
Code Reuse between Java and Android Applications

Yoonsik Cheon, Carlos V. Chavez and Ubaldo Castro
Department of Computer Science, The University of Texas at El Paso, El Paso, Texas, U.S.A.

Keywords: Code Reuse, Multiplatform Application, Platform Difference, Android, Java.

Abstract: Java and Android applications can be written in the same programming language. Thus, it is natural to ask
how much code can be shared between them. In this paper we perform a case study to measure quantita-
tively the amount of code that can be shared and reused for a multiplatform application running on the Java
platform and the Android platform. We first configure a multiplatform development environment consisting of
platform-specific tools. We then propose a general architecture for a multiplatform application under a guiding
design principle of having clearly defined interfaces and employing loose coupling to accommodate platform
differences and variations. Specifically, we separate our application into two parts, a platform-independent
part (PIP) and a platform-dependent part (PDP), and share the PIP between platform-specific versions. Our
finding is that 37%–40% of code can be shared and reused between the Java and the Android versions of our
application. Interestingly, the Android version requires8% more code than Java due to platform-specific con-
straints and concerns. We also learned that the quality of anapplication can be improved dramatically through
multiplatform development.

1 INTRODUCTION

Java is one of the most popular programming lan-
guages in use today for developing a wide spectrum
of applications running on a range of platforms from
mobile and desktop to server. The Android operat-
ing system is the dominating mobile platform of to-
day, and Android applications can be written in Java
albeit some differences between the Java application
programming interface (API) and the Android API.
Source code reuse is considered as a fundamental part
of software development (Abdalkareem et al., 2017).
Thus, it is natural to ask how much code can be shared
and reused between Java and Android applications. In
this paper we study and answer this question.

A multiplatform application is an application that
is developed for and runs on multiple platforms. We
use the term platform loosely to mean operating sys-
tems, runtimes including virtual machines, and soft-
ware development kits (SDKs). We include SDK in
the platform, as our research is focused on code reuse
and we are also interested in studying the impact and
complications caused by API differences of SDKs.
The two specific platforms that we consider in this
paper are Java SDK for desktop applications and An-
droid Java SDK.

We answer our research question by perform-

ing an experiment to measure quantitatively the de-
gree of code reuse possible between Java and An-
droid versions of an application. Our experiment is
a case study developing natively a Java application
and its Android version running on mobile devices
like smartphones and tablets. The application is small
in Java but is a typical Android application of the
average size (Minelli and Lanza, 2013), requiring a
graphical user interface (GUI), data persistence, net-
working, and multithreading. We develop the ap-
plication incrementally and iteratively with continu-
ous integration and testing by switching instantly be-
tween platform-specific integrated development envi-
ronments (IDEs). For this, we configure a custom
multiplatform application development environment
by sort of gluing individual platform-specific tools
and IDEs. Our development environment propagates
immediately changes made on the shared code using
one IDE to other IDEs and platforms. Our design
approach for code reuse is to decompose an applica-
tion into two different parts: aplatform-independent
part (PIP) and aplatform-dependent part (PDP). The
PIP is the part of an application that does not depend
on platform specifics and thus can be reused on dif-
ferent platforms. The guiding design principle is to
have clearly defined interfaces and employ loose cou-
pling between the two parts to accommodate platform

246
Cheon, Y., Chavez, C. and Castro, U.
Code Reuse between Java and Android Applications.
DOI: 10.5220/0007843702460253
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 246-253
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: Screenshots of Price Watcher (Java and Android).

differences and variations. To determine code reuse,
we measure the size of our code with a simple metric
counting the number of lines of code (LOC). We also
share other findings and lessons that we learned from
our case study.

The rest of this paper is structured as follows. In
Section 2 we describe our case study application. In
Section 3 we explain our development of the applica-
tion, including the configuration of tools and design
challenges along with our solutions. In Section 4 we
assess code reuse by measuring it quantitatively and
interpreting the measurements. In Section 5 we men-
tion few related work, and we provide a concluding
remark in Section 6.

