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Abstract: In this paper small radius spheres of driftless nonholocosgstems in an output space are analyzed. The
nonholonomic systems appear frequently in mobile robof\esalgorithm is provided to compute the spheres
extensively using a directional optimization and sphémgcardinates. lllustrating examples are provided for
two two-input nonholonomic systems. Results presentetiisgaper are important in motion planning of
nonholonomic systems with outputs as a ready-to-use resajjven how to shift a point in an output space in
a desired direction. In practice, an effective short-adiseamotion planner is required while planning a motion
in a space polluted with obstacles.

1 INTRODUCTION an output space. Usually, a dimension of the out-
put space is smaller than dimension of a configuration

) space as some coordinates of the latter space are not
Recently, nonholonomic systems are frequently en-hqrtant (for example in a collision avoidance task).
countered in robotics. Wheel mobile robots (Altafini, |, inis paper a task of computing an exact shape of
2001) (with trailers (Duleba, 2018)), nonholonomic g4y radius spheres in an output space of driftless
manipulators (Nakamura etal., 2001), nonholonomic ,qh610nomic systems is addressed. The shape is im-
mobile manipulators (Bayle et al., 2003) free-floatmg portant in motion planning as it shows energy cheap
robots (vafa and Dubowsky, 1990) belong to this 5,y expensive directions of motion. A small range
class. After modeling kinematics and dynamics of i qign is also useful while planning a path in an ob-
the systems, the next task is to plan their motion, i.e. g4¢je cluttered environment. In a proposed method to
design an algorithm to steer the systems from one yq; 5 small radius spheres in an output space a gener-
point of a configuration space to another (Duleb:_:l, alized Campbell-Baker-Hausdorff-Dynkin (gCBHD)
1998; Lavalle, 2006). Even more demanding task i ¢4rmyja will be exploited (Strichartz, 1987). Locally,
to plan the motion optimally with respectto adistance 5.6,nq a given configuration, the formula allows to
to the goal or an energy expense quality functions. yejict a motion in a configuration space correspond-
Usually, this task is difficult due to non-linearity of_ ing to an assumed set of controls and vector fields
a system and a small number of controls to steer in yanerated from the system equations and evaluated
a high dimensional configuration space. In order 0 4t the configuration. When the motion is transferred
simplify a little bit this task, in a robotic literature, @ 4o the output space via Jacobian of the output func-

small radius spheres are considered when a short diSyjq and optimized within a space of controls a desired
tance motion is planned. In this case the non-linearity sphere is constructed.

is encapsulated in a local, around a given pointin & = Thg paper is organized as follows. In Section 2
configuration space, description of vector fields defin- terminology is recalled and some required tools
ing a system and their descendants. Such spheres, e hresented. In Section 3 the task of construction
for nonholonormc systems in a con_flguratlc_)n SPACe uf small radius spheres in an output space of non-
were analyzed in the scope of sub-Riemannian geom-pqonomic systems is formulated and an algorithm to
etry (Jean, .2014)' Itis much simpler to pred|ct_ how gqive the task is presented. In Section 4 simulation
a small radius nonholonomic sphere in a configura- o ts are provided. On two nonholonomic systems

tion space looks like rather than to calculate its real \ i gitferent output functions sections of spheres are
shape. A more practical task arises when a nonholo-, ;¢\ a1i-ed. Section 5 concludes the paper.

nomic system is considered together with an output
function relating configurations with coordinates of
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2 MATHEMATICAL
PRELIMINARIES

The gCBHD formula describes a trajectory of a dif-
ferential non-autonomous system (Strichartz, 1987)

q=A(t)@q(t)) 1)
initialized at a configuratiogg and given by
q(t) = expz(t) (qo)) ~z(t)(qo) +G, (2
where exjz(t)(qo) is a solution of the following equa-

tion

d_sv(s,t) =2(t)v(s), Vv(0,0) =qo.

Thus,
V(s,t) =exp(sz(t))(qo) = q(t) = Vv(1,t) = expz(t)(do).

