
A NUMA Aware Spark™ on Many-cores and Large Memory Servers

François Waeselynck and Benoit Pelletier
Atos, 1 rue de Provence, Echirolles, France

Keywords: CloudDBAppliance, Bullsequana S, Scale-up, Spark, NUMA.

Abstract: Within the scope of the CloudDBAppliance project, we investigate how Apache Spark™ can leverage a many
cores and large memory platform, with a scale up approach as opposed to the commonly used scale out one:
that is, the approach is to deploy a spark cluster to few large servers with many cores (up to several hundreds)
and large memory (up to several tera-byte), rather than spreading it on many vanilla servers, and to stack
several Spark executor processes per cluster node when running a job. It requires to cope with the non-uniform
memory access within such servers, so we inculcate NUMA awareness to Spark, that provides a smart and
application transparent placement of executor processes. We experiment it on a BullSequana™ S series
platform with the Intel HiBench suite benchmark and compare performance where NUMA awareness is off
or on.

1 INTRODUCTION

Within the scope of the CloudDBAppliance project,
we investigate how Apache Spark™ can leverage a
many cores and large memory platform, with a scale
up approach in mind, as opposed to the commonly
used scale out one. That is, rather than spreading a
Spark cluster on many vanilla servers, the approach is
to deploy it on a few BullSequana™ large servers
with many cores (up to several hundreds) and large
memory (up to several tera-byte). Spark jobs
execution enrols several executor processes – several
per server, that leverage the many-cores and large
memory features of the BullSequana server.

But so large servers are designed with Non
Uniform memory Access (NUMA) it is necessary to
cope with in order to achieve the best performance.
We inculcate NUMA awareness to Spark and
experiment it on a BullSequana™ S series platform
in a scale up approach with the Intel HiBench suite
microbenchmark.

This document exposes the general issue induced
by NUMA architectures, then explains how it can be
addressed for Spark applications. Then it describes
the test protocol and testbed and compares the
application performance and efficiency where
NUMA awareness is switched on versus where it is
switched off.

2 NON UNIFORM MEMORY
ACCESS (NUMA)

The target hardware platform of CloudDBAppliance
is a BullSequana S server, a highly scalable and
flexible server, ranging from 2 to 32 processors (up to
896 cores and 1792 hardware threads), up to 32 GPUs
and 48 TB RAM, and 64 TB NVRAM. Our staging
platform includes a BullSequana S800 server with :8
Intel® Xeon® Platinium 8158 CPU @ 3 GHz (12
cores each), and 4 TB RAM (512 GB per CPU).

Figure 1: BullSequana S800 NUMA nodes.

BullSequana S has a Non-Uniform Memory
Access architecture. Each processor has local

648
Waeselynck, F. and Pelletier, B.
A NUMA Aware SparkTM on Many-cores and Large Memory Servers.
DOI: 10.5220/0007905506480653
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 648-653
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

memory, that forms what is termed a NUMA node.
Each NUMA node is linked to other NUMA nodes by
UPI links, in such a way that all nodes are transitively
linked, so that the whole server memory can be
consistently accessed from any node. The
BullSequana S800 has eight NUMA nodes numbered
from 0 to 7, which are linked so that there are at most
two hops between nodes as shown in Figure 1.

Each node has 3 neighbours at one hop, and four
nodes at two hops. Obviously, the latency to access a
portion of memory from a given node varies with the
distance between the accessing node to the accessed
node: where there is one hop, the latency is about
twice the latency of an access to local memory; where
there are two hops, the latency is about three times the
latency of a local access, as shown in Figure 2. This
may dramatically affect the performance of the
application.

Figure 2: Distances between NUMA nodes.

NUMA awareness aims at maximizing access to
local memory by the threads that run on every core.

3 NUMA AWARE SPARK

A Spark application comprises of:

 A driver process, that controls the whole
processing of the application. The application is
modelled as a direct acyclic graph (DAG). The
driver understands and interprets this model, and,
when operating on a given dataset, splits the
processing in stages and individual tasks that it
schedules and distributes to executors that run in
the cluster nodes.

 Executor processes that perform the actual data
processing, as instructed by the driver. The
executor processes hold data parts in their
memory: a task applies to a data part, and each
executor receives (and runs) tasks retated to the
data parts it holds. Executor processes run on
cluster nodes, the so-called worker nodes. There
may be one or more executors per worker node.
Data processing may involve many executor

processus spread on many worker nodes.