2 CASE STUDY

The primary objective of our case study is to mea-
sure quantitatively the amount of code reuse possi-
ble between a Java application and its Android ver-
sion. The secondary objective is to learn complica-
tions or issues associated with multiplatform applica-
tion development—those related with not only design
and coding but also configuration of tools for incre-
mental development with continuous integration.

We develop a Java desktop application and its An-
droid mobile version, named Price Watcher. The ap-
plication tracks the prices of products, or items, ex-
tracted from their webpages (see Figure 1 for sample
screenshots). The application helps a user to figure
out the best time to buy items by watching over fluc-
tuating prices. As the prices are scraped from web-
pages, the watch list may consist of items from differ-
ent online stores or websites.

Most applications of today are built with libraries
or frameworks that are either provided by the plat-
forms themselves or acquired from third parties.

These libraries and frameworks may introduce ad-
ditional complications to the development of multi-
platform applications. To study their implications in
the code reuse, we use several different libraries and
frameworks in our development. The APIs of Java
and Android Java are very similar for common li-
braries such as collections, file I/O, and networking.
However, graphical user interface (GUI) frameworks
of Java and Android are completely different, as An-
droid offers its own framework for GUI program-
ming. Interestingly, there are also differences in the
ways third-party libraries and framework are provided
or supported by platforms.

• Plain Old Java Objects (POJOs): A library or
framework is written in the ordinary Java, not
bound by any special restriction other than those
of the Java language specification. It is often bun-
dled in the SDK. Android SDK, for example, in-
cludes one particular open source JSON library
while Java SDK does not. An open-source li-
brary or framework can be tightly integrated into
the platform and be part of the platform’s APIs.
It is in a sense provided as a built-in feature of
the platform, often modified significantly through
the integration. An example is Android’s support
for SQLite, a lightweight, server-less relational
database system. There are noticeable differences
between the Android-specific SQLite API and the
JDBC-based Java SQLite API.

• Platform-specific SDK: A third party frame-
work is often provided as a platform specific
SDK. An example relevant to our case study
is Google’s Firebase Database, a cloud-hosted
database. Google provides different Firebase
SDKs for different platforms, and the APIs of An-
droid and Java (Firebase Admin Java SDK) are
similar but with some subtle syntactic and seman-
tic differences.

3 DEVELOPMENT

We develop our application incrementally—one fea-
ture at a time—and iteratively by continuously inte-
grating and testing code written on different platforms
(Cheon, 2019). It is crucial to have adequate tool
support for multiplatform application development.
Since we develop two versions of an application, one
for each platform, our development environment log-
ically consists of three IDEs: two platform-specific
IDEs and one for developing the common code. For
Android, we of course use Android Studio, the of-
ficial IDE from Google for Android application de-
velopment built on JetBrain’s Java IDE called IntelliJ

Code Reuse between Java and Android Applications

247

IDEA. For the development of both the Java applica-
tion and the common code, any reasonable Java IDE
including IntelliJ IDEA will work. However, since we
are also interested in learning issues caused by diver-
sity of tools, we opt for Eclipse.

One key requirement for incremental development
of a multiplatform application is to propagate changes
immediately from one IDE to the other. We use
Apache Maven, a software project management and
build tool, to share code and propagate changes in
the form of a library, a Java archive (jar) file. Both
the Java project and the Library project in Eclipse
are Maven projects, and the Library project produces
a library jar file, called anartifact in Maven, of the
common code. The library jar file is installed in the
Maven local repository and becomes available instan-
taneously to the Android project. Android Studio uses
the Gradle build tool that understands Maven reposi-
tories. For the Java project we can also make it refer-
ence, or depend on, the Library project by changing
its build path, as both are Eclipse projects. This al-
lows us to also use Eclipse to build the Java project.

