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Abstract: To evaluate aggregation models in the context of a power system, a software tool (the SmartNet simulator) 

has been developed to look at the impact of managing Distributed Energy Resources (DERs) on networks’ 

technical operation (e.g. power flows and voltage levels) and simulates wholesale and ancillary services 

market conditions. This paper focusses on the design and implementation of one of the aggregation models 

that addresses the Curtailable Generator / Curtailable Load (CGCL) aggregator. The paper outlines the design 

of such a software aggregator agent and discusses the lessons learned in simulating a more realistic large 

power grid system. The aggregator is represented as an agent based object orientated model using a financed 

based buckets system to aggregate bids from up to 300,000 devices across 10 -20,000 power nodes. The 

concept/implementation can be extended to include more sophisticated bidding strategies and to use multiple 

perspectives on tranches. Simulation and testing of such a large simulation system was challenging, and we 

have proved that it is possible to simulate the aggregation and clustering of different types of flexibility into 

a number of manageable bids in a timely manner. 

1 INTRODUCTION 

The objective of the EU Horizon 2020 SmartNet 

project (Migliavacca et al., 2017) is to compare 

different coordination approaches between actors 

such as Transmission operators (TSO), Distribution 

System Operators (DSO) and customers. To facilitate 

interaction between, potentially, millions of 

Distributed Energy Resources (DERs)1 and manage 

the TSO-DSO interaction, it is also necessary to 

develop and analyse aggregation models. According 

to the English Oxford Dictionary aggregation is 

defined as “the formation of a number of things into 

a cluster”. In a similar way, an aggregator is defined 

as “a company that negotiates with producers of a 

utility service such as electricity on behalf of groups 

of consumers”. In this way the SmartNet aggregators 

take millions of volume-cost bids from homes, 

businesses and other DER’s, packages those bids into 

                                                                                              

a  https://orcid.org/0000-0002-5625-4937 
b  https://orcid.org/0000-0001-9246-1303 
1 Small units connected to the distribution grid with possible two-way flow of electrical power. Common examples of DERs 

are Distributed Generators (solar, wind) battery storage, electric vehicles (EV) and active demand response (load that can 

change its consumption to provide flexibility to the system). 

larger bid units and submits those bids to a TSO, DSO 

or some hybrid organization that manages flexibility 

markets on behalf of TSO and DSO. The system uses 

bids from a number of aggregators that represent 

thousands of DERs to clear the market at thousands 

of nodes. The simulator developed in the SmartNet is 

based on a Dist-flow AC Optimal Power Flow 

methodology to minimise system costs, i.e. minimize 

cost of activation of flexibility bids, while ensuring 

that network constrains are respected. The solution 

provided by the simulator yields electricity nodal 

prices and dispatch volumes for participating DERs 

over thousands of nodes. 

The focus of this paper is on the design and 

implementation of one of the aggregation models, the 

Curtailable Generator / Curtailable Load (CGCL) 

aggregator (Marthinsen et al., 2017). This paper 

outlines the design of such a software aggregator 
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agent, and discusses the lessons learned from 

simulating a more realistic large power grid system.  

An agent based object orientated design was used 

to construct the CGCL aggregator using a novel 

finance based buckets or tranche system to aggregate 

bids from up to 300,000 devices of four different 

DER types (Solar, Hydro, Wind and Sheddable 

Loads) across 10 -20,000 power nodes. A bucket is a 

term typically used in business or finance to 

categorize assets, but so far has not been applied in 

modelling aggregators in the power industry. This 

approach represents an alternative methodology to 

the standard designs using optimisation techniques 

and has been integrated into the aggregator agents. 

The paper is organized as follows. In Section 2, 

the design and operation of the CGCL aggregator is 

discussed in the context of its operation in a future 

power grid – a smart grid. The section focusses on the 

use of financial bucketing as a methodology to 

represent aggregators. Section 3 focusses on the 

challenges faced and lessons learned in development 

of this large-scale model, and discusses the use of 

python vs other languages, as well as database issues 

that occurred at scale. Section 4 expands on the 

previous sections and explores potential future 

designs, and reports on work that has explored these 

ideas. Finally, Section 5 concludes this paper. 

