
Vision of the TFM-driven Code Acquisition

Vladislavs Nazaruks a and Jānis Osis b
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, Riga, Latvia

Keywords: Topological Functioning Model, Code Generation, Code Acquisition, Model Transformation, System

Analysis, Knowledge Frame.

Abstract: Code acquisition from the system (domain) model completely depends on quality of the model. This paper

presents the general vision of the TFM-driven code acquisition. The TFM (Topological Functioning Model)

keeps knowledge about the system (domain) functioning, behavior and structure obtained from verbal

descriptions of the system (domain). The open question is how this knowledge covers source code constructs.

The result shows that, indeed, the final code contain this knowledge, but constructs for representation may

differ corresponding to the architectural decisions.

1 INTRODUCTION

Code acquisition (or generation) from models is not a

new topic. It remains topical since 2001, when the

Object Management Group published their guide on

Model Driven Architecture (Miller and Mukerji

2001). Model Driven Architecture (MDA) suggests

focusing on formal (computer-understandable)

models and their transformations with incremental

decrease of the level of abstraction and adding details

specific to applications, architectures and platforms.

The more formal a model is, the higher its

accuracy in representation of the domain under

analysis is. The suggested technique uses formal

models for knowledge representation, modelling and

analysis, namely a Topological Functioning Model

(TFM) and knowledge frames (Nazaruks 2017). The

TFM is a formal model which describes functioning

of the system (Osis 1969), where functional

characteristics of the system are related to each other

using cause-effect relations that form topology of the

system functioning. The TFM can be transformed to

design models in form of special UML (Unified

Modelling Language) profile called the Topological

UML (Osis and Donins 2017). The model obtained as

a result of such transformation needs to be manually

refined to be able to produce executable code.

The open question is what exactly the acquired

code presents, does it completely specify needed

a https://orcid.org/0000-0003-4335-707X
b https://orcid.org/0000-0003-3774-4233

functionality or can serve as a skeleton of obligatory

implementable functionality, behavior and structure.

The goal of this paper is to present a vision of how

to acquire the source code of the software given a

textual description of the business domain and

software requirements, by using the TFM-based

knowledge frames.

Section 2 presents the overview of related work,

Section 3 gives a brief explanation on the TFM,

Section 4 presents the general vision of code

acquisition from the TFM-based knowledge frames

and illustrates it by the small example of the fragment

of the functioning system in Section 5. Section 6

concludes the paper with main results and brief

discussion on them.

2 RELATED WORK

Since 2001, code generation has been a topical

subject. The source models for code acquisition can

be in different languages, e. g. UML, Object

Constraint Language (OCL), or Domain Specific

Modeling Languages (DSMLs). As we have

mentioned in Introduction, in our vision the source

model is the knowledge frame system based on the

TFM.

The approach that shares similar principles to our

vision is presented by the concept of Model

Nazaruks, V. and Osis, J.
Vision of the TFM-driven Code Acquisition.
DOI: 10.5220/0007843306170624
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 617-624
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

617

Integrated Computing (MIC), where a domain model

that represents system and customer’s demands is

constructed using a domain meta-model as a DSML

(Wang et al. 2010). Then the model interpreter

generates the application program from the domain

model. In our vision we do not use DSMLs but stay

at the idea on using formalized version of the UML.

Other authors use the principle of similarity of

source and target languages. For instance, Egea and

Dania (Egea and Dania 2017) applied this principle in

their solution for transforming OCL expressions into

SQL Procedural languages. We can note that this

principle is also being used in our vision, since

knowledge frames and object-oriented programming

constructs and concepts overlap in a large degree. M

T and Sherly (M T and Sherly 2014) used refactoring

UML sequence diagrams in the XMI (XML Metadata

Interchange) format by using OCL constructs in order

to generate proper source code.

Many researchers put their efforts into research on

code generation from UML models, its executable

versions (Alf, fUML, etc.) or profiles like, for

instance, an approach presented by Hili et al. (Hili et

al. 2017). Ciccozi et al. (Ciccozzi et al. 2011)

demonstrated transformation from the design model

to executable code in Action Language for

Foundational UML (Alf). Their aim is to provide full

code generation that covers also extra-functional

characteristics of the application program. Our vision

also has the same aim, however, in this paper we skip

discussion of extra-functional requirements. Bhullar

et al. (Bhullar et al. 2016) gave a very interesting

survey on UML diagram-based code generation

methods. The authors limited the survey with

behavioral UML diagrams such as activity diagrams,

sequence diagrams, use case diagrams etc. As the

authors noted none of the considered methods is

appropriate to give 100% code generation. Additional

activities include some enhancement methods and re-

factorization methods to achieve code up to the

maximum possible extent. Another aspect of code

generation from UML models is a difference in

implementations of UML versions in modelling tools.