Our primary design goal is to maximize code
reuse between Java and Android versions. We de-
compose our application into two parts: a platform-
independent part and a platform-dependent part. The
platform-independent part (PIP) is the part of an ap-
plication that does not depend on specifics of imple-
mentation platforms such as platform-specific APIs
(Cheon, 2019). Theplatform-dependent part (PDP)
is the part of an application that does depend on a spe-
cific platform. We make this distinction to share the
PIP code across platforms while developing a specific
PDP on each target platform. Thus, the key criterion
on identifying and determining the PIP of an applica-
tion is whether the code can be shared on all the target
platforms of the application.

We need to cleanly separate the PIP from the PDP
while minimizing code duplication. It is easy to say
and difficult to do. We need to identify commonali-
ties and differences between the two target platforms
in terms of the APIs and libraries needed for the im-
plementations of the application. The PIP—the com-
mon, sharable code—has to accommodate the plat-
form differences and variations. Figure 2 shows the
high level design of our application. The box labeled
“shared model” is the PIP and the other two are the
PDP. Since Android provides its own GUI framework
along with Android-specific concepts such as activi-
ties and fragments, the biggest platform difference is
the UI. The other is to encapsulate platform differ-
ences and variations for the PIP.

How does the PIP accommodate platform differ-
ences and variations? In a single platform applica-

User interface (UI)

Shared model:
business logic, storage

and network

Plugins,
extensions
and utilities

Figure 2: Application architecture.

tion, the PIP and the PDP code are often interwo-
ven and tangled. For a multiplatform application, we
need to separate them and make the dependencies be-
tween them clean and explicit. In particular, we need
to eliminate any dependency of the PIP on the PDP.
There are several different techniques and approaches
possible, such as required interface, inheritance and
hook, parameterization, interface cloning, and inter-
face unification (Cheon, 2019). The implementation
of the PIP often depends on that of the PDP. As an
example, consider the case when a new item is added
to the watch list through the UI or externally through
the shared cloud storage. The notions of items and
the watch list can be coded once in the PIP and thus
the PIP will be responsible for adding the item to the
watch list. The PIP however cannot display the newly
added item. Instead, it has to tell the UI (PDP) to
display the newly added item, and each platform pro-
vides a different way of asking the UI to update its
display. We eliminate this kind of dependencies by
applying thedependency inversion principle, a spe-
cific form of decoupling program modules (Martin,
2003). We let the PIP depend on an abstraction of the
PDP, not its concrete implementation. The assump-
tion that the PIP makes on the PDP is coded explic-
itly in the form of arequired interface (F. Bronsard,
et al., 1991), an interface that is defined by a service
provider of an interaction that specifies what a service
consumer or client needs to do so that it can be used
in that interaction. In a sense, this approach allows
one to plug in platform-specific code to the PIP by
providing a class that implements the required inter-
face. Figure 3 shows an application of this approach.
A model class named ItemListModel manages the
items that are currently displayed by the UI, and it de-
fines a required interface to interact with a platform-
specific UI. Both the Java and the Android applica-
tions provide an implementation of the required inter-
face coded using platform-specific APIs. In the fig-
ure these are shown using the socket/lollipop notation.
In a sense, the platform-specific UI is a plug-in that
can be inserted into the PIP. The class diagram also
shows how we maximize code reuse and minimize
code duplication. The UI needs to display the items
being watched, and each platform of course provides
a different view, or widget, for displaying a collection
of data, e.g., JList in Java and RecyclerView in An-

ICSOFT 2019 - 14th International Conference on Software Technologies

248

Item

ItemListModel

ItemManager

JList

ListModel

*

RecyclerView

RecyclerAdapter

Java UI Android UI

Shared model

Figure 3: Plugging in platform-specific code.

droid. This so-called container view stores the data
differently in a view-specific model classes, e.g., List-
Model and RecyclerAdapter, providing a different set
of operations. However, there is enough commonal-
ity in the set of operations, including grouping, filter-
ing, sorting, and searching, that need be implemented
for our application. Therefore, our design decision
is to introduce a platform-neutral model class, Item-
ListModel, in the PIP and let platform-specific model
classes in the PDP to delegate their operations to it.