Small Radius Spheres in Output Space of Nonholonomic Systems

In general, vector fields are exemplifications of Lie
monomials (other examples of Lie monomials are
square matrices with the Lie bracket defined as

X,Y] = XY —YX

and vectors inR® with the Lie bracket defined by
a vector produciX,Y] =X xY). A degree of a Lie
monomial (vector field) counts the number of gener-
ators appearing in the monomial. For exemplary gen-
eratorsX; = X, X2 =Y we have

degX) = 1,deg([X,Y]) = 2,ded X, [X,Y]]) = 3.

A layer contains all Lie monomials sharing the same
degree. A minimal set of Lie monomials spanned by
some generators is called a basis. Although all further
considerations are quite general, two input systems
will be used to illustrate concepts being discussed.
Two input systems are the most demanding ones as
the difference between the number of controls- 2

Later on, a special sub-class of general systems (1)and the dimension of a space where actions of con-

will be considered, namely two-input driftless non-
holonomic systems

At)(@(t) = ixmqm and m=2.  (3)

In Eqg. (3) vector field; are called generators. Lo-
cally, whent — 0, z(t)(qo) in Eq. (2) takes the form
of a series (Strichartz, 1987)

2(t)(qo) ~ Z /| » (}p c(o)Ea) ds,  (4)

where [t o = Js—oJs ,—o--- Js2o is anr-dimensio-
nal simplexds' =ds; ... ds; P, is a set of all permu-
tations derived from the sé¢tl,...,r};

Eo=|[...[A(S51):Als2)] - ], A(Ssr))] - (B)

and

o) = (0% (g )1 ©

ea)) "

where e(g) counts the number of errors in con-
secutive pairs of integers in a permutation=
{0(1),0(2),...,0(r)}, for examplee((1,2,3)) =0,
e((2,1,3)) =1, e((3,2,1)) = 2; |V,Z] denotes a Lie
bracket of vector field¥,Z (Spivak, 1999).

In (4) many Lie brackets are to be calculated. In
order to reduce the computational complexity of (4)
two properties of vector fields, valid for amy,B,C,
are applied

P1 the anti-symmetryfA,B] = —[B,A],
P2 the Jacobi identity:

[A,[B,CJ]+[C,[A.B]| + [B,[C,A]| = 0.

trols are planned is the biggest one and more sophis-
ticated control strategies are required to plan a mo-
tion towards a desired point. The most popular basis
is the Ph. Hall one (abbreviated later on as PHB and
effectively computed with an algorithm proposed in
(Duleba and Khefifi, 2006)) and the first three layers
of PHB spanned bX,Y are the following
H! H? H3
— AN
(H1,H3, Hf H}H3,..) =

= (XY, X, Y], X, XYL Y, XY
)

whereH{; denotes thel-th element within the'-th
layer of the PHB. For the two-input system (1), the
operator (4) shifts a current stadg to qo + z(t)(qo)

and it is expressed as a series of control-depended co-
efficientsa pre-multiplying vector fields (PHB ele-
ments) evaluated at a current configuratign

2(t) =a(t)X +ad(t)Y +a2(t)[X,Y]+ .
8
+ag®)X, XY+ a3, X, Y] +...

where the coefficients are equal to (Duleba and Khe-
fifi, 2006)

ad(t) = fui(s)ds:,  ad(t) = fSua(s1)dsy,
af(t)= 3 Jo JoR(Ua(s1)Uz(2) — Ua(S1)us(s2))dsdsy,
9)
and depend on controls It can be easily deduced

that the number of items to calculaecorresponding
to high layers of vector fields will grow rapidly and
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the integration of each item in Eq. (4) becomes more time of applying controls is assumed to be fixed T
and more complex as product of controls integrated and the energy of controEs(u) is constant and small.
over a high dimensional simplex transfers variables It it is a common practice to express con-
from one integration to another making an expression trols as linear combinations of time-dependent func-
to integrate more and more complex. For the very first tions (Duleba, 1998; Jakubiak et al., 2010)

few layers the calculations can be performed by hand, N1

but as the numb(_ar of Ia_yers increases, the galculat|on ui(t) = Z) QU)p, i=1...m (13)
should be automized with the use of symbolic compu- =

tation packages (Mielczarek and Duleba, 2018). The i .
formula (8) is local (around at current configuration Where @;(t) are elements of any functional basis
do) as only in this case the tail of the series is negligi- (Polynomials, harmonic functions) am¥l is the num-

ble (note that all vector fields are evaluateqgt ber of variables required to describe tkth control.
The system (1), (4) is (small time locally) control- Thus a vectop collects all variablep! and uniquely
lable when its Lie algebra spanned by generagdp described controlsl and the energy of controls de-

is of the full rank (Chow, 1939) or, equivalently, the pends orp.