2 CGCL AGGREGATOR MODEL 

DESIGN 

The power grids in Europe and the United States are 

undergoing great changes, as regulators look to 

develop the so called Smart Grid and to include 

participation from residential consumers and other 

DERs. The objective of the EU Horizon 2020 

SmartNet project is to compare different approaches 

and TSO-DSO coordination schemes that will enable 

better integration of DERs and their participation in 

Ancillary Services (AS) provision. It will be difficult 

for the traditional operators of the power grid to 

interact with so many devices and individuals so a 

“middle man” or a so called aggregator will be 

required to manage their participation. The TSO 

and/or DSOs will still need to deal with a large 

number of aggregators, so to make the interactions 

manageable and to facilitate market clearing, the 

TSO/DSOs will need to limit the number of bids that 

each aggregator can submit to participate in AS 

and/or flexibility markets. In California, Demand 

Side Response aggregators (DSR) are currently 

limited to a maximum of 10 bids per hour per 

aggregator (Kohansal and Mohsenian-Rad, 2016). 

The number chosen seems somewhat arbitrary, but 

fewer buckets would result in less granularity in price 

bids, whilst taking significantly more bid buckets 

would result in additional computational complexity 

and a requisite increase in solution time. 

Aggregators will eventually take many forms and 

follow different types of business models. Some 

aggregators will specialize on different types of 

devices e.g. Electric Vehicles (EV) or CGCL. Some 

will focus on multiple groups. As a first step 

SmartNet developed five types of aggregators 

(Storage, CHP, CGCL, thermostatically controlled 

Loads [TCL] and Atomic Loads (e.g. washing 

machines) (Dzamarija et al., 2018). Each aggregator 

focuses on those specific devices only. 

Although the focus of the simulation framework 

is on coordination schemes, we present here for the 

first time, a focus on a particular aggregator agent 

known as the CGCL aggregator. This agent 

aggregates renewable devices such as wind, solar and 

hydro and also encompasses sheddable loads such as 

street lamps. The simulation currently uses the 

marginal bidding costs as the basis on which to 

aggregate, although strategic bidding and agent 

learning could be added at a later date. So far the 

major focus of research has been on the aggregation 

of EV’s, mainly from an algorithmic and optimization 

point of view (Shafie-Khah et al., 2016, Vayá and 

Andersson, 2015). There is therefore a lack of work 

looking at aggregation of customers in general, as 

well as the role of the CGCL aggregator. 

Optimization is one method that we can use to 

aggregate bids, but other alternatives could be 

investigated. 

In that context, we have borrowed from the 

finance and risk management sector as we believe 

that many future commercial aggregators would use 

simpler more pragmatic solutions based on bucket 

concepts which fit well with portfolio and risk 

management theories. These are integrated with the 

network calculations. Although we do not present the 

risk and portfolio management concepts here, the 

paper focusses on simulating buckets as a first step in 

developing an agent that would be representative of 

such a commercially focussed agent.  

Buckets could be time based (Kumar, 2017), risk 

based (Riskviews, 2012), default based (Krink et al., 

2008) or price /cost based. As a first step we chose to 

ignore risk and concentrate on marginal costs without 

risk, to investigate coordination schemes and the 

feasibility of performing such an aggregation in the 

SmartNet context 
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Choosing which devices go into which buckets 

can be thought of as clustering exercise. At its 

simplest if we ignore risk we can cluster on price/cost 

but in practice a more sophisticated clustering 

strategy would usually be required.  

The current design of SmartNet does not address 

risk in any sophisticated way, but does include a cost 

adjustment or delta that can be added to the marginal 

bid cost. Calculation of the delta value has not 

currently been implemented. 