As Noyer et al. indicated (Noyer et al. 2014), code

generation may give unexpected results due to

implementation particularities of both UML and

target languages. Another interesting aspect is that

many authors pay their main attention to UML class,

sequence and activity diagrams.

Wang et al. (Wang et al. 2017) presented their

solution for rapid realization of executable domain

models. This solution combines agility with

principles of model driven development for small

functional parts of the system and uses as UML as

domain specific languages. Shiferaw and Jena

(Shiferaw and Jena 2018) illustrated model to code

and code to model generation possibilities. The main

aspect covered in this research is keeping model and

code consistent allowing repeated generation from

code and integration of code into a UML model.

Since transformations may be multiple and may

involve different models, the support of model

transformation chains is very important. Guana et al.

propose ChainTracker, a tool the main aim of which

is to assist in this task (Guana et al. 2014).

Concluding, adequacy of generated code and its

model still is a challenge that covers many aspects

starting from model adequacy to its domain (or

domains) and ending with variations in

implementations of languages in tools used for code

generation.

3 TOPOLOGICAL

FUNCTIONING MODEL

The TFM is a formal model which describes system

functioning. Its fundamentals are published by Janis

Osis in 1969 (Osis 1969). The TFM can be specified

as a topological space (𝑋, Θ), where 𝑋 is a finite set

of functional features of the system under

consideration, and Θ is a topology on 𝑋.

A functional feature is “a characteristic of the

system (in its general sense) that is designed [for] and

necessary to achieve some system’s goal” (Osis and

Asnina 2011). It can be specified by a unique tuple

(1):
〈𝐴, 𝑅, 𝑂, 𝑃𝑟𝐶𝑜𝑛𝑑, 𝑃𝑜𝑠𝑡𝐶𝑜𝑛𝑑, 𝑃𝑟, 𝐸𝑥〉 (1)

where:

 𝐴 is an action linked to a [domain] object,

 𝑅 is a result of action 𝐴 (optional),

 𝑂 is an object (objects) that gets the result of

the action or an object (objects) that is used in

this action,

 𝑃𝑟𝐶𝑜𝑛𝑑 is a set of preconditions or atomic

business rules,

 𝑃𝑜𝑠𝑡𝐶𝑜𝑛𝑑 is a set of postconditions or atomic

business rules,

 𝑃𝑟 is a set of responsible entities (systems or

subsystems) that provide or suggest action 𝐴

with a set of certain objects,

 𝐸𝑥 is a set of responsible entities (systems or

subsystems) that enact concrete action 𝐴 (Osis

and Asnina 2011; Nazaruka et al. 2016).

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

618

Topology set over functional features is a set of

cause-effect relations that in design models are

transformed into control, message and transition

flows (Osis and Donins 2017).

A TFM is valid when it satisfies topological and

functioning properties (Osis and Asnina 2011). The

topological properties are connectedness,

neighborhood, closure and continuous mapping. The

functioning properties are cause-effect relations,

cycle structure, inputs and outputs. The possibility of

validation of the TFM by using simulation of

execution models is discussed by Ovchinnikova and

Nazaruka (Ovchinnikova and Nazaruka 2016), where

decision making is based on previously presented

results (Asnina and Ovchinnikova 2015).

4 CODE ACQUISITION

The general vision of software source code

acquisition from the TFM-based knowledge system is

illustrated in Figure 1. We have the following inputs:

 a textual description of the business domain for

which the software is being constructed,

 software functional requirements, which

extend or change some parts of the description

of the business domain to give a picture of what

must be implemented in software.

From these inputs, we can obtain the TFM of the

system in form of knowledge frame system (Nazaruks

2017). Software requirements are verified in

compliance with knowledge from the business

domain description presented in the TFM-based

frame system. Then, by transforming the TFM, we

can get a set of Topological UML diagrams (Osis and

Donins 2017). In this paper, we consider only a

sequence diagram of the information system. When

we have a specific UML sequence diagram, we can

transform it (at the moment, manually) to source code

in some concrete imperative programming language

(for example, Java, C#).

Source code acquired by using transformation of

the UML sequence diagram is not complete source

code of the information system — it has a number of

limitations. For example, logic of data persistence

must be added to source code to be able to store and

load data. Also, in such source code, there are no

specific algorithms for data processing. Moreover,

the architecture of obtained source code is “flat” —

this means that there are no architectural patterns (for

example, client-server architecture, layered

architecture) associated with the source code.