Ph. Hall basis evaluated at any configuration is of the  In order to solve the task, a directional optimiza-

full rank tion technique will be applied. At first, a direction in

the output spacR' is selected and the furthest point

vqeQ rankPHEQ) =n. (10) along this direction is searched for with an energy of

Condition (10) means that the system can evolve at motion fixed. Then, a collection of points for all ad-

any configuration in any direction. From a practical Missible directions forms a sphere in an output space.

point of view not all coordinates of the configuration [N order to describe any direction in spherical coor-

vectorq are equally important. For example, for mo- dinates(as,...,ar—1,R)T within R" are particularly

bile robots the rotation angle of wheels is not impor- Well suited.  The angle coordinatéas,...,ar—1)"

tant for checking collision of the robot. Therefore, describe a desired direction of motion whireits

an output function should be introduced to describe range

interactions of a system with its environment

w1 = Rcqy,
x=k dim(X>x)=r. 11 -
(@ (X5%) (11) Wi =R 4sCq 1=2,...,r=1 (14
Controllability of system (1), (4) with the output func- f1
tion (11) was discussed in (Duleba and Mielczarek, wr =R [Mj=1S;
2018). It appears that the system with output is con- .
trollak))le " P y P wherecy; = cogaj) andsy; = sin(a).

Detailed steps of solving the task are collected in
vxe X rankd(k 1(x))Mpps(k 1(x)) =r, (12) the algorithm:

whereJ(q) = ok(q)/dq is the Jacobian of the output Step 1: Read-in a configuratiogp. Compute neces-

function (11) andMpyg is a matrix composed of el- sary vector fields and evaluate thengato form
ements of the Ph. Hall basis arranged in columns of ~ & MatrixMps(qo). For the output function (11)
the matrix. compute Jacobiad(qo)

Step 2: Select a functional basis (13) and appropriate
representation of controls (settig in (13)) to

3 TASK AND ALGORITHM form a vector of variablep. Compute energy of

controls and set its fixed (small) val&e

Having introduced indispensable notations and tools, m T /N—1 N2

we are in a position to define a task to be solved: E(p) = Z/ ( Z) O (t)pil> dt = E = cong.,
Task: given the system (1), (4), (11) and a configu- i=1/t=0 \ =

ration o find a small radius sphere in output space (15)

X c R" around poink(go). _ Step 3: Using Eq. (9), compute control dependent
A sphere should have a small radius because the yefficientsa as a function of variableg.

gCBHD formula is local, i.e. it reasonably well ap- _ 1 -
proximates a trajectory only if the trajectory does not St€P 4 Generate a mesh iR"~ > (ay,...,0r-1)
leave a close neighborhooday (in this case the very dimensional space of angle-vectors.

few items of the series (8) well approximate the infi- Step 5: For each (fixed at this stage) angle-vector
nite series). In order to satisfy this requirement, the (ag,...,0r_1)" repeat Steps 6-8.
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Step 6: Using (14) form a set of constraints coordinatep denotes an angle of rotation of its wheel)

T described by the equation
W(R) =J(do)Mprg(do), W= (Wi,....W)" .

(16) = (CoCy,SCy,Sy,0)Tu+(0,0,0,1)Tv (19)

Step 7: Maximize the function =X(Qu+Y(q)v.

f(p) =R, (17) After calculating
with constraints (15), (16). X,Y] = (Cosy, oSy, —Sy,0) ",
Step 8: Add the point(asy,...,a,_1,R)T computed X, [X,Y]] = (—$,€6,0,0) T, [Y, [X,Y]] = X

;
from Eq. (14) to the sphere &', it can discovered that the system (19) is also non-

Step 9: Visualize the sphere (or its sections). holonomic and a small time controllable as the vec-
Some remarks concerning the algorithm: tor fields X,Y, [X,Y],[X,[X,Y]] are independent ev-
erywhere.

o In Step 1 the number of vector fields has to be  ~ conirols are represented in a harmonic basis, thus
selected to satisfy controllability condition (12). Eq. (13) takes the form