Another common way to accommodate platform
differences and variations is to provide a skeleton al-
gorithm, or code, in the PIP and let the PDP fill out
the details in a platform-specific way. For this we use
well-known software design patterns such as template
method, strategy, factory method, and abstract factory
(Gamma et al., 1994). This approach gives less free-
dom to the PDP than the previous approach, as the
PDP has to follow the skeleton algorithm defined in
the PIP, but more code is shared and reused. We use
this approach to persist watched items in several dif-
ferent ways (see Section 4). The complete Java appli-
cation consists of 36 classes and 4604 lines of source
code, and the Android version consists of 41 classes
and 4987 lines of source code.

4 ASSESSMENT

4.1 PIP

The PIP consists of 16 Java classes and 1825 lines of
source code (see Table 1). Nested classes and inter-
faces are not included in the number of classes, but
their code were of course counted in the number of
source code lines. We can group the PIP classes into
four different groups for later analyses.

• Items: classes for the core business logic, consist-
ing of Item, ItemManager and ItemListModel.

• Storage: classes to persist watched items.
Three different approaches—file, local database

Table 1: PIP classes and their sizes.

Class No. of Lines
Item 150
ItemListModel 295
ItemManager 246
FileHelper 12
FileItem 45
FileItemManager 106
SqliteDatabaseHelperable 19
SqliteItem 28
SqliteItemManager 114
FirebaseHelper 137
FirebaseItem 93
FirebaseItemManager 129
PriceFinder 35
WebPriceFinder 64
WebStoreBase 317
Log 35

Total 1825

%

0

5

10

15

20

25

30

35

40

Item File Database Cloud Network Other

37.86

8.93 8.82

19.67
22.79

1.92

Figure 4: Distribution of PIP code.

(SQLite) and cloud storage (Google Firebase)—
are used to study the impact of API differences on
the code reuse.

• Network: classes for online stores, or websites,
and for finding an item’s price from its webpage.

• Others: utility and miscellaneous classes.

It would be interesting to see how the code is dis-
tributed among these groups of classes (see Figure 4).
The item-related classes account for 38% of our code,
the storage 38%, and the network 23%. If we look fur-
ther into the items group, 43% (295 lines) of source
code belong to the ItemListModel class. Remember
this is a UI-specific model class that we introduced
to maximize code reuse between the two platforms
(see Section 3). The class helps the UI to display
watched items in many different ways; it is not re-
ally a core business logic class. Therefore, we can in-
fer that our application is UI-intensive. Another thing
we can quickly learn from the graph is that the three
data persistence approaches have varying code sizes:
file (9%), database (9%), and cloud (20%). This may
indicate the complexities of the data persistence ap-
proaches themselves or their code reusability.

Code Reuse between Java and Android Applications

249

Table 2: Sizes of application code.

App Part No. of No. of Lines
Classes Percent (%)

Java
PIP 16 1825 40
PDP 20 2779 60
All 36 4604 100

Android
PIP 16 1825 37
PDP 25 3162 63
All 41 4987 100

4.2 PDP

Table 2 shows the sizes of both the Java and the
Android versions of our application including their
PDPs. The source code lines of the Android PDP
include only manually-written Java code; they do
not include so-called resource files such as GUI lay-
outs written in XML or automatically generated Java
source code files. The last column of the table shows
the percentage that each part accounts for the whole
application code, calculated using a formula,x / (PIP
+ PDP) * 100, wherex is either PIP or PDP. The PIP
takes 40% and 37% of the Java and the Android ap-
plication code, respectively. That is, 37%–40% of
code are reused in our application. One side finding
is that the Android PDP requires 14% ((3162 - 2779)
/ 2779 * 100) more code than the Java PDP. Android
applications generally require more coding to address
Android-specific concerns such as application lifecy-
cles and screen orientation changes. The Android ver-
sion of the application requires 8% more lines of code
than the Java version.