Although simulation approaches using stochastic 

optimization with constrained chance (Li, 2015) 

provides a potential solution to managing risk, the 

bucket approach presented below will allow us to 

represent risk as in a way that is familiar to many risk 

professionals in trading companies and banks. In 

addition, run times for stochastic optimization 

algorithms can be of the order of 30 minutes to just 

over one hour (Furlonge, 2011) and may prove to be 

impractical in the context of real time electricity 

market clearing.  

2.1 CGCL Aggregator Overview 

Aggregators will be assumed commercial entities, 

which are profit maximising and will have to provide 

a number of functions/roles within a real market 

setting. These will include but are not be limited to: 

 Analysis of Customers; 

 Analysis of the Market; 

 Weather forecasting; 

 Demand and Clearing Price forecasting; 

 Risk management;  

 Data management, Accounting and Billing;  

 Congestion modelling (see below); 

 Aggregation of Bids (Clustering) with the view to 

maximise profits; 

 Bidding to Market and Interactions with 

TSO/DSO; 

 Disaggregation – based on the bids submitted to 

the market during the aggregation process and 

results from the market clearing entity, apportion 

accepted flexibility to individual devices. Note the 

CGCL aggregator may be given partial 

acceptance of its bids e.g. only 25% of the volume 

is accepted at a certain price. The organisation 

responsible for market clearing would be using 

optimal power flow software to dispatch 

generation and demand response bids, taking 

account of constraints on power lines (voltage and 

flow) as well as looking to minimise system costs. 

Lower bids may be curtailed to overcome 

potential congestion in the power system;  

 Notification of any adjustments to individual 

devices from the disaggregation process.  

This paper is going to focus on the modelling of 

the last four listed functions. Although SmartNet also 

simulates day ahead price bidding, and solving the 

optimal power flow, we are going to focus on the real 

time flexibility or ancillary services market portion of 

the wholesale power market. In the following 

subsections, we now focus on our design of a CGCL 

aggregation agent written in Python using a 

financially based “bucket” bidding system. 

2.2 Module Descriptions 

The Curtailable Generation Curtailable Load (CGCL) 

aggregator/disaggregator module (henceforth called 

the CGCL Aggregator) simulates the 

aggregation/disaggregation of data and bids from 

hundreds of thousands of devices attached to a 

particular node/ or a set of nodes on a physical power 

network. In this case, four different types of devices 

are collated from thousands of power nodes in a 

model of a real system – in this case the Italian, 

Spanish and Danish Power grids: 

 Hydro; 

 Solar; 

 Wind; 

 Sheddable Loads (SEL) – e.g. Street Lamps. 

For each time step, bids from these different types 

of devices are combined into price “buckets” to 

produce up to 20 price volume bids per time step (10 

up bids and 10 down bids). Market rules determine 

when aggregators will bid i.e. the time step and for 

how many future intervals e.g. 12 bids of 5 minutes 

for the next hour. SmartNet allows us to experiment 

with these parameters. 

Overall control of the bidding process, including 

time steps, the number of periods bid, aggregation 

and disaggregation start signals are driven by the 

Market Scheduler and scenario inputs which include 

details on the number of time steps , rolling time bid 

window and the grid to be used in the simulation. This 

data is sent to a CGCL aggregator by the scheduler. 

The CGCL aggregator code initialises and creates 

all the aggregators for the scenario, and collects all 

the device data associated with a node to which 

aggregator is connected. In effect each aggregator is 

an agent (a software object), who stores the data from 

all the devices connected to the aggregator’s node or 

nodes, in an in-memory three dimensional matrix. 

Note in the case of a transmission nodes, SmartNet 

assumes that all devices associated with distribution 

nodes downstream are attached to the aggregator. In 

practice, aggregators may take customers from a 
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variety of nodes.  Different co-ordination schemes, 

which are scenario driven, determine where the 

aggregators are placed (Figure 1). 

 

Figure 1: Aggregators assigned to transmission or 

distribution nodes. 

Data for each device and node locations are stored 

in a Django based SQL database (Django Software 

Foundation, 2017). 

In the current version, buckets are clustered by 

cost, but the concept can be extended to a more 

general clustering algorithm using multiple variables. 