However, when any vector field, sZywith degree

z=deg(Z), is used to check the condition also L N 25 . 211

all other vector fields with the degree equalzto Ui(t) =pi+ ) (P sin(jat)+p;" " cogjut))
should be included into the matrMpha(do) as =1 (20)
the vector fields have the same impact on resulting wherew = 27/T andi = 1,2.

ri the vector fi Dul 1 . . . .
series (8) as the vector fie] (Duleba, 1998) In all simulations the controls act on the inter-

e In Step 2, a reasonable compromise between ac-yal [0, T] with the time horizorT fixed. The vector
curacy and computational complexity should be collecting all variablegp contains only components
preserved. Obviously, dip>r. Increasing  ith pl £ 0. Output functions used in simulations
dimp also accuracy of shaping the sphere in- 416 constructed by selecting some components from
creases but also (rapidly) increases a computa-ihe configuration. For the unicycle and the kinematic
tional complexity of the optimization task solved ¢4y this selection of output functions has its physi-
in Step 7. Therefore, only a small redundancy in ¢5| meaning (e.g. for the kinematic car, the function
selecting dinp is advised. k(@) = (x,y,0)" can be used in planning a motion in

e In Step 7 a classical optimization task with con- a parallel parking task).
straints is to be solved. A Lagrange multiplier In all simulations a zero vector, of an appropri-
technique is appropriate for this task (Bertsekas, ate size, is selected for the initial configuratign
1996). (Egns. (18), (19) do not depend &yy and the initial

0 can be set to zero by appropriate rotationxfy)
plane), while the energif(p) and the time of motion

4 SIMULATIONS T are fixed and equal to 1.

Two systems (3) with two-inputs are considered dif-
fering in dimensions of the configuration space. The
first model is the unicycle, with a configuratign=
(x,y,0)T, where thed angle orients the robot with re-
spect to thex-axis, and(x,y) are positional coordi-
nates of its axle. The unicycle is described by the
following equation

= (Co,%,0)"u+(0,0,1)"v=X(q)u+Y(q)v, (18)

wherecg = cog8) andsg = sin(8). The set of vec-

tor fieldsX,Y and [X,Y] = (se,—Cg,0)" is indepen- Figure 1: A nonholonomic sphere of the unicycle.
dent for anyq, thus the system is nonholonomic and
a small time controllable (Chow, 1939). In Fig. 1 a nonholonomic sphere of the unicycle is

The second model is a kinematic car (with the illustrated with the identity output functiok(q) =q
configurationq = (x,y,8,p)" where the additional and controls with full harmonics up to degree one in
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both controls
{ ur(t) = pi+ pZsin(at) + p3cogat),

(21)
Up(t) = p3 + p3sin(at) + p3cogat).

S<o
= O

A regular mesh used to describe possible directions of
motions is given as follows

_ (o
(01,02) = (35,75
The sphere is radially symmetric with respect to the
y axis and the pure motion along tlyeaxis is least

energy-effl_ment. . T Figure 3: Nonholonomic spheres of the unicycle obtained
Foragiven selection af = (a1,02)" anelemen-  yith the algorithm presented (dashed) and the numerical in-
tary optimization task has been solved to get the vec- tegration.

tor p realizing the maximum value of the distarRe
Next, the value op was substituted into Eq. (21) to
determine controls and a numerical integration of the .| /
model (18) initialized atjp with the controlai was in- / \
voked. The final point of the trajectory generated con-

tributed into a numerically obtained nonholonomic
sphere visualized in Fig. 2. This sphere is a close ap-
proximation of the real nonholonomic sphere for the
unicycle. Both spheres are interlaced in Fig. 3.

)’ |:0717,35, J:Oyl7718

0.05

N\ J

=il -0.5 0 X 0.5

Figure 4: The section of nonholonomic spheres of the uni-
cycle for@ = 0.

at(o alongy-axis is significantly less effective than a
motion alongx-axis corresponding to the first degree
vector fieldX.