However, such source code can be used at least in

the following ways:

 as a prototype of the information system, which

lets the user go through different execution

scenarios (or alternatives, as in sequence

diagrams),

 as a basis for implementing missing parts of the

information system.

 as a skeleton of required functionality and

control flows in scenario execution.

At the present, in our vision we pay our main attention

to getting source code that could be used as a

prototype of behavior of the information system.

Feedback from generated source code goes to

textual descriptions of the domain itself and to

specification of the software requirements.

Knowledge from the updated specifications and

descriptions are updated in the knowledge base.

Transformation from the TFM functional feature

tuple (1) into a topological UML sequence diagram

elements is presented in (Osis and Donins 2017;

Nazaruka 2017):

 The input for this transformation is a context

(e. g. a use case), the TFM, and mappings

between functional features and functional

requirements. The last ones are necessary to

verify that all required functional

characteristics and no one manual (or other

system’s) functionality are implemented.

Figure 1: General vision of the software source code acquisition from the Topological Functioning Model.

Vision of the TFM-driven Code Acquisition

619

 Actors are added directly according to the

defined context. In the TFM actors are

presented as elements of the set Ex (executors).

 The TFM and mappings allow establishing

objects with lifelines; messages they send each

other are based on cause-effect relations among

corresponding functional features.

In other words, domain object O is transformed to the

object with lifeline if it is not of a primitive type.

Action A is transformed to the message send to object

O, and direction as well as chronological sequence of

this message is determined by the corresponding

cause-effect relation (Osis and Donins 2017).

Establishing messages between objects as well as

their sequence is achieved by transforming a fragment

of TFM according to the chosen context. All vertices

with objects of the same type are merged keeping

cause-effect relations between them. A cause-effect

relation is transformed to the message flow between

objects of the corresponding types. The interaction

operators are added: alt for optional cause-effect

relations (logical operators OR and XOR), opt — for

OR, and par — for the set of necessary cause-effect

relations (logical operator AND). Interaction

operators alt and opt have a conditional expressions,

called guards, that are taken from set PreCond of the

tuple (1) of the corresponding functional feature (Osis

and Donins 2017).

Included contexts are represented applying

interaction use (ref) for the included sequence

diagram (Osis and Donins 2017).

The initial transformation procedure presented in

(Osis and Donins 2017) does not deal with user

interfaces or programmable interfaces in sequence

diagrams. In the presented vision, we suggest adding

an object that is responsible for communication with

the user interface. Therefore, each actor whose

functional features must be implemented in software

will have a corresponding object —

<Actor>Interface. The responsibility of

<Actor>Interface is to get messages from a user

interface and transfer them to the object responsible

for the corresponding action. Transformation from

the UML sequence diagram to code is standard (Osis

and Donins 2017) as described above.

 In order to emulate user interfaces the method

that controls execution of scenarios must be

added, in case of the prototype it is method

main(). This method contains: Data structures

Map<Integer, String> for choices in scenarios,

where the first parameter contains an identifier

of the functional feature and the second one

contains its description, where verb of action A

is transformed to the gerund.

 Control structure switch() for scenarios

depending on the choice made.

 Method AskNextStep(Map<Integer, String>

steps) that asks a user to make a choice in

runtime and waits for their response.

Each step in a scenario is an invocation of the

corresponding method of the object responsible for its

execution.

Figure 2: The fragment of the TFM corresponding to the description of the business domain.

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

620

Figure 3: Functional features of the obtained TFM (frame class instances).

5 PRACTICAL

DEMONSTRATION

In this section, we demonstrate the process of code

acquisition using a small example. The fragment of

the business domain description is as follows:

“To initiate criminal proceedings, an investigator

must receive information on a possibly occurred

criminal offence. Usually, the investigator receives

this information when some person informs the police

call center about the criminal offence by phone or the

investigator personally by means of a claim. The

police call center fixes the received information in the

event journal and sends it to the investigator. When

the investigator receives the information on the

criminal offence, they perform a check of the facts,

and if they determine the features of the criminal

offence then they initiate criminal proceedings. If not,

they write a refusal to initiate criminal proceedings.”

For the reason of simplicity, we consider only the

fragment of the business domain description, not the

complete description. This simplification will affect

the model obtained: in this example, the model will

not have one of TFM obligatory parts — topological

cycle. In other words, here we consider only a

fragment of the TFM that represents a business

process (or the context for transformation to the

sequence diagram). However, this will not prevent us

from acquiring source code from such a model.