 

Figure 2: CGCL aggregator design. 

The CGCL aggregator code makes extensive use 

of Pythons Numpy Array data manipulation routines  

for calculation speed, which is ideally suited to n 

dimensional matrix manipulation. As illustrated in 

Figure 2, the CGCL aggregator code is split into two 

main parts: 

 CGCL Aggregator Factory. This creates the 

appropriate number of aggregator agent objects, 

creates a list (an agent directory) of those objects, 

so that we can take control of them later and 

populates them with data from a relational 

database. On receipt of an aggregation or 

disaggregation signal from the scheduler module, 

it also triggers the individual agents to perform 

their calculations. Currently this is performed 

sequentially, but this could be multi tasked later.  

Aggregators are placed at network nodes ;  

 CGCL Implementation module – that contains the 

logic of the individual aggregator agents.  

Control of the aggregator functions is achieved 

via an external scheduler.  

2.2.1 CGCL Aggregator Logic 

The aggregator implementation module, contains the 

logic of the aggregator agents, and currently performs 

four main tasks: 

 Initialisation of agent object - When an agent 

object is created this simple function creates 

internal storage of variables and sets up 

parameters such as agent name and ID, max 

number of bids allowed, device lists and ID’s, the 

actor that “owns” the aggregator and initialises the 

arrays for use in the calculations; 

 Initialisation of agent data - This function pulls 

device specific data from the database and creates 

device profiles for the devices attached to the 

aggregator; 

 Aggregation – Creates bids for the aggregator and 

sends these bids to a database, so that the market 

layers can clear the market; 

 Disaggregation – Recovers cleared bid data 

associated with the specific aggregator agent and 

disaggregates cleared bids. This results in an agent 

sending new set points to all of the devices on the 

particular node. These setpoints are stored in an 

aggregator setpoint out table. 

In a large system, like the Italian power grid, we 

have tens of thousands of aggregator agents. Note 

SmartNet currently models aggregators at each node 

but in practice, one aggregator may cover several 

nodes. Each agent stores its own data such as device 

profiles (both day ahead (base) and their expected or 

actual profiles, performs its own calculations, and 

stores the results of those calculations within its own 

memory. It takes device data/flex bids from four types 

of devices namely Hydro, PV (Solar) , Wind and 

sheddable loads (SEL), clusters that data into price 

buckets or segments and effectively bids this data to 

the market by storing those bids into an agreed format 

into database tables. 

The aggregator sends out forward flexible bids 

e.g. for the next hour we will bid 12 x 5 minute time 

intervals. For each time slice, the aggregator sends 

out bid buckets, which represents the aggregation of 

all the devices associated with that aggregator. Each 

bucket represents a price range. E.g. 10-30, 30-70 

€/Mwh and so on (see Figure 3).  

SIMULTECH 2019 - 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

280



 

Figure 3: Bid structure overview. 

Each aggregator agent performs its own 

calculations and updates databases as necessary. A 

minimum bid size of 1kW is used to filter bid buckets 

(this is parameter driven).  

Bids for the time slices are stored in a 3D array 

within the agent (flex up and down versions). The 

matrix represents the clusters/segments as well as the 

devices in that cluster including details on its type, 

volumes (real power P and reactive power Q), its bid 

(price) and so on. This matrix approach allows the 

logic in the module to unpick cleared bids, 

disaggregate, and apportion them to individual devices 

associated with aggregator. We need some way of 

assigning devices to clusters and to keep a record of it 

– but at speed. A database solution would have been 

slow for this purpose. 

2.3 Agent Aggregation 

In the initial design, the aggregator calculated the 

bucket price ranges so that equal number of devices 

will be apportioned to each range. The price ranges 

are therefore variable (see Figure 4). Our current 

methodology uses a genetic algorithm optimizer to 

maximise the profit of the aggregator by adjusting the 

bucket sizes for both the flex up and down bids. 

Devices are assigned to these buckets based on their 

cost, while their ID’s are also stored in tables linked 

to these buckets. 