How many lines of code are needed to interface
with the PIP? Table 3 lists platform-specific classes
along with the numbers of source code lines written
to interface with the PIP. Note that some of the classes
are named the same as those of the PIP, but they are
platform-specific subclasses defined in the PDPs. The
last row shows the percentages of the interfacing code
in the PDPs, 14% for Java and 22% for Android. As
mentioned before, Android requires more coding, and
this is clearly shown in the table. Two bulky classes
are RecyclerAdapter and WebStore. The first class
addresses Android-specific UI concerns, e.g., recy-
cling widgets to display multiple items. The addi-
tional code of the second class is mainly due to one
more online store supported in the Android version;
Android-specific features were used for this. Another
thing to notice is the relative amount of code for three
data persistence approaches. The database approach
requires 3–6 times more code (see below for more dis-
cussion on this).

It would be very instructive to see how the plat-
form differences of the same API affect reuse of the
PIP code. If we combine the data from Table 1 and

Table 3: PDP code for interfacing with PIP.

Class No. of Lines
Java Android

ItemListModel 78 N/A
RecyclerAdpater N/A 237
FileHelper 32 38
SqliteDatabaseHelper 187 117
SqliteItemManager N/A 20
FirebaseHelper 39 22
WebStore 47 90
WebPriceFinder N/A 36
Total 383 560
Percent (%, total/PDP) 14 18

��

��

���

�� ��

���

�� ���
��

���

	��

��� ���

�	�
���

�

�

�

�

	

�

��
��� �������� ����� �������

���� !����� "�"

LOC

Figure 5: PIP features and their interfacing code.

Table 3, we can estimate the amount of code that has
to be written to reuse the major features of the PIP.
Figure 5 shows this by plotting the sizes of the PIP
classes and the corresponding PDP code for three fea-
tures: UI, storage and network. The PDP code of
course includes only the interfacing code—code writ-
ten to interface with the PIP feature in question. Fig-
ure 6 shows the same information but in percentages.
As shown, the percentages vary widely from 6% (of
Android cloud) to 58% (of Java database) among the
PIP features; the average is 18% for Java and 25%
for Android. Th LOC numbers in Figure 5 gener-
ally indicate the degrees of code reusability as well
as the easiness of reuse. For example, the first bar
says one needs to write only 78 lines of Java code in-
stead 619 (= 78 + 541) lines to manage watched items

13 16

58

10 11

87 84

42

90 89

30
19

46

6
25

70
81

54

94
75

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UI File Database Cloud Network

Java PIP Android

Figure 6: PIP and interfacing code in percentages.

ICSOFT 2019 - 14th International Conference on Software Technologies

250

Table 4: Complexity of data persistence in LOC.

Storage Java Android Average
File 195 201 198

Database 387 298 343
Cloud 398 381 390

and help the UI to display them. For each PIP fea-
ture the size of its interfacing code is marginal com-
pared to coding the whole logic in the PDP. However,
there is one exception. Among the three data persis-
tence approaches of file, database and cloud storage,
the database approach requires more code in the PDP
side—58% for Java and 46% for Android (see Fig-
ure 6). Before we look into this unusual case, let us
first measure the complexity of each of the persistence
approach in terms of source code lines. As shown in
Table 4, the file-based approach is smaller than the
database that requires somewhat less code than the
cloud storage. One thing that the table does not show
is the similarity of the platform APIs between Java
and Android. The Android File (I/O) APIs are ex-
actly the same as those of Java except for additional
notations for denoting different kinds of storages (in-
ternal and external) and directories (download, doc-
uments, etc.). The Google’s Firebase APIs for Java
and Android are also very similar albeit some subtle
differences in some of the operations provided. How-
ever, the story is completely different for the SQLite
database. Android supports it as sort of a built-in fea-
ture with an API tightly integrated with its own frame-
work. For Java, there is an open-source, JDBC-based
library for SQLite databases. Due to this difference
of platform APIs, we had to push more code to the
PDPs, and that is why more code was written in the
PDPs. In short, the platform APIs and their common-
alities and differences greatly affect the development
of the PIP and its reusability.