A Spark application consumes (large) data from
various sources, processes it, then outputs (smaller)
results to various sinks. Processing usually
transforms the input data so that to build a dataset in
the desired form, caches it in memory, then applies
algorithms that repeatedly operate on the cached data.
Unlike Hadoop - that stores intermediate results on
storage (HDFS), Spark retains intermediate results in
memory as far as possible, and the more memory it
gets, the less pressure on the Input/output system.
This makes Spark less sensitive to the input/output
system than Hadoop.

Spark will try to perform initial processing close
to the input data location to consumes it at the highest
rate, but further computing will be more dependent on
the way it (re)partitions and retains data in the
memory cache of the executors. And as the
processing time is usually far higher than the
cumulated input and output times, the distribution of
data among the executor processes (in their memory)
is an important factor to consider.

Spark still writes data to file systems during
shuffling operation, when data is rebalanced between
executors, e.g. on sort operations or data
repartitioning. Shuffling thus may put high pressure
on both I/O systems and network, the later incurring
CPU consumption as data has to be serialized before
being transferred through the network. One way to
lower it is to use large memory executors: data
analytics often reduce datasets size from a very large
input to a far smaller output. The more filtering and
transformations that lower the size can be done in a
continuous space, the less the number and size of
shuffling operations will occur. Large-memory and
many-core platforms enable few huge executors as
well as more common approaches with several
executors, for a single application as well as several
ones.

Spark has been designed for scale out and is not
natively NUMA aware. We have made extensions to
inculcate NUMA awareness to the worker processes
of a Spark cluster deployed in standalone mode. A
worker process manages executor processes in a
server of a Spark cluster: placement of executors
within the server is a local concern the worker is
responsible for. When a worker launches a Spark
executor process, it binds it to a NUMA node, so that
the threads running the tasks within the executor
process access local memory, where the data parts
reside. Or, if the executor does not fit to a single
NUMA node, it binds it to a set of NUMA nodes close
to each other. The worker process manages a table of

A NUMA Aware SparkTM on Many-cores and Large Memory Servers

649

the running executors, so that to balance the executor
placement. The placement is fully transparent to the
application. The placement obey to a configurable
policy, that can be set at the cluster level or at submit
time.

4 THE TEST PROTOCOL

The test protocol is to run the same benchmark
against input datasets of various size onto a single
BullSequana S800 server, with the NUMA awareness
switched off, then to re-run it with the NUMA
awareness switched on, then compare results of both:
a) In terms of performance key indicator(s):

 duration of the benchmark with NUMA
awareness: Ton.

 duration of the benchmark without NUMA
awareness: Toff.

 The improvement computed as: (1 – Ton / Toff).
 The gain computed as: Toff / Ton.

b) In terms of efficiency, that is, how much resources
are consumed to fulfil the same work:
 Average CPU consumption during the bench,

respectively CPUon and CPUoff.
 NUMA awareness CPU efficiency computed

as: CPUoff . Toff / CPUon .Ton.

The system under test comprises of:
 A BullSequana S800 server with 8x12 cores

processors and 4 terabytes (TB) RAM
memory. That is a total of 96 cores and 192
hardware threads, as hyperthreading is
activated.

 a Spark 2.4 platform setup in standalone
cluster mode, with NUMA awareness
extension.

 Input datasets are stored in a Hadoop
Distributed File System (HDFS). Four dataset
input profiles of various size have been
defined, as shown by Table 1.

 The used microbenchmark workload is
HiBench/Kmeans (https://github.com/intel-
hadoop/HiBench).

 HiBench/Kmeans is run with a parallelism of
128 tasks – where a task is run by a thread,
spread on 8 executor processes with each 16
parallel tasks, and a 128 GB Heap size.

 System metrics are collected by means of a sar
command, for off Line analysis.

 Spark metrics are collected by means of the
Spark history server for off line analysis.

Table 1: Input dataset profiles.

Dataset profile Size

gigantic 37,4 GB

halfbigdata 112,2 GB

bigdata 224,4 GB

gargantua 401,6 GB

5 ANALYSIS AND RESULTS

5.1 What a HiBench/Kmeans Run
Looks like

Whatever the input dataset size, a HiBench/Kmeans
run exhibits the following behaviour: it runs N jobs in
sequence, numbered from 0 to N-1. Job #0 triggers
the reading of the input dataset and loads it in the
spark cache, i.e. the executor memory. Further jobs
from 1 to N-1 mainly operates on the data loaded in
the cache. Figure 3 – extracted from the Spark web
console, shows a timeline run of Hibench/Kmeans on
a gargantua (401,6 GB) input dataset, with NUMA
awareness on.