0.15

0.1 s N e
Figure 2: A nonholonomic sphere of the unicycle obtained / S \
with a numerical integration. 005

It can be observed that the spheres differ slightly y o :f:
as the sphere obtained with the algorithm and based

on the gCBHD formula neglects the higher degree %51
vector fields while the numerical procedure takes \ /
them into account implicitly. Nevertheless, the dif- o1 T DN

ference is small enough to plan a motion with the al- e

gorithm in a desired direction. T -05 0 x 05

In Fig. 4 a section of spheres from Fig. 3 for frigyre 5: The unicycle with a projection onto-y plane
8 = 0 (thex—y plain) is presented. The solid line  output function. The section fd@ = 0 and three selections
corresponds to the sphere generated by the algorithnof controls.
while the dashed line — to a numerical integration of
the model. At this sections the differences are really Now an impact of representation of controls and
small. From the figure one can learn also that the mo- output functions on sections of nonholonomic spheres
tion along the second degree vector fipdY|] acting for the unicycle robot are investigated. In Fig. 5 and
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0.15

y o

-0.15

1 05 o x 05 ! Figure 7: A section of the nonholonomic sphere of the kine-
Figure 6: The unicycle with the identity output function. ~matic car obtained with the algorithm fgr= 0.
The section fo® = 0 and three selections of controls (the
solid line coincides with the dot-dashed one). x=0o0r0=0. In Fig. 7 a section of the nonholo-

. ) nomic sphere for the kinematic car calculated with the
Fig. 6 three sections are presented for the output func-a|gorithm is presented whep= 0. In Fig. 8 sections
tionk(@) = (x,y)" andk(q) = (x,y,0)", respectively:  of the sphere of the kinematic car are presented for
solid line co_rresponds to CO””P'S given in Eq. (21), (6 =y =0) (on thex—y plane). As before, the solid
the dashed line was obtained within the fam“y of con- curve is generated with the algorithm while dashed

trols 1 oo one with a numerical integration of the model (19).
ui(t) = pr+ prsin(at), 22) The section shapes presented in Fig. 8 are similar, but
Ua(t) = pl+ pgcos(wt). with different values near thg axis. It is noticeable

) ) a large difference between the maximal valuex of
while the dot-dashed line corresponds to the controls andy coordinates of points along the curves as the
ug(t) = p%+ pi cogut), vector field acting along andy axis are of different
(23) degrees.
{ uz(t) = p3+ p3sin(wt).

0.015 e
In all cases the algorithm presented in this paper has / \
generated the required data. From Figs. 5. 6, itcanbe ooz L i
deduced that the representation of controls is very im- / \

portant as spheres (and their sections) generated can 0005
differ in shapes significantly. Even when the repre-
sentation is of the same length (as in Eq. (22) and (23) vo
still the differences are visible). In practical situatsoon

. -0.005 S S S S

one should solve the following problem: how to get \ /
reliable results keeping a representation of controlsas e S
small as possible (as it significantly decreases compu- \ /
tational costs). 0,015 .

For a kinematic car the output function is selected -1 -05 o x 05 1
as the identityk(q) = g and controls are full harmon-  Figure 8: A section of the nonholonomic sphere of the kine-
ics up to the order of two matic car obtained with the algorithm fér=y = 0.

1< (p2iain 2j+1 o
{ W(t) =pr+ zi:l(pl_ sinjet) + pl_ cogjat)), Programs used in simulations were written in Wol-
Uz(t) = pi+ 32 (P35 sinjat) + p3 ** cog jat)). fram Mathematica, version 11.3, (Wolfram Research,
(24) 2018) and run on a computer with In®ICore’™
An irregular mesh of 47 points discretizing tbg i5-8400 CPU and 8 GiB RAM memory. The com-
angle and 43 points for the, angle are selected to putational time to construct a sphere for the unicy-
discretize the space aof angles. The purpose to use cle was 2105 and 36x 19 elementary tasks (a di-
the irregular mesh instead of regular one is to keep rectional optimization in a particular direction deter-
the computational complexity as low as possible with- mined by fixing anglegai,02)) were solved which
out deteriorating the quality of retrieving a shape of gives 03[g/task. The total computational time to
spheres. While using a regular mesh, the vast major-construct a kinematic car sphere’s sectipnr=0) was
ity of points are located in the area close to planes 390min] and 47x 43 elementary tasks were solved
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which gives 115[g]/task. Bayle, B., Renaud, M., and Fourquet, J. (2003). Nonholo-
It should be pointed out that tiNM ni ni ze func- nomic mobile manipulators: Kinematics, velocities
tion was used extensively to solve elementary tasks. ~ and redundancies. Intell. Robot. Syst., 36(1):45-63.