How does the separation of PIP and PDP affect
the size of an application? Is there an increase in the
code size caused by the separation, and if so, how
much? The way we develop our application allows
us to answer this question with minimal effort. We
wrote our application incrementally by writing com-
plete code in one platform for the feature under de-
velopment and then refactored the code to derive a
reusable PIP. As a result, we have two versions of our
application, written with and without using the PIP.
Table 5 shows the sizes of different versions of our ap-
plication. As guessed, the monolithic versions—the
ones written without using the PIP—have less classes
and lines of code, and the size overheads of PIP/PDP
are 14% and 13% for Java and Android, respectively.

Table 5: Overheads of PIP and PDP separation.

App Part No. of No. of Overhead
classes lines (%)

Java
PIP + PDP 36 4604

14Monolithic 27 4031

Android
PIP + PDP 40 4987

13Monolithic 31 4418

4.3 Other Findings

We learned both positive and negative sides of mul-
tiplatform application development through our case
study. Besides the obvious benefit of code reuse,
perhaps, the most important side benefit from a de-
veloper’s point of view is that it provides opportu-
nities for improving the quality of an application.
We have to address diversity of platforms by consid-
ering platform-specific restrictions or concerns. In
addition we have to work on, or review, the same
or derived code several times, each with a different
perspective—either as a service provider or a con-
sumer. We first prototyped a new application fea-
ture in one of the platforms, refactored the monolithic
code into a reusable library (PIP) and the PDP of that
platform, and apply the library in the other platform.
The implementation of a feature required several iter-
ations with continuous integration and testing on two
platforms. This development process allowed us to
notice issues and problems from simple mistakes like
naming inconsistency to more serious ones.

We found that Android-specific features allowed
us to explore and test our application in a way that
would be impossible or unnecessary for a typical Java
application, often exposing a potential issue or prob-
lem in the application. An example is device orienta-
tion change. The screen on an Android device can
switch between portrait and landscape mode in re-
sponse to the way one holds the device or when the
device is rotated. Our application allows the user to
filter items to be displayed in several different ways,
e.g., based on online stores, item groups and key-
word search. An item can belong to a user-named
group, but not all items have to belong to a group.
The filtering feature was first introduced in the Java
version, and it worked correctly. When the feature
was added to the Android version, however, the de-
vice orientation change causes the application to show
only those items that do not belong to any item group.
We soon learned that this strange behavior was caused
by an incorrect re-initialization of the application. A
re-initialization occurs when the screen orientation
changes because Android creates a new instance of
a framework class upon screen orientation change; no
such re-initialization is needed for the Java version.
We fixed the problem by modifying the PIP. We also

Code Reuse between Java and Android Applications

251

added a new UI element in both PDPs to provide an
option for displaying all those items that do not be-
long to any item group. This option was overlooked
in the initial design of the filtering feature.

Multiplatform application development encour-
ages one to generalize APIs, especially those of the
PIP, to address and accommodate platform differ-
ences and variations. In fact, even platform-specific
restrictions or constraints contribute positively on the
creation of a more reusable and extensible applica-
tion. The initial design of our network module done
on the Java platform provided synchronous opera-
tions, and a special return value was used to notify
when the invoked operations fail. On Android, how-
ever, the provided network operations were always
called in background threads created by the UI be-
cause Android does not allow any network operation
on the UI thread (while Java does). This made us to
create a new version of the network module that also
provides asynchronous operations implemented using
the Observer design pattern (Gamma et al., 1994).
Due to the use of this design pattern, the error han-
dling was also improved by creating a separate call-
back method in the observer, or listener, interface.
The error reporting is separated from the main logic,
and thus more detailed information about the error is
provided to the caller. Android’s emphasis on applica-
tion responsiveness also made us to improve the user
experience of our application by providing additional
features such as setting network timeouts and cancel-
ing network operations.

