 and 4 

demonstrate variations of the best-found fitness in the 

runs. 

We have also compared the GP-based results with 

the results of applying the standard GA with the linear 

rank selection and with the k-median ALA algorithm 

with random initialization. 

Table 1: The GP algorithm settings. 

Parameter Value 

Population size 50 

The grow method Full 

Max depth of trees 6 

The functional set and 

probabilities for 

initializing functional 

nodes 

{(+, 0.5), (−, 0.2), 
(∗, 0.1), (÷ ,0.1), 

(𝑠𝑖𝑛, 0.05), (𝑒𝑥𝑝, 0.05)} 

The terminal set 

{(𝑟𝑎𝑛𝑘𝑖 , 0.5), 
(𝐶𝑜𝑛𝑠𝑡, 0.3), 
(𝐴𝑑𝑓1,0.1), 

(𝐴𝑑𝑓2,0.1)}; 

Constants initialization 
random uniform 

distribution in [0,1] 

𝐴𝑑𝑓1 

the linear ranking 
2 ∙ 𝑖

(𝑁𝐺𝐴 + 1) ∙ 𝑁𝐺𝐴

 

𝐴𝑑𝑓2 

the exponential ranking 

with 𝑐 = 0.8 

(1 − 𝑐) ∙ 𝑐𝑁𝐺𝐴−𝑖

(1 − 𝑐𝑁𝐺𝐴)
 

Crossover 
one-point with probability 

equal to 0.95; 

Mutation 
one-point with probability 

equal to 0.01; 

Maximum number of 

generations 
1000 

Number of independent 

runs 
40 

 

We have also applied the Wilcoxon-Mann-

Whitney test with the significance level equal to 0.05 

for checking if there statistically significant 

difference in the results. The test have proved that the 

GP-based approach outperform the standard GA and 

the ALA with random initialization. 

 

 

Table 2: The GA algorithm settings. 

Parameter Value 

Population size 100 

Encoding accuracy 

for each objective 

variable is defined by 

values of the variable 

Initialization 
random in the binary 

search space 

Crossover 

two-parent random 

uniform with probability 

equal to 1.00 

Mutation 

bits inversion with 

probability equal to 
1

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

Selection. based on GP solutions 

Maximum number of 

generations 
50 

Number of independent 

runs 
40 

Table 3: The results for the clustering problem. 

GP-based 

 140UD25AS1V 1526IE10 

best 6758.66 3050.7 

median 8088.69 4872.59 

worst 9852.17 7211.01 

mean 8064.35 4937.55 

sd 588.57 920.53 

Classification 

error 
7.14% 11.21% 

Standard GA 

 140UD25AS1V 1526IE10 

best 7968.78 3872.28 

median 9467.09 5826.83 

worst 13947.65 9051.11 

mean 9624.56 5935.89 

sd 1171.29 1221.75 

Classification 

error 
16.30% 22.73% 

ALA with random initialization 

 140UD25AS1V 1526IE10 

best 13534.32 7349.74 

median 21587.31 11980.54 

worst 14891.72 10522.45 

mean 15048.25 10488.22 

sd 1318.86 766.26 

best 13534.32 7349.74 

Classification 

error 
25.19% 43.97% 
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Figure 3: Variation diagram for the 140UD25AS1V 

problem. 

 

Figure 4: Variation diagram for the 1526IE10 problem. 

The fitness convergence diagram for the best run 

of the GP algorithm solving the 140UD25AS1V 

problem is presented in Figure 5. The dashed (red) 

line corresponds to the best-found solution and the 

solid (blue) line corresponds to the average of 

population. 

 

Figure 5: GP fitness convergence for 140UD25AS1V. 

The expression of the best-found solution in the 

best run for the 140UD25AS1V problem and its 

graph are presented in (7) and Figure 6 respectively. 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) = 

= 1.59 ∙ 10−4 ∙ 𝑟𝑎𝑛𝑘𝑖 +
(𝑟𝑎𝑛𝑘𝑖 − 30.5)6

6.28 ∙ 1012
 

(7) 

 

 

Figure 6: The graph of the best-found selection operator for 

140UD25AS1V. 

The fitness of the best-found solution for 

140UD25AS1V problem is 6758.66. It improves the 

previously found solution (7291.67) in (Kazakovtsev 

et al, 2016a) by 7.3%. 

The fitness convergence diagram for the best run 

of the GP algorithm solving the 1526IE10 problem is 

presented in Figure 7. 

 

 

Figure 7: GP fitness convergence for 1526IE10. 

The expression of the best-found solution in the 

best run for the 1526IE10 problem and its graph are 

presented in (8) and Figure 8 respectively. 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) = 

=
sin(0.085 ∙ (𝑟𝑎𝑛𝑘𝑖 − 10))

252.53
+ 

+
(𝑟𝑎𝑛𝑘𝑖 − 15)2

2.1 ∙ 105
 

(8) 
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Figure 8: The graph of the best-found selection operator for 

1526IE10. 

The fitness of the best-found solution for 

1526IE10 problem is 3050.70. It also improves the 

previously found solution (3440.1) in (Kazakovtsev 

et al., 2018) by 11.3%. 

As we can see from the results, the proposed 

approach is able to synthesize new selection 

heuristics for solving problems. The proposed 

solutions outperform some base-line and previously 

obtained results. 

5 CONCLUSIONS 

In this study, we have proposed a genetic 

programming based approach, which is used for the 

automated synthesis of clustering algorithm for a real-

world problem of identifying batches of electronic 

components. The clustering problem is reduced to the 

Fermat-Weber location problem, which is NP-hard 

optimization problem. The proposed clustering 

algorithm combines a GA for searching global-

optimal initial positions of centroids and an ALA 

algorithm for performing local search of positions and 

final clustering. The GP algorithm is used as a 

hyperheuristic for creating a problem-specific 

(dataset-specific) selection heuristic, which provides 

the optimal (or suboptimal) performance of the GA 

algorithm for the given clustering problem. 

Our numerical experiments have shown that the 

proposed approach is able to deal with real-world 

problems of identifying batches of 140UD25AS1V 

and 1526IE10 ICs and provides high accuracy of 

assigning ECs to correct clusters. Moreover, the 

synthesized algorithms provide statistically 

significant better performance than some general-

purpose algorithms do. The results obtained in the 

paper also outperform the results previously obtained 

by other authors. 

In our further works, we will try to apply the 

approach to the problem of the automated synthesis 

of other genetic operators such as crossover and 

mutation. In addition, we will use a selective 

hyperheuristic for automated choosing of the best-fit 

to the problem ALA algorithm. 
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