The function tries to find the global optimum and itis Bertsekas, D. (1996).Constrained Optimization and La-
time consuming. In real applications some dedicated %gﬂ?%’gﬁﬁﬁg&hw& Athena Scientific, Bel-
procedures should be implemented to reduce compu- ' '

- S Chow, W. (1939) Uber Systeme von linearen partiellen Dif-
tational costs, form example by taking into account ferentialgleichungen erster Ordnuniylathematische

results of previous optimizations and incorporate a lo- Annalen, 117(1):98-105.
cal optimization (e.g. some variants of the Newton al- pjepg, 1. (1998) Algorithms of Motion Planning for Non-
gorithm, (Nakamura, 1991)) instead of the global one. holonomic Robots. WUST Publ. House, Wroclaw.

Duleba, I. (2018). Kinematic models of doubly generalized
n-trailer systems.Journal of Intelligent and Robotic
Systems, pages 1-8. on-line.
5 CONCLUSIONS Duleba, I. and Khefifi, W. (2006). Pre-control form of the
) ) ] gcbhd formula for affine nonholonomic systenSys-
In this paper small radius spheres were examined for tems and Control Letters, 55(2):146-157.

nonholonomic systems considered with accompany- Duleba, I. and Mielczarek, A. (2018). Controllability of

ing output functions. The presented algorithm to de- driftless nonholonomic systems in a task-space. In
rive the spheres is based on the generalized Campbell- ~ Tchon, K. and Zielinski, C., editorsidvances in
Baker Hausdorff-Dynkin formula and locally, around Robotics, pages 311318, Publ. House of the Warsaw

Univ. of Technology. in Polish.

Jakubiak, J., Tchon, K., and Magiera, W. J. (2010). Motion
planning in velocity affine mechanical systenhster-
national Journal of Control, 83(9):1965-1974.

Jean, F. (2014). Control of Nonholonomic Systems:
from Sub-Riemannian Geometry to Motion Planning.

a given point in the configurations space, shrinks the
series generated with this formula to leave only the
small number of items required to preserve a small
time local controllability of the system. To derive a

reliable shape of the sphere a large number of opti-

mization tasks should be solved. It was shown how SpringerBriefs in Mathematics. Springer.

to decrease th_e d|m_enS|on of the tasks being solved| avalle, S. (2006).Planning Algorithms. Cambridge Uni-
by one. The simulation results shown that the selec- versity Press.

tion of a representation of controls is crucial in de- Mielczarek, A. and Duleba, 1. (2018). Theoretical and algo-
riving reliable shapes of the spheres. The representa- rithmic aspects of generating pre-control form of the
tion should be rich enough to get constructed spheres ~ gcbhd formula. In23nd Int. Conf. on Methods and
reliable. Unfortunately, too long representations dra- Models in Automation and Robotics, pages 905-909,

matically increase computational costs as many tasks  Miedzyzdroje, Poland.

with a nonlinear quality function and nonlinear con- Nakag‘iirﬁ;iZétgégg,ﬁ)ﬁgé?ﬁﬁsﬁ?m Redundancy and
straints should be solved. Results of the paper can beN K P v CH W.and S y(.j len. O. (2001). Desi
used directly in motion planning algorithms of non- akamura, Y., Chung, W., and Sordalen, O. ( ). Design

: . . and control of the nonholonomic manipulatdEEE
holonomic systems with an output function. In the Trans. Robot. Autom., 17(1):48-59.

al_gorl_thms, at a current configuration, onIy_one opti- Spivak, M. (1999).A comprehensive introduction to differ-

mization task is to be solved, thus computational costs ential geometry. Publ or Perish Inc., Houstron, Tx.,

are reasonably low. 3rd edition.

Strichartz, R. (1987). The Campbell-Baker-Hausdorff-
Dynkin formula and solutions of differential equa-
tions. Journ. of Functional Analysis, 72:320—-345.

Vafa, Z. and Dubowsky, S. (1990). The kinematics and dy-
namics of space manipulators: the virtual manipulator
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