An obvious downside of the PIP-PDP separation
is that the PIP has to be written using the common
denominators, or shared traits, of the both platforms.
The platform of the PIP is the intersection of the two
target platforms. A common platform feature has to
provide the same syntactic interface—operation name
and signature, class, and package—as well as the se-
mantics. Otherwise, it cannot be directly used in the
PIP implementation and has to be pushed to the PDPs.

5 RELATED WORK

We found no published work measuring code reuse
between Java and Android applications. However,
source code reuse in Android applications recently re-
ceived much attention from researchers. One interest-
ing report is that the practice of software reuse is high
among mobile application developers (Mojica et al.,
2014). One study even reported that 61% of Android
application classes appeared in two or more other
applications (Ruiz et al., 2012). Unfortunately, the
significant code reuse also indicates illegal cloning

of classes, code piracy, or even repackaging of ap-
plications (Linares-Vásquez et al., 2014) (Gonzalez
et al., 2015). Code reuse also impacts the quality
of an application, particularly when code is reused in
the copy-and-paste manner from online question-and-
answer websites such as Stack Overflow (Abdalka-
reem et al., 2017). Unlike these existing work, our
study investigated code reuse between a mobile appli-
cation and a desktop application written in the same
programming language, where the development pro-
cesses and practices can be quite different (Minelli
and Lanza, 2013) (Syer et al., 2013).

The diversity of mobile devices and platforms
made native development of mobile applications
challenging and costly, thus approaches like cross-
platform development have emerged to reuse code
across different mobile platforms by using various
techniques including cross-compilation, virtual ma-
chines, and web technologies and platforms (Palmieri
et al., 2012) (Heitkötter et al., 2013). Our case study,
unlike the cross-platform development approach, was
concerned with native development and sharing code
with a desktop version of the application.

There are various types of software reuse possible
(Ambler, 1998). Our study focused only on the reuse
of source code in the form of a library or framework.
However, the notions and concepts that we used in
our case study for a multiplatform application devel-
opment, such as PIP, PDP, and platform differences
and variations (Cheon, 2019), are related with those
of the established software engineering. For example,
PIP and PDP are similar to a platform-independent
model (PIM) and a platform-specific model (PSM),
respectively, in model-driven software development
(Brown, 2004). A PIM is a software model that
is independent of the specific technological platform
used to implement it, and is translated to a PSM, a
model that is linked to a specific technological plat-
form (Meservy and Fenstermacher, 2005). Software
product line development has been widely adopted in
professional software development to create a collec-
tion of similar software systems, known as aprod-
uct family, from a shared set of software assets us-
ing a common means of production (Northrop, 2002).
Several architectural styles are proposed for devel-
oping software product lines of Android applications
(Durschmid et al., 2017). One core idea of the soft-
ware product line development is identifying the com-
monalities and variabilities within a family of prod-
ucts (Coplien et al., 1998). In our case study, we used
the commonality and variability analysis to identify
platform differences and variations as well as the plat-
form for the PIP.

ICSOFT 2019 - 14th International Conference on Software Technologies

252

6 CONCLUSION

We performed a small case study to measure quan-
titatively the degree of code reuse possible between
Java and Android versions of an application. For
code sharing, we decomposed our application into
two parts: the platform-independent part (PIP) and
the platform-dependent part (PDP). The PIP is shared
between the two platforms, and each platform has its
own PDP to address platform-specific concerns. To
determine code reuse achieved in our application, we
measured the size of our code with a simple metric
counting the number of lines of code. Our finding is
very promising in that we were able to achieve 40%
and 37% code reuse for Java and Android versions,
respectively, for a UI-intensive application. We also
learned that the Android version requires 8% more
code than the Java version. The degree of code reuse,
of course, depends heavily on the types and degrees
of platform differences and variations. We noticed
several types of platform differences, each requiring
a different technique to cope with it. It would be in-
teresting future work to study the platform differences
systematically to categorize them, to measure quanti-
tatively their impacts on the code reuse, and suggest
effective techniques to address them.

