
Genetic Programming based Synthesis of Clustering Algorithm for

Identifying Batches of Electronic Components

Evgenii Sopov a and Ilia Panfilov b
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia

Keywords: Hyperheuristics, Genetic Programming, Genetic Algorithm, Clustering, Electronic Component Analysis.

Abstract: A manufacture of electronic components involves the quality management, but still characteristics of

components from different batches may vary. For many highly precise and reliable applications, such as

aerospace or military systems, it is necessary to identify and use components from the same batch. This

problem is usually stated as a clustering problem or as a k-centroids allocation problem. The k-centroids

problem is a generalization of the Fermat–Weber location problem, which is known to be NP-hard. Genetic

algorithms have proved their efficiency in solving many hard optimization problems. Genetic algorithms are

also used in clustering algorithms for defining initial points of centroids for location-allocation clustering

algorithms. At the same time, standard genetic algorithms demonstrates low performance in solving real-

world clustering problems, and, as a result, different heuristic-based modifications have been proposed. In

this study, we will synthesize a new selection heuristic for a genetic algorithm, which is used for solving the

clustering problem of identifying batches of electronic components. We will use a genetic programming based

hyperheuristic for creating a selection operator represented by a probability distribution. The results of solving

two real-world batch identification problems of microchip manufactures for aerospace applications are

presented and are compared with base-line approaches and some previously obtained results.

1 INTRODUCTION

Modern aerospace on-board equipment and control

systems contain electronic components (ECs) of high

accuracy and reliability requirements. A manufacture

of such ECs involves the quality management. At the

same time, an EC base may combine units from

different suppliers or units produced in different

periods of time. Such ECs from different production

batches can be inhomogeneous because of different

raw source materials or deviations in manufacturing

processes. As result, some characteristics of ECs from

different batches may vary, even the characteristics

are in a feasible domain. Many manufactures perform

incoming quality control, additional rejection tests

and destructive physical analysis of ECs, and, finally,

identify and use ECs from the same batch.

The problem of identifying batches of ECs is an

unsupervised learning problem and it can be stated as

a clustering problem. For continues clustering

problems, Minimum Sum of Squares Clustering

a https://orcid.org/0000-0003-4410-7996
b https://orcid.org/0000-0002-6465-1748

(MSSC) or k-means method is usually applied. The

main feature of the problem of identifying batches of

ECs is that variations in measured characteristics are

too small and are limited by accuracy of

measurements. Thus, we have to deal with discrete

values, for which the discretization step is defined by

the measuring device. For discrete clustering

problems, k-median (k-medoids) method can be

applied. K-means and k-medians are very similar

methods and have the same advantages and

disadvantages. Both methods are sensitive to initial

positions of cluster centers. Random choosing of

initial centers can converge to an incorrect grouping

of objects, even for easy clustering problems. Many

different techniques for initializing initial centers

have been proposed. One of the most popular and

efficient approaches is evolutionary (EAs) and

genetic (GAs) algorithms for continuous and discrete

problems respectively.

The k-centroid problem is a generalization of the

Fermat-Weber location problem, which is known to

202
Sopov, E. and Panfilov, I.
Genetic Programming based Synthesis of Clustering Algorithm for Identifying Batches of Electronic Components.
DOI: 10.5220/0007810702020209
In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), pages 202-209
ISBN: 978-989-758-380-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

be NP-hard. GAs have proved their efficiency in

solving many hard optimization problems. They also

can be applied in solving clustering problems. At the

same time, standard GAs demonstrate low

performance in solving real-world clustering

problems. There have been proposed many heuristics

for modifying GAs. In (Bandyopadhyay and Maulik,

2002) a new general-purpose heuristic and in

(Kazakovtsev and Antamoshkin, 2014) a greedy

heuristic for improving the GA performance in

solving EC batches identification problem have been

proposed.

The most recent studies in the field of EAs

propose new approaches for automated designing and

fine-tuning of search metaheuristics, which are called

hyperheuristics (HHs). Genetic programming (GP)

has been proposed as a method for automatically

generating computer programs. Today GP is used in

the field of machine learning for a wide range of

applications. GP can be also applied as a

hyperheuristic for generating search heuristics and

metaheuristics (so-called GPHH) (Burke et al., 2013).

A selection operator is an important component of

any evolutionary or genetic algorithm. The selection

operator is intended to improve the average fitness of

a population by giving individuals with better fitness

a higher probability to be copied into the next

generation. The traditional selection operators are

inspired by nature and use straightforward and simple

ways for calculating the probability of being selected.