2.4 Agent Disaggregation 

The market is cleared using an OPF calculation. The 

clearing module then informs aggregators and their 

schedulers, which trigger the aggregator 

disaggregation routine. The disaggregator function 

retrieves accepted bid data from appropriate database 

table and uses the previously internally stored 3D 

Numpy arrays (matrices) to unpick the bids to  

 

Figure 4: Bid buckets example. 

apportion them to individual devices. Where the 

market clears or accepts the full volume of a 

particular bucket or segment, the module logic 

accepts all bids from all the devices assigned to that 

particular bucket. In the case where the market 

accepts a fraction of the bid segment, volumes are 

apportioned on a “greedy” basis – lowest device cost 

first. Cleared volumes are assigned to individual 

devices appropriately bucket by bucket, by writing to 

a setpoint table in the database. 

2.5 Simulation Results 

SmartNet stores bidding behaviour for later analysis 

and provides prices at each of the nodes modelled in 

the power grid. Behaviour of the CGCL agents under 

different co-ordination schemes set out in the 

SmartNet documentation can be very different and 

imposes different costs on the system. Figure 5 shows 

coordination scheme (CS) D results in much more 

downward flexibility being provided by CGCL 

agent’s than CS A.  Prices (Figure 6) follow a similar 

pattern but in the case where volumes are relatively 

small, prices are set by other aggregator agent types 

e.g. CHP. Price patterns will also be node dependent.  

 

Figure 5: Volume output for 80 hours of simulation. 
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Figure 6: Price output for 80 hours of simulation. 

3 CHALLENGES AND LESSONS 

LEARNED 

Development of the full SmartNet project has taken 

many man-years with the CGCL aggregator agent 

model part taking around 6 man months of effort. 

Simulation and testing of such a large simulation 

system is challenging, and we have shown that it is 

possible to simulate the aggregation and clustering of 

different types of flexibility into a number of 

manageable bids. Simulation for 96-time steps on a 

representation of the Italian grid with 5 types of 

aggregators using this framework is currently taking 

around 5-6 hours per scenario using one machine 

(Alienware 15 R3 7700 HQ 2.8 GHz 4 cores 8 logical 

32GB DDR4). Most of the time is spent writing to a 

single database, which is required to store data on 

bids and other data for later analysis.  

3.1 Database Speed 

Simulation write speeds at each tick are shown in 

Figure 7.  The initial design resulted in a single time 

step write time of around 4 hours at the 40th tick. 

Optimisation of code using “SQL BulkCreate” 

commands resulted in a significant drop to around 4-

5 minutes. Long write times are a natural 

consequence of writing around 5 million records per 

time step. 

 

Figure 7: Database speed during each tick. 

Experiments with database writes indicate that 

having a database index causes the slowdown in 

insert speed as table size. Removal of the index before 

writing can improve this performance (Figure 7). 

Note that indexing does help in improving read speed. 

A deindexing, write and re-index approach may be 

worth investigating. 

Use of an in-memory database (Anikin, 2016) 

could also be an option with a “write at leisure” 

approach to a main database which would be stored 

on a Hard Disk Drive (HDD). This would be about 

200 times faster than the HDD. Our agent design 

already uses this approach extensively but requires 

large amounts of memory. Finally, use of a Solid-

State Drive (SDD) would bring a speed improvement 

of around two times over an HDD. We are currently 

using HDD for storage. 

3.1.1 Database Shards  

Writing to smaller focussed databases would also 

help to improve database write performance. 

SmartNet currently uses one database to store 

everything. Writing bids to a database for one time 

period only, “a current time bid database”, could 

potentially improve performance. Joining of these 

current bids to a historical collection of bid data could 

be performed at a later time. We may wish to consider 

horizontal partitioning of the database or “sharding” 

(Kerstiens, 2018), although this technique can prove 

to be slow when querying multiple databases. 