REFERENCES

Abdalkareem, R., Shihab, E., and Rilling, J. (2017). On
code reuse from StackOverflow: an exploratory study
on Android apps.Information and Software Technol-
ogy, 88:148 – 158.

Ambler, S. (1998). A realistic look at object-oriented reuse.
Software Development, 6(1):30–38.

Brown, A. W. (2004). Model driven architecture: Princi-
ples and practice.Software and Systems Modeling,
3(4):314–327.

Cheon, Y. (2019). Multiplatform application development
for Android and Java. In17th IEEE/ACIS Interna-
tional Conference on Software Engineering, Manage-
ment and Applications, May 29-31, 2019, Honolulu,
Hawaii. To appear.

Coplien, J., Hoffman, D., and Weiss, D. (1998). Common-
ality and variability in software engineering.IEEE
Software, 15(6):37–45.

Durschmid, T., Trapp, M., and Dollner, J. (2017). Towards
architectural styles for Android app software product
lines. In4th International Conference on Mobile Soft-
ware Engineering and Systems, pages 58–62.

F. Bronsard, et al. (1991). Toward software plug-and-play.
In Symposium on Software Reusability, Boston, MA,
pages 19–29.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley.

Gonzalez, H., Kadir, A. A., Stakhanova, N., Alzahrani,
A. J., and Ghorbani, A. A. (2015). Exploring reverse
engineering symptoms in Android apps. In8th Euro-
pean Workshop on System Security, pages 7:1–7.

Heitkötter, H., Hanschke, S., and Majchrzak, T. A. (2013).
Evaluating cross-platform development approaches
for mobile applications. In Cordeiro, J. and Krempels,
K.-H., editors, Web Information Systems and Tech-
nologies, pages 120–138. Springer.

Linares-Vásquez, M., Holtzhauer, A., Bernal-Cárdenas,C.,
and Poshyvanyk, D. (2014). Revisiting Android reuse
studies in the context of code obfuscation and library
usages. In11th Working Conference on Mining Soft-
ware Repositories, pages 242–251. ACM.

Martin, R. C. (2003).Agile Software Development, Princi-
ples, Patterns, and Practices. Prentice Hall.

Meservy, T. O. and Fenstermacher, K. D. (2005). Trans-
forming software development: an MDA road map.
IEEE Computer, 38(9):52–58.

Minelli, P. and Lanza, M. (2013). Software analytics for
mobile applications-insights & lessons learned. In
European Conference on Software Maintenance and
Reengineering, Genova, Itally, pages 144–153. IEEE.

Mojica, I. J., Adams, B., Nagappan, M., Dienst, S., Berger,
T., and Hassan, A. E. (2014). A large-scale empirical
study on software reuse in mobile apps.IEEE Soft-
ware, 31(2):78–86.

Northrop, L. M. (2002). SEI’s software product line tenets.
IEEE Software, 19(4):32–40.

Palmieri, M., Singh, I., and Cicchetti, A. (2012). Compar-
ison of cross-platform mobile development tools. In
16th International Conference on Intelligence in Next
Generation Networks, pages 179–186.

Ruiz, I. J. M., Nagappan, M., Adams, B., and Hassan, A. E.
(2012). Understanding reuse in the Android market.
In 20th IEEE International Conference on Program
Comprehension, pages 113–122.

Syer, M. D., Nagappan, M., Hassan, A. E., and Adams, B.
(2013). Revisiting prior empirical findings for mobile
apps: An empirical case study on the 15 most popular
open-source Android apps. InConference of the Cen-
ter for Advanced Studies on Collaborative Research,
pages 283–297.

Code Reuse between Java and Android Applications

253