In this study will use GPHH to synthesize a new

problem-specific selection operation for the GA

applied in solving the problem of identifying batches

of ECs.

The rest of the paper is organized as follows.

Section 2 describes related work. Section 3 describes

the proposed approach. In Section 4, the results of

numerical experiments are discussed. In the

Conclusion the results and further research are

discussed.

2 RELATED WORK

Cluster analysis (or clustering) is a main task of

exploratory statistical data analysis and unsupervised

machine learning applied for many real-world

problems (Xu and Tian, 2015).

Many applied clustering problems can be reduced

to the problem stated in the location theory. In the

location theory, an analyzed object is assigned to a

cluster by assigning it to the closest center of clusters

(centroid). If the distance is calculated using

Euclidean or another metric, the problem is called the

k-median problem. If the squared Euclidean distance

is used, it is called the k-means problem. Finally, if

centers of clusters are selected from the given objects,

this is called the k-medoid problem (Mladenovic,

2007; Brimberg, 2008).

In the formal way, the k-centroid problem is a

generalization of the Fermat-Weber location problem

(Wesolowsky, 1993; Farahani, 2009), which is an

NP-hard optimization problem stated as in (1)

(Megiddo and Supowit, 1984). There have been

proposed many search heuristics for solving the

problem. Many recent approaches are based on GAs

(Hruschka et al., 2009).

∑ 𝑤𝑖𝑑(𝐶𝑗, 𝑋𝑖) → min
𝐶𝑗,𝑗=1,𝑘̅̅ ̅̅

𝑆

𝑖=1

 (1)

where 𝑋 is a set of points, 𝐶 is a set of 𝑘 centroids, 𝑤

is weight coefficients and 𝑑(∗) is a distance measure.

The problem of identifying batches of ECs is the

particular problem that arises in not general-purpose

manufactures, such as manufacture of aerospace on-

board and control systems. Data collected for

analyzing ECs are usually unique and they need a

specific clustering algorithm that can deal with

features of the data. At the same time, the data are

complex for comprehensive analysis, thus applying

GAs that can optimize “black-box” models is more

preferable.

EAs and GAs are metaheuristics based on a

combination of simple basic heuristics, including

selection, recombination, mutation, cloning and

others. The performance of a EA depends on the

correct choice of heuristics and on fine-tuning

corresponding parameters (Eiben et al., 2007). In

(Kazakovtsev et al., 2016) new GAs have been

proposed for solving the given problem of identifying

batches of ECs, which apply greedy heuristics for

better convergence in the multimodal search space.

Hyperheuristic approaches perform a search over

the space of heuristics or metaheuristics when solving

optimization problems. In a HH approach, different

heuristics or heuristic components can be selected,

generated or combined to solve a given problem in an

efficient way. There exist many HHs for optimization

problems, and the best results for today are achieved

with HHs based on GP (Burke et al., 2009). The

application of GP as a HH is a rather new direction in

the field of automated algorithm design. GP builds

candidate solutions to the problem from a set of

primitives, which are represented by single operators,

functions or whole heuristics and metaheuristics. One

of the main advantages of GP is that it simultaneously

Genetic Programming based Synthesis of Clustering Algorithm for Identifying Batches of Electronic Components

203

provides the structural synthesis of a solution and the

tuning of its parameters. The solution can be a

human-readable symbolic expression (a formula) or a

computational algorithm (an executable computer

program).

A selection operator is an important component of

any EA or GA (Blickle and Thiele, 1996). From the

point of view of search optimization, selection

focuses the search process on promising regions in

the search space, while recombination performs a

random search within previously explored regions,

and mutation discovers new points in the search

space. Any selection operator can be viewed as a

probability distribution that assigns the chance of

being chosen for further operations to every

individual in a population. Thus, selection can be

defined as a mapping (of a function) to the [0, 1]

interval. The domain of the mapping function

comprises ranks for the ranking, tournament and

truncation selection schemes, and comprises fitness

values for the proportional selection. In this study, we

will focus on the automated design of a selection

operator using a GP-based HH.

3 PROPOSED APPROACH

Any clustering problem can be solved using a

Location-Allocation algorithm. One of the most

popular and well-studied approaches is Alternating

Location-Allocation (ALA) algorithm. The general

ALA scheme is presented below.

𝑋 = {𝑋1, … , 𝑋𝑆} is a training set, where 𝑋𝑖 =
{𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑛}, 𝑖 = 1, 𝑆̅̅ ̅̅̅ is an object to be classified.