The fragment of the model obtained from the

description of the business domain is shown in

Figure 2. The functional features of this fragment are

shown in Figure 3.

Given the TFM and knowledge what functional

features are to be implemented in the information

system, we can obtain the UML sequence diagram of

behavior of the information system in the given

context.

Let us assume that the following functional

features will be implemented in the information

system: 1, 4, 5, 7, 8. This means that functional

features 2, 3, 6 will be executed manually by the

corresponding actors. Assuming this, the resulting

UML sequence diagram of the given context will be

as shown in Figure 4.

However, our aim is to produce source code that

can be used as a prototype of the application

functionality. Taking into account the limitations of

the “flat” architecture of source code that can be

obtained from the UML sequence diagram (see

Section 4), we modify the sequence diagram in a way

that the role of actors will perform the main class of

the application — therefore we avoid the necessity to

introduce multiple user interfaces (in our example —

for actors Police Call Centre and Investigator) at the

Vision of the TFM-driven Code Acquisition

621

Figure 4: UML sequence diagram of the application.

very beginning. The modified sequence diagram —

the UML sequence diagram of the prototype of the

program — is shown in Figure 5.

Finally, from that modified sequence diagram we

obtain the source code for the prototype of the

application. The simplified source code in the Java

programming language is presented in Appendix.

In the source code of the prototype, we assume the

following facts: there is only one actor in the Police

Call Centre, and there is only one Investigator.

6 CONCLUSIONS

Code acquisition from domain models still is a

challenge. Domain models can be presented using

domain-specific modeling languages, languages

similar to the target ones, general-purpose languages

like UML, or specific ones like UML profiles.

Domain specific modeling languages allow modeling

very specific domains, developing specific

transformations and achieving almost completely

working code.

In case of general-purpose languages, the

situation is not so good. The quality of generated code

is lower. Reasons are different, but the primary one is

inadequate representation of the domain in the model.

Inadequacy can be expressed as incomplete

information, wrong constructs, undefined cause-

effect relations in the domain.

This paper presents a vision on how the formal

domain model, TFM-based frame system, can be used

to deal with some of these issues, i. e. incomplete

information and definition of cause-effect relations in

the domain. The code acquisition is based on a chain

of transformations and can be used as a running

prototype for analysis of scenarios in the application,

or as a skeleton of functionality and execution

scenarios that mandatory must be implemented

further in the application.

Future research directions are related to the

elaboration of the presented vision as a working tool

set.

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

622

Figure 5: UML sequence diagram of the prototype of the application.

REFERENCES

Asnina, E. and Ovchinnikova, V., 2015. Specification of

decision-making and control flow branching in

Topological Functioning Models of systems. In ENASE

2015 - Proceedings of the 10th International Conference

on Evaluation of Novel Approaches to Software

Engineering. Lisbon: SciTePress, pp. 364–373.

Bhullar, N.S., Chhabra, B. and Verma, A., 2016. Exploration

of UML diagrams based code generation methods. In

2016 International Conference on Inventive

Computation Technologies (ICICT). IEEE, pp. 1–6.

Ciccozzi, F. et al., 2011. Generation of correct-by-

construction code from design models for embedded

systems. In 2011 6th IEEE International Symposium on

Industrial and Embedded Systems. IEEE, pp. 63–66.

Egea, M. and Dania, C., 2017. SQL-PL4OCL: An Automatic

Code Generator from OCL to SQL Procedural Language.

In 2017 ACM/IEEE 20th International Conference on

Model Driven Engineering Languages and Systems

(MODELS). IEEE, pp. 54–54.

Guana, V., Gaboriau, K. and Stroulia, E., 2014.

ChainTracker: Towards a Comprehensive Tool for

Building Code-Generation Environments. In 2014 IEEE

International Conference on Software Maintenance and

Evolution. IEEE, pp. 613–616.

Hili, N., Dingel, J. and Beaulieu, A., 2017. Modelling and

Code Generation for Real-Time Embedded Systems with

UML-RT and Papyrus-RT. In 2017 IEEE/ACM 39th

International Conference on Software Engineering

Companion (ICSE-C). IEEE, pp. 509–510.

M T, C. and Sherly, E., 2014. Refactoring sequence diagrams

for code generation in UML models. In 2014

International Conference on Advances in Computing,

Communications and Informatics (ICACCI). IEEE, pp.

208–212.

Miller, J. and Mukerji, J., 2001. Model Driven Architecture

(MDA).

Nazaruka, E., 2017. Meaning of cause-And-effect relations

of the topological functioning model in the UML analysis

model. In ENASE 2017 - Proceedings of the 12th

International Conference on Evaluation of Novel

Approaches to Software Engineering.