3.2 Python vs Java Vs C++ 

The software simulation framework uses python as its 

base. Extensive use of Numpy arrays in the CGCL 

aggregator calculations helps to speed up calculations 

of the order of 100-1000 times, depending on 

operation, over iterating through a list.  

We have considered a port of the code to Java, as 

it is known that Java code could be up to 50 times 

faster than python (Gouy, 2018).  Benchmarks can 

range from no speed up for simple algorithms to 50 

times or more where computations are complex. 

Unfortunately, this would involve a large conversion 

effort and the Python development environment is 

more productive potentially by a factor of five. A C++ 

formulation would also provide significant speed 

improvements over Java and Python but as we have 

discussed in section 3.1, database operations impose 

a significant speed restriction on this implementation, 

which far exceeds any benefit from a swap of 

language.  
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Installation of Intel’s ® Python Interpreter using 

uses its Data Analytics Acceleration and Claim Math 

Kernel Library could also improve calculation times 

(Intel, 2018). 

3.3 Multi-threading/HPC/CUDA 

Multi-threading or the use of a High Performance 

Computing (HPC) environment could bring 

significant benefits to simulation times. In a practical 

sense, each aggregator company in the real world 

would be aggregating on a separate computer 

system/server remotely from the TSO/DSO clearing 

entity.  However, HPC data transfer latency could 

reduce the benefits if machines are located on distant 

clusters or are at different company premises. 

Multithreading allows for improvements in 

calculation times of the order of 7x (with 8 logical 

cores) i.e. of the order of 87% x the number of cores. 

HPC using 65 cores would therefore drastically 

reduce calculation times to 1-2% of the one machine 

calculation time if we ignore latency effects. An 

aggregator with 300,000 devices is taking around 15 

secs to perform its calculations on one machine using 

single threading so a HPC setup could reduce this to 

around 0.3 secs. An aggregator with a single device is 

taking around <0.05 secs on a single thread. 

Use of a Graphics Processing unit (GPU) with 

CUDA (Couturier, 2013) would be an ideal method 

to use on an aggregator module that makes extensive 

use of the Numpy arrays and associated calculations. 

We have estimated that speed improvements of 

around 30X could be made for our design based on 

the calculations alone when using an Nvidia Geforce 

GTX 1070 GPU. Database access issues would 

remain. Speedup will depend on array size, so in the 

case of very large arrays, we may expect 

improvement of 100-200, but some of aggregator 

arrays only contain 1 device, so the overhead of 

transferring data to the associated GPU may actually 

degrade performance. This of course will depend on 

the number of cores available in the GPU.  

3.4 Congestion 

Unintended aggregator actions caused DSO agent 

intervention in the market to relieve network 

congestion (power flows, voltages). Forecasting 

errors (day ahead vs real time) also play a part in this 

process especially when devices promised to deliver 

more they actually could.  

DSO Congestion management has implications 

for both the overall system costs and aggregator profit 

margins, and presents additional risks to the 

aggregator. If the additional risk is high, aggregators 

may want to anticipate congestion separately from the 

DSO, and incorporate congestion risk value into their 

bids. 

4 FUTURE WORK 

Realistic aspects of aggregation such as risk 

management, strategic bidding, agent learning, 

congestion and portfolio management are missing 

from the current approach. A more realistic 

representation of a power aggregator will require that 

we include these various elements. Early work 

indicates that the price of particular bids could rise by 

as much as 30% under certain scenarios if we include 

some of these effects. Finally, the current SmartNet 

framework does not consider aggregator-to-

aggregator interactions nor does it consider 

aggregators with multiple device types e.g. CGCL + 

CHP or competition between them.   Future versions 

of our modelling will include this and will implement 

the mechanisms discussed in section 3. 

5 CONCLUSIONS 

This paper introduced the concept of financial 

buckets as a method to aggregate bids to maximise 

profits to a power aggregator. Simulation and testing 

of such a large simulation system is challenging, and 

we have shown that it is possible to simulate the 

aggregation and clustering of different types of 

flexibility into a number of manageable bids in a 

timely manner but this will require parallelization and 

a more efficient use of database technology. 
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