𝐶𝑡 = {𝑐1
𝑡 , … , 𝑐𝑘

𝑡 } is a set of initial positions for

centers of clusters 𝑐𝑗
𝑡 = {𝑐𝑗1

𝑡 , … , 𝑐𝑗𝑛
𝑡 }, 𝑗 = 1, 𝑘̅̅ ̅̅̅ and 𝑘

is the number of clusters.

ALA-algorithm:

1. For ∀𝑋𝑖 , 𝑖 = 1, 𝑆̅̅ ̅̅̅ find the closest center

𝑐𝑖
𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = arg min

𝑗=1,𝑘̅̅ ̅̅
‖𝑋𝑖 − 𝑐𝑗

𝑡‖

2. Find new centers 𝐶𝑡+1 for all clusters

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1 = {𝑖 ∈ {1, 𝑁̅̅ ̅̅ ̅}|𝑐𝑖

𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑗},

𝑗 = 1, 𝑘̅̅ ̅̅̅.

For the squared Euclidian metric (𝑙2
2), new

centers are calculated using the following

formula (2):

𝑐𝑗𝑙
𝑡+1 =

∑ 𝑤𝑖𝑥𝑖𝑙𝑖∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1

∑ 𝑤𝑖𝑖∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1

,

𝑙 = 1, 𝑛̅̅ ̅̅̅, 𝑗 = 1, 𝑘̅̅ ̅̅̅

(2)

where 𝑤𝑖 = 1, ∀𝑖, if there is no preferences for

classified objects.

3. If ∃(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
𝑡+1 ≠ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗

𝑡), 𝑗 = 1, 𝑘̅̅ ̅̅̅ , then

set t=t+1 and go to step 1, else go to step 4.

4. 𝐶∗ = 𝐶𝑡+1, 𝐶∗ = {𝑐1
∗, … , 𝑐𝑘

∗} are centres of 𝑘

clusters.

We will use the standard binary GA for searching

initial positions for applying the ALA algorithm. We

have chosen the binary GA because of predefined

domains and discrete values of objective variables in

the given clustering problem.

The following general scheme for our GA is used:

1. Setup GA’s parameters: population size,
crossover type and probability, mutation
probability. Selection operator is defined by
the current solution from GPHH.
𝑖𝑛𝑑𝑖

𝑔𝑎
, 𝑖 = 1, 𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the binary

representation of a candidate-solution that

contains initial positions of centers for applying

the ALA algorithm.

2. Randomly initialize a population.

3. Evaluate fitness using formula (3):

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴(𝑖𝑛𝑑𝑖
𝐺𝐴) =

= ∑ min
𝐶∈𝐶∗

‖𝑋𝑖 − 𝐶‖

𝑆

𝑖=1

,

 𝑖 = 1, 𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(3)

where 𝐶∗ is the result of applying the ALA

algorithm. The fitness value is minimized.

4. Apply selection, crossover and mutation and

create new population.

5. If a stop condition is satisfied, then STOP, else

go to step 3.

In this study, we will use the following conception

of applying GP for designing selection operators,

proposed in (Sopov, 2017). We will use the GP

algorithm as a meta-procedure for solving a symbolic

regression problem, in which tree solutions represent

probability distributions. A raw solution is

normalized, and after that is executed as a selection

operator in the GA.

Each tree solution in the GP is a function with

arbitrary codomain (denoted as 𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖), where

𝑟𝑎𝑛𝑘𝑖 is a rank of the 𝑖-th individual after ranking).

We need to provide some transformation of the

function for applying it as a selection operator

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) (4)-(5). We will bound the domain

with rank values and will apply normalization.

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

204

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) =

=
𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖)−𝑓𝑢𝑛𝑐𝑚𝑖𝑛+∆

∑ (𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖)−𝑓𝑢𝑛𝑐𝑚𝑖𝑛+∆))
𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒
𝑖=1

, (4)

𝑓𝑢𝑛𝑐𝑚𝑖𝑛 =
= min

𝑟𝑎𝑛𝑘𝑖∈[1,𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒]
𝑓𝑢𝑛𝑐(𝑟𝑎𝑛𝑘𝑖),

∆∈ 𝑅1|𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) > 0,

∑ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) = 1

𝑔𝑎_𝑝𝑜𝑝_𝑠𝑖𝑧𝑒

𝑟𝑎𝑛𝑘𝑖=1

 (5)