Nazaruka, E. et al., 2016. Verification of BPMN Model

Functional Completeness by using the Topological

Functioning Model. In Proceedings of the 11th

International Conference on Evaluation of Novel

Vision of the TFM-driven Code Acquisition

623

Software Approaches to Software Engineering. Portugal:

SCITEPRESS - Science and Technology Publications,

pp. 349–358.

Nazaruks, V., 2017. The Knowledge Frame System based on

Principles of Topological Functioning Model. Applied

computer systems, 21, pp.28–37.

Noyer, A. et al., 2014. Tool independent code generation for

the UML closing the gap between proprietary models and

the standardized UML model. In 2014 9th International

Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE). IEEE, pp. 1–9.

Osis, J., 1969. Topological Model of System Functioning (in

Russian). Automatics and Computer Science, J. of

Academia of Sciences, (6), pp.44–50.

Osis, J. and Asnina, E., 2011. Topological Modeling for

Model-Driven Domain Analysis and Software

Development : Functions and Architectures. In Model-

Driven Domain Analysis and Software Development.

Hershey, PA: IGI Global, pp. 15–39.

Osis, J. and Donins, U., 2017. Topological UML modeling:

an improved approach for domain modeling and

software development, Elsevier.

Ovchinnikova, V. and Nazaruka, E., 2016. The Validation

Possibility of Topological Functioning Model using the

Cameo Simulation Toolkit. In Proceedings of the 11th

International Conference on Evaluation of Novel

Software Approaches to Software Engineering.

SCITEPRESS - Science and Technology Publications,

pp. 327–336.

Shiferaw, M.K. and Jena, A.K., 2018. Code Generator for

Model- Driven Software Development Using UML

Models. In 2018 Second International Conference on

Electronics, Communication and Aerospace Technology

(ICECA). IEEE, pp. 1671–1678.

Wang, B., Rosenberg, D. and Boehm, B.W., 2017. Rapid

realization of executable domain models via automatic

code generation. In 2017 IEEE 28th Annual Software

Technology Conference (STC). IEEE, pp. 1–6.

Wang, Y. et al., 2010. An approach of code generation based

on Model Integrated Computing. In 2010 International

Conference on Computer Application and System

Modeling (ICCASM 2010). Taiyuan: IEEE, pp. V15-114-

V15-117.

APPENDIX

public class CP {
 public static Integer
AskNextStep(Map<Integer, String> steps) {
 System.out.println("Next step:");
 for (Integer step : steps.keySet()) {
 System.out.println(" * " + step + ". "
+ steps.get(step)); }
 Integer nextStep;
 Scanner in = new Scanner(System.in);

 do { nextStep = in.nextInt(); } while
(!steps.containsKey(nextStep));
 return nextStep; }
public static void main(String[] args) {
 Map<Integer, String> choice1 = new
HashMap<Integer, String>();
 choice1.put(2, "Informing by phone…");
 choice1.put(3, "Informing by claim…");
 Map<Integer, String> choice2 = new
HashMap<Integer, String>();
 choice2.put(7, "Initiating…");
 choice2.put(8, "Writing a refusal…");
 String info = "Information…";
 switch (AskNextStep(choice1)) {
 case 2:
 PoliceCallCentreInterface.
FixInformation(info);
 PoliceCallCentreInterface.
SendInformationToInvestigator(info);
 break;
 case 3: break; }
 info = InvestigatorInterface.
ReceiveInformation();
 switch (AskNextStep(choice2)) {
 case 7: InvestigatorInterface.
InitiateCriminalProceedings(info);
 break;
 case 8:
 InvestigatorInterface.
WriteRefusal(info); break; } } }

public class PoliceCallCentreInterface {
 public static void FixInformation(String
info) { EventJournal.FixInformation(info);
}
 public static void
SendInformationToInvestigator(String info)
{ }}

public class EventJournal {
 public static void FixInformation(String
info) { }}

public class InvestigatorInterface {
 public static String ReceiveInformation()
{ return "Information…"; }
 static void
InitiateCriminalProceedings(String info) {
 CriminalProceedings CP = new
CriminalProceedings(info); }
static void WriteRefusal(String info) {
 RefusalToInitiateCP R = new
RefusalToInitiateCP (info); } }

public class CriminalProceedings {
 public CriminalProceedings(String info)
{}}

public class RefusalToInitiateCP {
 public RefusalToInitiateCP(String info)
{}}

MDI4SE 2019 - Special Session on Model-Driven Innovations for Software Engineering

624