The upper pane shows the launch of the executors
at the beginning of the run. The lower pane shows the
19 jobs it runs sequentially, numbered from 0 to 18,
some of which have been labelled for the sake of
readability. Each job includes around 3300 tasks,
distributed to the 8 executor processes, each being
configured to potentially run 16 tasks in parallel, so
that there is a potential of 128 parallel running tasks.
Analysis of the benchmark trace logged by the Spark
history server, allows to compute the effective
number of parallel tasks all along the run, as
illustrated by Figure 4. Jobs appear clearly on the
graph, with a ramp up, a steady plateau, then a fall to
zero (the number of task is always zero between two
jobs). The profile shows that full parallelism is
effective: for each job, the desired level (128 parallel
tasks) is reached after a short and steep ramp up, then
stays at this level during the job, then quickly and
steeply falls to zero at the end of the job.

This profile denotes well synchronized executor
processes, where there are no stragglers, that is the
best case to expect.

5.2 Comparing Kmeans Runs

Figure 6 gives the variation of the benchmark dura-

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

650

Figure 3: Hibench:Kmeans timeline view.

Figure 4: Hibench:Kmeans number of tasks in parallel.

Figure 5: Hibench:Kmeans gain on duration and efficiency of NUMA awareness.

tion (in seconds), function of the input dataset size:
gigantic (37,4 GB), halfbigdata (112,2 GB), bigdata
(224,4 GB), gargantua (401,6 GB).

HiBench/Kmeans against gigantic, halfbigdata
and bigdata have been setup with 8 executors of 16
cores and 128 Gb heap each. For gargantua, it is not

A NUMA Aware SparkTM on Many-cores and Large Memory Servers

651

possible to keep the same settings. It is necessary to
increase the heap size to 160 GB (where NUMA
awareness is on) and even 256 GB (where NUMA
awareness is off) and to tune the garbage collector:
indeed, with the original 128 GB heap, there is too
much pressure on the garbage collector, that causes a
high CPU overhead saturating the server, so that less
CPU is given to the application itself, that
dramatically increases the benchmark duration to
about 36 minutes.

CPU consumption is far more intensive where
NUMA awareness is off and lasts more than twice as
long. Figure 7 superposes the CPU consumption of
two runs, one with NUMA awareness on, the other
one with NUMA aware off. Moreover, the total heap
is increased from 1,25 TB (NUMA on) to 2 TB
(NUMA off). NUMA awareness thus increases
dramatically the efficiency, as the Spark cluster will
be able to process more job submissions in a given
time interval.

Figure 6: Hibench:Kmeans duration function of input
dataset size.

Figure 7: Hibench:Kmeans CPU consumption.

NUMA awareness shortens the benchmark
duration by a factor of 2.0 (approximately) or even

more. Moreover, it dramatically increases efficiency
by dividing by 2.5 or even more the CPU
consumption to complete a run. Figure 5 show
efficiency and gain on duration for the various input
dataset.

These results apply to HiBench/Kmeans only.
Other workloads may have a different sensitivity to
NUMA awareness.

6 CONCLUSIONS

Spark leverages High-End servers such as
BullSequana S, each able to support hundreds to
thousands Spark parallel tasks and up to several
terabytes of in memory data, thus enabling to process
large datasets within a single system or a few systems,
thanks to NUMA aware scale up placement of spark
executor processes.

Beyond the benefits brought by the many-cores
and large-memory features, the support of Apache
Pass non-volatile RAM (NVRAM) and GPUs opens
new perspectives the CloudDBAppliance project is
yet exploring:

 Though Spark intensively uses memory, it still
writes data to file systems during shuffling
operations, when data is rebalanced between
executors, e.g. on sort operations or data
repartitioning. Another case is for some cache
management policies. The use of Apache Pass is
expected to relax the high pressure it may put on
the input/output system, as it exhibits higher
throughput and lower latency than SSDs or
NVMe.

 More and more machine learning and deep
learning frameworks and libraries support off-
loading to GPU.

ACKNOWLEDGEMENTS

The CloudDBAppliance
project has received funding
from the European Union’s
Horizon 2020 research and
innovation programme under
grant agreement No. 732051.

REFERENCES

Intel Hibench suite: https://github.com/intel-
hadoop/HiBench

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

652

BullSequana S series technical specification:
https://atos.net/wp-content/uploads/2017/11/FS_Bull
Sequana_S200-800_specifications.pdf

CloudDBAppliance: https://clouddb.eu/
Spark: http://spark.apache.org

A NUMA Aware SparkTM on Many-cores and Large Memory Servers

653