A GA is a stochastic search procedure, thus it is

necessary to evaluate the average results of solving an

optimization problem for estimating the performance

of the GA. The GA performance is used for assigning

the fitness value to the GP solution that represents a

selection operator applied in the GA. We will use the

following formula (6):

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝑃(𝑖𝑛𝑑𝑖
𝐺𝑃) =

=
1

𝑅
∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺𝐴(𝑖𝑛𝑑𝑏𝑒𝑠𝑡_𝑓𝑜𝑢𝑛𝑑,𝑟

𝐺𝐴)

𝑅

𝑟=1

(6)

where 𝑅 is the number of independent runs of the GA

that uses the selection operator represented by 𝑖𝑛𝑑𝑖
𝐺𝑃,

𝑖𝑛𝑑𝑏𝑒𝑠𝑡_𝑓𝑜𝑢𝑛𝑑,𝑟
𝐺𝐴 is the best found solution in the 𝑟-th

run.

4 EXPERIMENTAL SETUPS AND

RESULTS

4.1 EC Batches Identification Problem

We will apply the proposed approach for solving two

real-world problems of batch identification for

140UD25AS1V and 1526IE10 integrated circuits

(ICs) applied in Russian aerospace manufactures.

In the general case, for weakly investigated data,

there is no information about the number of clusters.

In our study, the problems are stated as clustering

problems with the known number of clusters.

The 140UD25AS1V dataset contains 56 EC units

from 3 batches. Each unit is described by 42

measured parameters.

The dendrogram using the centroid metric for the

140UD25AS1V dataset is presented in Figure 1,

where the bottom axis contains objects from the

dataset and the vertical axis corresponds to the

linkage distance. As we can see, the data have a

structure and can be divided into several groups.

Figure 1: Hierarchical clustering for 140UD25AS1V.

The 1526IE10 dataset contains 3987 EC units

from 7 batches. Each unit is described by 202

parameters. The dendrogram for the data is presented

in Figure 2.

Figure 2: Hierarchical clustering for 1526IE10.

The given datasets also contain information on

batches, and we can solve the problem of identifying

batches of ECs using a classification approach.

Unfortunately, such information on batches is not

always presented, thus the problem becomes

unsupervised. In the study, we will remove any

information on batches when solving the clustering

problem, but we will use this information for

calculating error of grouping ECs.

4.2 Experimental Setups

All algorithms have been implemented using Python

language in the Spyder IDE. GP and GA realizations

are based on DEAP framework (Fortin et al., 2012).

The ALA algorithm is realized using Sklearn.cluster

framework (Pedregosa et al., 2011.).

The numerical experiments have been performed

on Intel i7-4790 3.60GHz CPU using parallel

computations.

Settings for algorithms used in the experiments

are presented in Table 1 and 2.

Genetic Programming based Synthesis of Clustering Algorithm for Identifying Batches of Electronic Components

205

4.3 Experimental Results

The experimental results of 40 independent runs of

the GP are presented in Table 3. Figures 3 and 4

demonstrate variations of the best-found fitness in the

runs.

We have also compared the GP-based results with

the results of applying the standard GA with the linear

rank selection and with the k-median ALA algorithm

with random initialization.

Table 1: The GP algorithm settings.

Parameter Value

Population size 50

The grow method Full

Max depth of trees 6

The functional set and

probabilities for

initializing functional

nodes

{(+, 0.5), (−, 0.2),
(∗, 0.1), (÷ ,0.1),

(𝑠𝑖𝑛, 0.05), (𝑒𝑥𝑝, 0.05)}

The terminal set

{(𝑟𝑎𝑛𝑘𝑖 , 0.5),
(𝐶𝑜𝑛𝑠𝑡, 0.3),
(𝐴𝑑𝑓1,0.1),

(𝐴𝑑𝑓2,0.1)};

Constants initialization
random uniform

distribution in [0,1]

𝐴𝑑𝑓1

the linear ranking
2 ∙ 𝑖

(𝑁𝐺𝐴 + 1) ∙ 𝑁𝐺𝐴

𝐴𝑑𝑓2

the exponential ranking

with 𝑐 = 0.8

(1 − 𝑐) ∙ 𝑐𝑁𝐺𝐴−𝑖

(1 − 𝑐𝑁𝐺𝐴)

Crossover
one-point with probability

equal to 0.95;

Mutation
one-point with probability

equal to 0.01;

Maximum number of

generations
1000

Number of independent

runs
40

We have also applied the Wilcoxon-Mann-

Whitney test with the significance level equal to 0.05

for checking if there statistically significant

difference in the results. The test have proved that the

GP-based approach outperform the standard GA and

the ALA with random initialization.

Table 2: The GA algorithm settings.

Parameter Value

Population size 100

Encoding accuracy

for each objective

variable is defined by

values of the variable

Initialization
random in the binary

search space

Crossover

two-parent random

uniform with probability

equal to 1.00

Mutation

bits inversion with

probability equal to
1

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

Selection. based on GP solutions

Maximum number of

generations
50

Number of independent

runs
40

Table 3: The results for the clustering problem.

GP-based

 140UD25AS1V 1526IE10

best 6758.66 3050.7

median 8088.69 4872.59

worst 9852.17 7211.01

mean 8064.35 4937.55

sd 588.57 920.53

Classification

error
7.14% 11.21%

Standard GA

 140UD25AS1V 1526IE10

best 7968.78 3872.28

median 9467.09 5826.83

worst 13947.65 9051.11

mean 9624.56 5935.89

sd 1171.29 1221.75

Classification

error
16.30% 22.73%

ALA with random initialization

 140UD25AS1V 1526IE10

best 13534.32 7349.74

median 21587.31 11980.54

worst 14891.72 10522.45

mean 15048.25 10488.22

sd 1318.86 766.26

best 13534.32 7349.74

Classification

error
25.19% 43.97%

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

206

Figure 3: Variation diagram for the 140UD25AS1V

problem.

Figure 4: Variation diagram for the 1526IE10 problem.

The fitness convergence diagram for the best run

of the GP algorithm solving the 140UD25AS1V

problem is presented in Figure 5. The dashed (red)

line corresponds to the best-found solution and the

solid (blue) line corresponds to the average of

population.

Figure 5: GP fitness convergence for 140UD25AS1V.

The expression of the best-found solution in the

best run for the 140UD25AS1V problem and its

graph are presented in (7) and Figure 6 respectively.

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) =

= 1.59 ∙ 10−4 ∙ 𝑟𝑎𝑛𝑘𝑖 +
(𝑟𝑎𝑛𝑘𝑖 − 30.5)6

6.28 ∙ 1012

(7)

Figure 6: The graph of the best-found selection operator for

140UD25AS1V.

The fitness of the best-found solution for

140UD25AS1V problem is 6758.66. It improves the

previously found solution (7291.67) in (Kazakovtsev

et al, 2016a) by 7.3%.

The fitness convergence diagram for the best run

of the GP algorithm solving the 1526IE10 problem is

presented in Figure 7.

Figure 7: GP fitness convergence for 1526IE10.

The expression of the best-found solution in the

best run for the 1526IE10 problem and its graph are

presented in (8) and Figure 8 respectively.

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖) =

=
sin(0.085 ∙ (𝑟𝑎𝑛𝑘𝑖 − 10))

252.53
+

+
(𝑟𝑎𝑛𝑘𝑖 − 15)2

2.1 ∙ 105

(8)

Genetic Programming based Synthesis of Clustering Algorithm for Identifying Batches of Electronic Components

207

Figure 8: The graph of the best-found selection operator for

1526IE10.

The fitness of the best-found solution for

1526IE10 problem is 3050.70. It also improves the

previously found solution (3440.1) in (Kazakovtsev

et al., 2018) by 11.3%.

As we can see from the results, the proposed

approach is able to synthesize new selection

heuristics for solving problems. The proposed

solutions outperform some base-line and previously

obtained results.

5 CONCLUSIONS

In this study, we have proposed a genetic

programming based approach, which is used for the

automated synthesis of clustering algorithm for a real-

world problem of identifying batches of electronic

components. The clustering problem is reduced to the

Fermat-Weber location problem, which is NP-hard

optimization problem. The proposed clustering

algorithm combines a GA for searching global-

optimal initial positions of centroids and an ALA

algorithm for performing local search of positions and

final clustering. The GP algorithm is used as a

hyperheuristic for creating a problem-specific

(dataset-specific) selection heuristic, which provides

the optimal (or suboptimal) performance of the GA

algorithm for the given clustering problem.

Our numerical experiments have shown that the

proposed approach is able to deal with real-world

problems of identifying batches of 140UD25AS1V

and 1526IE10 ICs and provides high accuracy of

assigning ECs to correct clusters. Moreover, the

synthesized algorithms provide statistically

significant better performance than some general-

purpose algorithms do. The results obtained in the

paper also outperform the results previously obtained

by other authors.

In our further works, we will try to apply the

approach to the problem of the automated synthesis

of other genetic operators such as crossover and

mutation. In addition, we will use a selective

hyperheuristic for automated choosing of the best-fit

to the problem ALA algorithm.

ACKNOWLEDGEMENTS

This research is supported by the Ministry of
Education and Science of Russian Federation within
State Assignment № 2.1676.2017/ПЧ.

REFERENCES

Bandyopadhyay, S., Maulik, U., 2002. An evolutionary

technique based on K-Means algorithm for optimal

clustering, Information Science, Vol. 146, pp. 221-237.

Blickle, T., Thiele, L., 1996. A comparison of selection

schemes used in evolutionary algorithms. In: Evol.

Comput. 4(4). pp. 361-394.

Brimberg, J., Hansen, P., Mladenovic, N., Salhi, S., 2008.

A Survey of Solution Methods for the Continuous

Location-Allocation Problem, International Journal of

Operations Research, 5, pp. 1-12.

Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G.,

Ozcan, E., Qu, R., 2013. Hyper-heuristics: A survey of

the state of the art, Journal of the Operational Research

Society, 64 (12), pp. 1695-1724.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.,

Woodward, J., 2009. Exploring hyper-heuristic

methodologies with genetic programming, In:

Computational Intelligence: Collaboration Fusion and

Emergence, New York, Springer. pp. 177-201.

Eiben, A. E., Michalewicz, Z, Schoenauer, M., Smith, J. E.,

2007. Parameter Control in Evolutionary Algorithms,

In: Parameter Setting in Evolutionary Algorithms,

Volume 54 of the series Studies in Computational

Intelligence. pp. 19-46.

Farahani, R., 2009. Facility location: Concepts, models,

algorithms and case studies, Berlin Heidelberg:

Springer-Verlag, p. 549.

Fortin, F. -A., De Rainville, Fr. -M., Gardner, M. -A.,

Parizeau, M., Gagné, C., 2012. DEAP: Evolutionary

Algorithms Made Easy, Journal of Machine Learning

Research, No. 13, pp. 2171-2175.

Hruschka, E., Campello, R., Freitas, A., De Carvalho, A.,

2009. A survey of evolutionary algorithms for

clustering, IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, v.39

n.2, p.133-155.

Kazakovtsev, A., Stupina, A., Orlov, V, Stashkov, V.,

2016a. Fuzzy clustering of EEE components for space

industry, IOP Conference Series: Materials Science

and Engineering, Vol. 155. pp. 012026.

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

208

Kazakovtsev, L., Antamoshkin, A., 2014. Genetic

algorithm with fast greedy heuristic for clustering and

location problems, Informatica (Slovenia), Volume 38,

Issue 3, pp. 229-240.

Kazakovtsev, L., Orlov, V., Kazakovtsev, V., 2016b. New

genetic algorithm with greedy heuristic for clustering

problems with unknown number of groups, FACTA

UNIVERSITATIS (NIS), Ser. Math. Inform., Vol. 31,

No 4, pp. 907–917.

Kazakovtsev, L., Rozhnov, I., Orlov, V., 2018. Increase in

Accuracy of the Solution of the Problem of

Identification of Production Batches of Semiconductor

Devices, in proc. 4th International Conference on

Actual Problems of Electronic Instrument Engineering,

APEIE 2018, pp. 363-367.

Megiddo, N., Supowit, K. J., 1984. On the complexity of

some common geometric location problems, SIAM

Journal on Computing 13, pp. 182–196.

Mladenovic, N., Brimberg, J.,Hansen, P.,Moreno-Pérez, J.,

2007. The p-Median Problem: A Survey of

Metaheuristic Approaches, European Journal of

Operational Research, 179, pp. 927-939.

Pedregosa, F. et al., 2011. Scikit-learn: Machine Learning

in Python, Journal of Machine Learning Research, vol.

12, pp. 2825-2830.

Sopov, E., 2017. Genetic Programming Hyper-heuristic for

the Automated Synthesis of Selection Operators in

Genetic Algorithms, in Proc. of 9th International Joint

Conference on Computational Intelligence, IJCCI’17

pp. 231-238.

Wesolowsky, G., 1993. The Weber problem: History and

perspectives, Location science, No. 1, pp.5-23.

Xu, D., Tian, Y., 2015. A Comprehensive Survey of

Clustering Algorithms, Annals of Data Science, Volume

2, Issue 2, pp 165–193.

Genetic Programming based Synthesis of Clustering Algorithm for Identifying Batches of Electronic Components

209

